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Abstract

Mitochondrial bioenergetic processes are central to the production of cellular energy, and a decrease in the expression or
activity of enzyme complexes responsible for these processes can result in energetic deficit that correlates with many
metabolic diseases and aging. Unfortunately, existing computational models of mitochondrial bioenergetics either lack
relevant kinetic descriptions of the enzyme complexes, or incorporate mechanisms too specific to a particular mitochondrial
system and are thus incapable of capturing the heterogeneity associated with these complexes across different systems and
system states. Here we introduce a new composable rate equation, the chemiosmotic rate law, that expresses the flux of a
prototypical energy transduction complex as a function of: the saturation kinetics of the electron donor and acceptor
substrates; the redox transfer potential between the complex and the substrates; and the steady-state thermodynamic
force-to-flux relationship of the overall electro-chemical reaction. Modeling of bioenergetics with this rate law has several
advantages: (1) it minimizes the use of arbitrary free parameters while featuring biochemically relevant parameters that can
be obtained through progress curves of common enzyme kinetics protocols; (2) it is modular and can adapt to various
enzyme complex arrangements for both in vivo and in vitro systems via transformation of its rate and equilibrium constants;
(3) it provides a clear association between the sensitivity of the parameters of the individual complexes and the sensitivity of
the system’s steady-state. To validate our approach, we conduct in vitro measurements of ETC complex I, III, and IV activities
using rat heart homogenates, and construct an estimation procedure for the parameter values directly from these
measurements. In addition, we show the theoretical connections of our approach to the existing models, and compare the
predictive accuracy of the rate law with our experimentally fitted parameters to those of existing models. Finally, we present
a complete perturbation study of these parameters to reveal how they can significantly and differentially influence global
flux and operational thresholds, suggesting that this modeling approach could help enable the comparative analysis of
mitochondria from different systems and pathological states. The procedures and results are available in Mathematica
notebooks at http://www.igb.uci.edu/tools/sb/mitochondria-modeling.html.
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Introduction

Throughout the mitochondria inner membrane are many

energy-transducing protein complexes that help transform the

chemical energy from the cell’s metabolic intake into various

useful forms of energy for the cell. Some of these complexes use the

free-energy extracted froms reduction-oxidation (redox) reactions

to transport proton across the membrane and establish a proton

gradient, while others use this proton gradient in combination with

the membrane potential, the proton-motive-force (pmf), to drive

otherwise energetically unfavorable processes such as ATP

synthesis and assorted transporters of other ions and/or molecules.

This use of the pmf as an intermediate driving force in the overall

conversion of energy is the essence of the chemiosmotic theory [1],

and the flow of energy between these chemiosmotic complexes

constitutes the core of mitochondrial bioenergetics [2]. The

chemiosmotic complexes consist of complex I, III, IV, and V of

the oxidative phosphorlyation (OXPHOS) pathway, and are

partly encoded by the mitochondria DNA (mtDNA). Genetic

variation or mutations in the mtDNA can alter the protein

structures of the complexes, which can then affect their functional

output, the bioenergetics of the system, and ultimately the health

of the organism. In particular, a mtDNA mutation in a

polypeptide of an electron-transport-chain (ETC) complex may

cause its enzyme machinery to become less efficient in its energy

transduction. An increase in the slippage of complex I and III of

the ETC [3–5] can lead to an increase in the production of the

respiration byproduct, reactive oxygen species (ROS), which can
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further damage the mtDNA and create a vicious feed-forward loop

of energetic decline. When the total damage to the OXPHOS

surpasses a functional threshold whereby it can no longer fulfill the

energetic requirements of the cell, the cell may undergo apoptosis

(programmed cell death) to remove itself from the population. The

consequence of such an energetic decline is potentially grave, as

over time, when enough cells are lost, the organism would begin to

lose the functions of its organs, which might be manifested as

either the normal progression of aging, or more seriously as the

onset of major metabolic and degenerative diseases such as

diabetes, Alzheimer, Parkinson, as well as cancer [6,7].

Interest in the roles that mitochondria play in mammalian

health and disease has grown markedly over the past two decades,

resulting in an abundance of genetic [7–10], structural [11,12],

biochemical [13–15], and pathological [16,17] studies on

mitochondria systems. An effective integration of the heteroge-

neous data coming from these studies is the main focus of the

emerging field of systems biology [18]. However, the development

of one of its key ingredients– the kinetic modeling of mitochondria

bioenergetics–has not kept pace with the rest of the field and could

potentially become a bottleneck.

