Skip to main content
. 2011 Sep 8;6(9):e24168. doi: 10.1371/journal.pone.0024168

Figure 8. CG7375 protein functions as the E2 enzyme for Cullin neddylation.

Figure 8

(A) Immunoblot analysis (WB) of lysates extracted from wildtype (WT) wing discs (lane 1) or wing discs overexpressing CG7375 RNAi driven by the MS1096-Gal4 driver (lane 2). CG7375 RNAi led to accumulation of both CiFL and un-neddylated Cul1 (lane 2). Similarly, neddylation of Cul3 was reduced, but the amount of un-neddylated Cul3 was not obviously changed (lane 2). (B) Immunoblot analysis of lysates extracted from wildtype (lane 1) or homozygous CG7375LL04684 first-instar larvae (lane 2). Neddylation of Cul3 protein was abolished and un-neddylated Cul3 was stabilized. (C and D) The E2 activity of CG7375 for Cullin neddylation. In an in vitro neddylation assay, purified human Uba3/APPBP1 complex was used as E1 and lysates extracted from wing discs expressing CG7375 RNAi provided the source for Cullin proteins. CG7375 RNAi wing disc lysates did not display neddylation activity (as 90% endogenous CG7375 was knocked down by CG7375 RNAi; Figure S5C), unless purified GST-CG7375 protein was added (lane 2 in C; lane 3 in D): both Cu1 and Cul3 were neddylated. Purified GST protein was used as a negative control (lane 1 in C and D). The neddylation activity of GST-CG7375 was dependent on the presence of purified E1 complex (lane 3 in C) and ATP (lane 4 in C). The N-terminus of human ortholog of CG7375 (Ubc12) is required to selectively recruit NEDD8's E1 to promote thioester formation between E2 and NEDD8 (Figure S7). Deletion of this conserved N terminal motif in GST-CG7375DN abolished its neddylation E2 activity (lane 2 in D). (E) In vitro reconstitution of Drosophila neddylation cascade. Cul1 and Cul3 were neddylated when both E1 complex (CG13343-V5 and dAPPBP1-HA produced in cl-8 cells) and E2 enzyme (GST-CG7375) were added to cl-8 lysates, which provided the source of Cullins (lane 4). Adding E1 (lane 2) or E2 (lane 3) alone did not result in neddylation of Cul1 or Cul3.