Models of mitochondrial bioenergetics range from the top-level

network-constraint variety [19], all the way down to the low-level

molecular dynamics simulations [20]. Nevertheless, ODE based

deterministic approaches still provide the best balance of dynamic

descriptions and computational tractability across several length

and time scales [21]. Of the deterministic models, the simplest and

most direct approach is to approximate the respiration flux

through the whole mitochondria by using a single empirical

oxygen consumption equation [22,23]. To introduce a general

thermo-kinetic approach, Jin and Bethke describe a respiration

rate law that encompasses the overall electro-chemical reaction of

the respiratory chain, and is applicable to both mitochondrial and

bacterial respiration models [24,25]. Single equation approaches

such as these, allow easy assimilation of cellular respiration into

higher scale models, but lack the level of detail required to

understand the contributions from the individual components.

At the next level of detail, the respiration process is divided

into its principle components in the OXPHOS pathway, each

with its own kinetic description. There are currently three main

components-based OXPHOS models that serve as the basis for

other larger and more extensive physiological models: the Yugi

and Tomita model [26,27], the Korzeniewski model [28], and

the Beard model [29–32]. These approaches have been used in

the studies of in vivo cardiac energy metabolism [33](Beard

model) [34] (Korzeniewski model), dynamic OXPHOS respira-

tion simulation [35](Beard model), volume dynamics of

mitochondrial bioenergetics [36](Beard model), mitochondrial

fatty acid b -oxidation network [37](Yugi and Tomita model),

the modeling of the ETC in purple non-sulfur bacteria

[38](Korzeniewski model), etc. Although the three OXPHOS

models have been useful in studying several aspects of

bioenergetics and physiology, they are limited by their choices

of mechanism schemes. In particular, the Yugi model assembles

a large array of detailed kinetic descriptions derived from

specific enzyme binding mechanisms in past literature, e.g. the

Ping-Pong bi bi mechanism of complex I [39] etc., but treats

them as separate and independent ‘‘reactors’’ that do not

incorporate the thermodynamic constraints necessary to char-

acterize the dependence of their energy transduction processes

to the chemiosmotic forces of the system. The Korzeniewski

model primarily uses empirical data-driven relationships in both

its reaction equations and systems properties, and it incorpo-

rates linear thermodynamic constraints on its OXPHOS

components based on their free-energy profiles. However, the

validity of its linear approximation is limited to near-equilibrium

conditions. The Beard model inherits many components from

the Korzeniewski model, but it extends the thermodynamic

constraints to non-linear and far-from-equilibrium regions, and

it explicitly treats the membrane potential and proton gradient

of the system as separate state variables. However, the reaction

rate equations in the Beard model lack detailed ‘‘kinetic

descriptions of enzyme activity’’ [35]. In other words, these

reaction rate equations do not intrinsically account for the

kinetic properties of the ETC complexes since they were not

derived in view of the internal mechanisms of the complexes.

Instead, kinetic parameters are incorporated mainly through

phenomenological control factors, which are introduced to

compensate for specific modulations shown in experimental

data sets.

The internal mechanisms of the complexes have been modeled

with explicit elementary reaction steps to track intermediate

metabolic species or reaction byproducts such as the generation of

ROS [3,20]. However, at this scale, model validation becomes

exceedingly difficult with large uncertainty as the individual

reaction rates are not observable with the experimental technology

currently available. For models that do incorporate detailed

mechanistic schemes, there is the additional danger of overfitting

in that mitochondria across different systems display a high degree

of variability in their components [15], and consequently if a

detailed model is based on a particular system, it may not

generalize well to other systems. In addition, kinetic properties that

are determined under a certain set of conditions (e.g. an in vitro

laboratory setup) may not be transformable into another set of

condtions (e.g. in vivo system). Thus, if a model of mitochondrial

bioenergetics is to be both extensive and flexible, it must be able to

adapt to the mechanism of a particular system, and be applicable

to various system conditions. Furthermore, the dynamics of a

system depend on the system’s component descriptions, yet a

system is often more than just the sum of its components. Thus, to

establish a functional relationship between the dynamics of a

system and its components, it is also necessary to allow for

potential unobserved properties to emerge from the synergistic

network interactions that vary from system to system. Only then

can a model effectively capture the system’s response to a

perturbation across multiple scales.

In this paper, we present a new modeling approach for

mitochondrial bioenergetics that addresses the problems of cross-

mechanism adaptability, cross-conditional applicability, and cross-

scale analysis through a novel composable kinetic rate equation

that we term the chemiosmotic rate law. The rate law incorporates

three configurable modulating factors that, via steady-state and

rapid-equilibrium approximations, separately encapsulate the

binding kinetics, the redox transfer potential, and the non-linear

thermodynamic force-to-flux relationship of a prototypical energy

transduction complex in the OXPHOS pathway. The separation

of the factors allows one to selectively configure the mechanistic

scheme of the complex, while the six biochemically relevant kinetic

parameters of the rate law allow one to completely specify its

kinetic properties at a particular reference condition. The kinetic

parameters are estimated from data obtained experimentally using

simple extensions to the standardized in vitro assay protocols for the

various ETC complexes in the OXPHOS pathway. The resulting

in vitro reference dynamics can be transformed into dynamics of an

in vivo system through changes in the system’s constituent

thermodynamic forces, the reaction equilibrium constant, and

the rate constants in a systematic way. One particularly useful type

of transformation is a ‘‘slippage’’, or a loss in the thermodynamic

Chemiosmotic Rate Law
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efficiency of the complex’s energy transduction process, which can

be used to generally express a perturbation on the complex’s

reaction rate.

To validate the rate law, we conduct six parallel sets of assays on

rat muscle homogenates, two for each complex. For each complex,

we obtain kinetic parameter estimates from one of the two sets of

assays, and then compare the progress curve predicted by our

model to the experimental progress curve from the other set of

assays. In addition, we formally establish the theoretical connec-

tions between our approach and other models, and compare their

predictive accuracies. Finally, by using the optimized parameters

for complex I, III, and IV, we perform a complete perturbation

study of these parameters to reveal how they can significantly and

differentially influence global flux and operational thresholds,

suggesting that this modeling approach could help enable the

comparative analysis of mitochondria from different systems and

pathological states.

Methods

In this section, we first describe the derivation of the new

chemiosmotic rate law based on the common properties of the

ETC complexes. We then describe the experimental protocols that

can be used to obtain the various biochemical parameters

appearing in the rate law.

ETC Complex Rate Law Derivation
ETC Complexes and their Common Properties. The

ETC consists of four integral membrane protein complexes that

facilitate a sequence of electron transfer steps: (1) Electrons from

citric-acid cycle products NADHzHz and FADH2 enter the

complex I (NADH-ubiquinone oxidoreductase) and complex II (succinate-

ubiquinone oxidoreductase) respectively; (2) both complexes then

catalyze the reduction-oxidation transfer of electrons to CoQ
(ubiquinone) to produce CoQH2 (ubiquinol); (3) subsequently,

CoQH2 is bound by complex III (ubiquinol-cytochrome c

oxidoreductase), which transfers the electrons to cytochrome c; and

(4) cytochrome c binds to complex IV (cytochrome c-O2

oxidoreductase), which transfers the electrons to oxygen, the final

electron acceptor [40] (Figure 1A). The ETC complexes can either

move about freely by lateral diffusion in the plane of the

membrane (Figure 1B), or alternatively, the complexes can form

aggregates or supercomplexes, ranging from small clusters of a few

complexes to a complete ETC assembly [11] (Figure 1C), to

enable direct electron channeling between the complexes.

Each type of ETC complex is structurally unique, has diverse

catalytic and binding rates, and responds to different inhibitors.

Much of the detailed mechanisms of each complex remain to be

determined. Nevertheless, all ETC complexes and their super-

complex assemblies share the same general characteristic of

binding to both a donor and an acceptor electron carrier (EC)

species, and facilitating the flow of electrons through the complex

by a series of intermediate internal redox steps [2]. In addition, all

complexes except for complex II capture the energy from such an

electron flow and couple it to the drive of protons against their

electrochemical gradient across the mitochondria inner mem-

brane, much like how a windpump (combination of a windmill

and a water pump) captures the energy generated by air flow to

move water against gravity. Both are examples of an energy

transduction process in which free-energy from an energetically

favorable flow of one type of particle drives an energetically

unfavorable flow of another type of particle through a type of

coupling catalytic machine. However, as with all types of coupling

catalytic machines, they can deviate from their normal coupling

efficiency (slip) when damaged or when operating at an abnormal

turnover rate.

Electron-Proton Pump (Eepp) Representation. To provide

quantitative descriptions for the ETC complexes, an abstract

prototypical ETC complex model, the electron-proton pump (Eepp)

complex, is introduced based on the aforementioned general

properties of the ETC complexes. Externally, this Eepp complex is

embedded in a membrane that separates two compartments, and its

function is to catalyze the energy transduction between an electron

transfer reaction and a proton translocation reaction (Figure 2A).

This overall transduction reaction is expressed by the chemical

equation:

ndrD
redznaoAoxzminHz

in 'ndoDoxznarA
redzmoutH

z
out ð1Þ

where Dox and Dred are the oxidized and reduced species of the

donor-EC reactant (D), Aox and Ared are the oxidized and reduced

species of the acceptor-EC reactant (A), Hz
in and Hz

out are the

proton inside and outside of the membrane, while ndr, ndo, nao, nar,

min and mout represent their stoichiometric reaction coefficients

respectively. The overall chemical reaction for each of the ETC

complexes is tabulated in Table 1.

Assuming that the concentrations of chemical species and

reactants are homogeneous inside each compartment, the

dynamics of the overall reaction is governed by a set of time-

dependent ordinary differential equations from the law of

conservation of mass [41]. The rate of change for the chemical

concentrations is directly related to the turnover rate of the

reaction, expressed in terms of the reaction flux J , by their

respective stoichiometric coefficients:

J~
{1

ndr

d½Dred �
dt

~
1

ndo

d½Dox�
dt

~
{1

nao

d½Aox�
dt

~
1

nar

d½Ared �
dt

~
{1

min

d½Hz
in �

dt
~

1

mout

d½Hz
out�

dt

ð2Þ

In addition, depending on the composition of D and A, for each

turn of the reaction there is n net number of electron transferred

between D to A, giving the implicit electron flux:

Je{~nJ ð3Þ

The turnover rate depends on various catalytic properties of the

enzyme that the Eepp complex represents, thus a detailed

quantitative description of the reaction flux J for the Eepp complex

must take into account its internal structure and molecular

mechanisms. Internally, the Eepp complex can be modeled using

four general features: one donor EC binding site, one acceptor EC

binding site, one high potential redox-center RH , and one low

potential redox-center RL (Figure 2B). At any instant, the EC

binding sites can either be occupied or unoccupied, while the

bound ECs and the internal redox-centers can either be reduced

or oxidized, giving rise to a total of 64 microstates (26 distinct

configurations) of the reaction system. Of these microstates, 36 are

distinct configurations of the complex that contribute to the

forward or reverse turnover rate (Figure 3). Transitions between

these discrete microstates arise from the infinitesimal thermal

fluctuations in the system, and they can be partitioned into the

following elementry reactions that make up the overall reaction:

two EC substrate binding reactions that consist of the EC binding

Chemiosmotic Rate Law
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and unbinding transition events (D and A binding, Figure 2B); an

electron exchange reaction between the donor EC and RH

(represented by the reaction rate vD{RH
); an internal electron

transfer reaction between RH and RL that can be coupled to the

translocation of protons across the membrane (vTT ); and an

electron exchange reaction between RL and the acceptor EC

(vRL{A) (Figure 2D). An averaging of these microstates and

elementry reactions over an ensemble of Eepp complexes provides

the necessary link to the more practical macroscopic states of the

system governed by the principles of thermodynamics.

Micro-Macroscopic Thermodynamics. The laws of

thermodynamics are phenomological in nature, but they provide

a convenient and powerful method of relating experimental bulk

properties of a system such as pressure, volume, temperature and

composition, which allows one to obtain desirable information on

a system even if explicit knowledge of the interactions within the

system is not available. Statistical mechanics provides the link

between the quantum mechanical molecular properties and the

macroscopic properties of thermodynamics by predicting an

appropriate thermodynamic function of a system from its

molecular structure and intermolecular forces. In regards to the

reaction flux J , a crucial prediction derivable from statistical

mechanics is how the thermodynamic forces of a system (which

can also be expressed in terms of the Gibbs free energy gradient)

can affect the magnitude and direction of J at steady-state.

Macroscopically, in a closed-system where there is no exchange

of material with the outside, all chemical and physical processes

eventually reach a balance such that there is no net activity in the

system. At this thermodynamic equilibrium, the ratio between the

concentrations (or the difference between the chemical potentials)

of the products and substrates of a chemical reaction reaches a

constant value defined as the equilibrium constant for that

reaction. For any other ratio, there exists a disequilibrium in the

chemical potentials, which provides the thermodynamic force X to

drive the reaction towards equilibrium. By the same token, a

disequilbrium from an electrostatic potential difference across a

membrane also contributes to X . Living systems are open-systems

in which materials are constantly being transported into and out of

the system, driving the potentials of the various reactants and

species far from their equilibrium. Analysis of non-equilibrium

conditions is more intricate, but one can extend much of the

equilibrium analysis to steady-states in which the system reaches a

stationary condition while the input and output of the system are

maintained at the same constant rate. At the steady-state, all

potentials settle at a ‘‘local equilibrium’’ in which X remains

constant, and continually drives the reaction with a constant net

flux J.

In the following subsections, we use a combination of statistical

steady-state thermodynamics, macroscopic equilibrium thermody-

namics, and kinetics theories to derive a quantitative expression of

the reaction flux J of the Eepp complex as a function of its

thermodynamic force X and the substrate concentrations in the

reaction system. The resultant rate law provides a unification of

the key attributes from the existing approaches we described

[24,26,28,29]. In particular, we retain in the framework of our rate

law, the convenient modular approach of Jin and Bethke that

partitions the different contributions to the reaction flux into

separate factors that modulate on a maximum reaction velocity.

The derivation proceeds first by focusing on the steady-state

thermodynamics of the overall redox reaction in a post-binding

ternary DEeppA complex (thermodynamic force function), then coupling

the net steady-state flux to the average transition rate between the

Figure 1. Electron Transport Chain (ETC). A. Standard model of ETC where electrons are shuttled from one complex to the next through
diffusion of the intermediate electron carriers (ECs). B. Random walk diffusion of ECs in the random collision model. C. Supercomplex model of the
ETC. The complexes of the ETC are assembled together into a super structure which reduces the diffusion time of the intermediate ECs by providing a
direct conduit for electron transfer.
doi:10.1371/journal.pone.0014820.g001

Chemiosmotic Rate Law
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internal redox centers (redox state function), and finally superimposing

the kinetics of the binding reactions that produces the active

ternary DEeppA complex (saturation function). In addition, we extend

the derivation to allow adaptation of the flux expression to

different system settings by means of transformations of rate

constants and/or equilibrium constants from a reference system.

We then utilize the transformation framework to introduce the

chemiosmotic free energy transduction mechanism of the Eepp

complex, as well as the slippage mechanism in the transduction

process.

Thermodynamic Force Function T(X). Let us first

consider the redox mechanism of the Eepp complex after it is

bound with both its donor and acceptor ECs to form the active

ternary DEeppA complex by using the cyclic kinetic diagram in

Figure 4. The cyclic diagram is a transition map for the 16 fully

bound microstates of Figure 3 condensed into three stable

operational states (Ezz, E{z, and Ez{), where contributions

from D and A are implicit in the transfer of electron(s) to and from

the Eepp complex (transitions 1<2 and 3<1), while the complex

shuttles the internal transfer of electron(s) between the source and

the sink (transitions 2<3). Jz is the forward cycle flux that

traverses the three states in a forward reaction sense (counter-

clockwise), while J{ is the reverse cycle flux that travels in the

opposite sense (clockwise). In a large ensemble of Eepp complexes,

some complexes would be operating in the forward sense (Jz),

while others would be operating in the reverse sense (J{), and the

observed net reaction flux J is the difference between these cycle

fluxes

J~Jz{J{ ð4Þ

At equilibrium Jz and J{ are in balance and the net flux

produced is zero, whereas at a steady-state away from equilibrium,

a net flux is produced by the total thermodynamic force X of the

system. In Figure 4, this X is the redox force

Xredox~nFDE ð5Þ

where F is the Faraday constant, n the number of electron(s)

transferred, and

DE~DEmz
RT

nF
ln
½Dred �ndr

½Dox�ndo
zln

½Aox�nao

½Ared �nar

� �
zeD?ADY ð6Þ

is the redox potential difference for one electron between the

electron carriers D and A. In Equation 6, DEm is the standard

mid-point redox potential [2], R is the universal gas constant, T is

the temperature, DY is the electrical potential difference across the

membrane, while eD?A is a switch with the value of 1 if the

electron is transferred from the negative N side to the positive P

side of the membrane, 21 if transferred in the opposite direction,

and 0 if the electron does not cross the membrane. For

Figure 2. Eepp Representation of a Chemiosmotic ETC Complex. A. The electron-proton pump (Eepp) uses the free-energy captured from the
electron transfer to translocate protons (Hz) across the membrane. B. Internal structure of the Eepp consisting of one binding/reaction site each for
the donor electron carrier (D) and the acceptor electron carrier (A), one high potential redox center (RH ), and one low potential redox center (RL). C.
The three internal processes of the electron-proton pump: reaction vD{RH

captures the transfer of electron(s) from reduced form of the donor
electron carrier Dred to the high potential internal redox center RH ; reaction vTT tunnels the electron(s) between RH and the low potential redox
center RL and drives the proton translocation; reaction vRL{A allows the exit of the electron(s) from RL to the oxidized form of the acceptor Aox. D.
Chemical reaction equation representation of the three internal processes: the red bidirectional arrows indicate the rate limiting step, and the blue
bidirectional arrows represents processes under fast equilibrium condition relative to the rate limiting step.
doi:10.1371/journal.pone.0014820.g002

Chemiosmotic Rate Law
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mitochondrial inner membrane, N is the matrix while P is the

inter-membrane space.

By applying detailed balance on the individual elementry

transition rates between the states in a cyclic system, a flux-to-force

relationship is found that equates the steady-state ratio of the

forward and reverse cyclic flux to the exponential of the

thermodynamic force [41–43]:

Jz=J{~eX=RT ð7Þ

Combining Equation 7 with the definition of J in Equation 4, one

obtains the two equivalent equations

J~Jz(1{e{X=RT ) ð8Þ

and

J~J{(eX=RT{1) ð9Þ

in which the net reaction flux can be expressed exclusively as a

function of the forward flux Jz and X , or as a function of the

reverse flux J{ and X . Although equivalent, we note that in the

direction and limit of X??, Equation 8 provides a more

convenient and numerically stable expression of J, while Equation

9 is better used in the direction and limit of X?{?. For regions

in the domain of X close to the equilibrium, either equation is just

as good and the choice depends on whether Jz or J{ is more

obtainable. Here the thermodynamic force function is introduced

as:

T(X )~
(1{e{X=RT ) X [ ½0,?)

(eX=RT{1) X [ ({?,0)

(
ð10Þ

which encapsulates the modulation on J by X , and simplifies the

expression of J to:

J~
JzT(X ) X [ ½0,?)

J{T(X ) X [ ({?,0)

�
ð11Þ

Redox State Function R(Dr=o,Ao=r). After establishing the

flux-to-force relationship of the general redox reaction of the Eepp

complex, the next step is to find the expressions of cycle fluxes Jz

and J{. In the internal redox reactions defined earlier, the

transfer-transport reaction vTT is a lump reaction of all

intermediate electron transfer steps between the two outer-most

redox reaction sites and also where the proton transport may

occur. Therefore, comparing to vD{RH
and vRL{A, vTT can be

assumed to be the rate-limiting portion of the overall reaction,

which, at the steady-state, can be coupled to the steady-state

expression for J .

Microscopically, vTT represents the transitions between the two

states E{z and Ez{ (Figure 4 and 5). Analogous to the net

reaction flux (Equation 4), the net transition flux between two

microstates is the difference between its forward and reverse

transition rates:

Jij~aijpi{ajipj ð12Þ

where i and j are indexes referring to the two distinct neighboring

states, pi and pj are the corresponding state probabilities, and aij

and aji are the transition rate constants associated with the

Table 1. ETC Complex Reaction and Stoichiometry.

Overall Reaction n e D?A m

CI 5Hz
in zNADHzCoQ'NADzzCoQH2z4Hz

out 2 0 4

CIII 2Hz
in zCoQH2z2cytC(ox)3z'CoQz2cytC(red)2zz4Hz

out
2 21 4

CIV 4Hz
in z2cytC(red)2zz1=2O2'2cytC(ox)3zzH2Oz2Hz

out
2 0 2

doi:10.1371/journal.pone.0014820.t001

Figure 3. Representative Microstates. There are 36 distinct
configurations of the complex that contribute to the forward or reverse
turnover rate. They include: (1) 4 configurations of the fully unbound
Eepp (22 distinct states of the two internal redox-centers); (2) and (3)
268 configurations of both D -Complex or Complex-A partially bound
Eepp (23 distinct states from the addition of either one bound EC); and
(4) 16 configurations of the fully bound Eepp (24 distinct states from all
four binary reaction centers).
doi:10.1371/journal.pone.0014820.g003

Figure 4. Eepp Redox Kinetic Diagram. The redox reaction of an Eepp

complex bound with a donor and acceptor ECs proceeds through cyclic
transitions among its three representative electron states. state 1:
Ezz is the free state without electrons. state 2: E{z contains
electron(s) obtained from the donor EC. state 3: Ez{ contains an
electron transfered across the complex and ready for transfer to an
acceptor EC. In an ensemble of Eepps, the number of transitions per unit
time in the counter-clockwise direction constitutes the forward cycle
flux Jz, while the number of transitions per unit time in the clockwise
direction constitutes the reverse cycle flux J{.
doi:10.1371/journal.pone.0014820.g004
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transitions from i to j and from j to i respectively. For vTT , i~2
and j~3 and the state probability p2 is the combined probability

that RH is in its reduced state Rred
H while RL is in its oxidized state

Rox
L , a necessary condition for the forward reaction (see Figure 5).

Similarly, the state probability p3 is the combined probability of

Rox
H and Rred

L , the condition necessary for the reverse reaction.

Taking into account that each Eepp complex consists of one RH

and one RL, the probability of a redox-center to be in either

oxidized or reduced state over an ensemble of ternary DEeppA

complexes is determined by dividing the concentrations in each

state by the concentration ½DEeppA�:

P(Rred
H )~

½Rred
H �

½DEeppA� ,P(Rox
H )~

½Rox
H �

½DEeppA�

P(Rred
L )~

½Rred
L �

½DEeppA� ,P(Rox
L )~

½Rox
L �

½DEeppA� ð13Þ

which are subject to the constraints:

P(Rred
H )zP(Rox

H )~1

P(Rred
L )zP(Rox

L )~1 ð14Þ

The probability for the forward state can then be taken as

p2~P(Rred
H )P(Rox

L ) ð15Þ

and the reverse state as

p3~P(Rox
H )P(Rred

L ) ð16Þ

Substituting for the probabilities in the net transition flux

(Equation 12) and redefine a23 and a32 as kinetic rate coefficients

kz
TT ½DEeppA� and k{

TT ½DEeppA�, one arrives at the kinetic

expression for vTT :

vTT~kz
TT ½DEeppA�P(Rred

H )P(Rox
L )

{k{
TT ½DEeppA�P(Rox

H )P(Rred
L )

ð17Þ

The equilibrium constant for the reaction is found by noting that

vTT~0 at the equilibrium:

K
eq
TT~

kz
TT

k{
TT

~
P(Rox

H )eP(Rred
L )e

P(Rred
H )eP(Rox

L )e ð18Þ

where the probabilities P(:)e are the state probabilities at the

equilibrium. Equating the rate-limiting transition flux in Equation

17 to the steady-state expression of J in Equation 4 gives an

updated expression of Equation 11:

J~
kz

TT ½DEeppA�P(Rred
H )P(Rox

L )T(XTT ) XTT [ ½0,?)

k{
TT ½DEeppA�P(Rox

H )P(Rred
L )T(XTT ) XTT [ ({?,0)

(
ð19Þ

where

XTT~nFDEmRH ,RL
zRTln

P(Rred
H )P(Rox

L )

P(Rox
H )P(Rred

L )
znFeH?LDY ð20Þ

is the thermodynamic force in the range of the vTT reaction.

Equation 19 now completely describes the steady-state flux of the

Eepp complex, but the actual state values for RH and RL could not

be measured directly since they are states within the complex.

Nevertheless, a correlation between the concentrations of the

external ECs and the internal redox-centers could be made such

that the internal state values can be inferred from measurements of

external concentrations. Since vTT is the rate-limiting reaction, it

follows that the kinetic constants for the exchange reactions

vD{RH
and vRL{A are much larger than kz

TT and k{
TT , and the

exchange reactions may be assumed to achieve rapid-equilibrium.

As described by Jin and Bethke, with this assumption the

thermodynamic forces for the two boundary exchange reactions

vD{RH
and vRL{A can be approximated as zero:

XD,RH
~nFDEmD,RH

zRTln
P(Rox

H )½Dred �ndr

P(Rred
H )½Dox�ndo

&0

XRL ,A~nFDEmRL ,AzRTln
P(Rred

L )½Aox�nao

P(Rox
L )½Ared �nar &0 ð21Þ

This allows one to approximate the total thermodynamic force

spanning from D to A,

XD,A~XD,RH
zXTTzXRL,A ð22Þ

as:

XD,A&XTT ð23Þ

and expand the reaction boundary of XTT in Equation 20 to

include the chemical potentials of the external ECs. Furthermore,

one can obtain from Equation 21, the equilibrium constants for

Figure 5. Representative Transition States. In the steady-state
condition, all microscopic states of Eepp combine to form the
representative forward and reverse transition states.
doi:10.1371/journal.pone.0014820.g005
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the exchange reactions vD{RH
and vRL{A:

KR,D~
P(Rox

H )½Dred �ndr

P(Rred
H )½Dox�ndo

~e
{(nFDEmD,RH

)=RT

KR,A~
P(Rred

L )½Aox�nao

P(Rox
L )½Ared �nar ~e

{(nFDEmRL ,A)=RT ð24Þ

which can be rewritten as the correlation between the internal

concentration to the external concentrations:

P(Rred
H )

P(Rox
H )

~
½Dred �ndr

KR,D½Dox�ndo

P(Rox
L )

P(Rred
L )

~
½Aox�nao

KR,A½Ared �nar ð25Þ

Using the algebraic constraints in Equation 13 and Equation 14,

the relationships between the probabilities of each internal state

and the concentrations of the external reactants are expressed as:

P(Rred
H )~

½Dred �ndr=½Dox�ndo

½Dred �ndr=½Dox�ndozKR,D
,

P(Rox
H )~

½Dox�ndo=½Dred �ndr

½Dox�ndo=½Dred �ndrz1=KR,D

P(Rox
L )~

½Aox�nao=½Ared �nar

½Aox�nao=½Ared �narzKR,A
,

P(Rred
L )~

½Ared �nar=½Aox�nao

½Ared �nar=½Aox�naoz1=KR,A

ð26Þ

Here shorthand notations for the ratios of the redox states are

introduced:

Dr=o~
½Dred �ndr

½Dox�ndo
,Do=r~

½Dox�ndo

½Dred �ndr

Ao=r~
½Aox�nao

½Ared �nar ,Ar=o~
½Ared �nar

½Aox�nao ð27Þ

Substituting the relationships in Equation 26 and 27 for all the

internal probability values in Equation 19 and Equation 20 allows

the reaction flux to be expressed in terms of the external reactant

species:

J~

kz
TT ½DEeppA� Dr=o

Dr=ozKR,D

� �
Ao=r

Ao=rzKR,A

� �
T(XD,A) XD,A[½0,?)

k{
TT ½DEeppA� Do=r

Do=rz1=KR,D

� �
Ar=o

Ar=oz1=KR,A

� �
T(XD,A) XD,A[({?,0)

8>>><
>>>:

ð28Þ

where

XD,A~nFDEmRH ,RL
zRTln

Dr=oAo=r

KR,DKR,A

� �
znFeH?LDY ð29Þ

Noting the exponential form of KR,D and KR,A in Equation 24 and

combining them with the midpoint potential DEmRH ,RL
gives

XD,A~nFDEmD,AzRTln(Dr=oAo=r)znFeH?LDY ð30Þ

which is nearly the same as the definition of Xredox in Equation 5

and 6 (identical if eD?A~0 or if the electron is assumed to traverse

the membrane between RH and RL only).

Here the redox state function is introduced as:

R(Dr=o,Ao=r)~
Dr=o

Dr=ozKR,D

� �
Ao=r

Ao=rzKR,A

� �

R(Do=r,Ar=or)~
Do=r

Do=rz1=KR,D

� �
Ar=o

Ar=oz1=KR,A

� �
ð31Þ

which encapsulates the modulation on J by the redox state ratios,

and simplifies the expression of J to:

J~
kz

TT ½DEeppA�R(Dr=o,Ao=r)T(XD,A) XD,A [ ½0,?)

k{
TT ½DEeppA�R(Do=r,Ar=o)T(XD,A) XD,A [ ({?,0)

(
ð32Þ

Saturation Function S(DT ,AT ). Equation 32 describes the

flux as a forward rate coefficient kz
TT that is scaled by the

concentration of the ternary complex ½DEeppA�, and modulated by

both a thermodynamic force function T and a redox state function

R, both of which change with respect to changes in the donor and

acceptor redox state ratios. However, it is important to note that

the two functions describe only the redox electron transfer

processes of the Eepp complex, but not the binding kinetics of

the complex with respect to the donor and acceptor ECs (D and

A). Indeed, binding kinetics is a central focus of several kinetics

based models of ETC complexes, such as the Yugi and Tomita

model [26,27] or the more recent Chen and Beard model of

complex I [44], because most enzyme regulation studies deal with

the binding of substrates. However, the binding mechanism for

each ETC complex may be unique and may also vary significantly

across different mitochondrial systems, as suggested by the lack of

consensus in the literature. Thus the strategy adopted here is to

maintain the generality of the rate law so that it remains

compatible with different commonly found mechanisms.

At steady-state, the electron exchange reactions between the

ECs and the Eepp complexes are assumed to have achieved a

rapid-equilibrium. Furthermore, since the binding of the EC

reactants to form the ternary DEeppA complexes precedes the

exchange reactions, one can assume that the binding reactions

must also be a part of the transient kinetics that takes place before

the establishment of the steady-state. This enables us to

superimpose the binding kinetics of EC reactants on Equation

32 by finding the fraction of the total Eepp complex ensemble that

forms DEeppA. An extended kinetic diagram in Figure 6 illustrates

how the binding of the ECs separates the Eepp microstates from

wasteful cicles and transitions to the active cycles that contribute to

the reaction flux. The more the Eepp ensemble is ‘‘saturated’’ with

(28)
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the reactants, the higher the probability that the Eepp ensemble

manifests itself in the DEeppA form. The extent of this saturation

can be quantified by the ratio ½DEeppA�=½Eepp�T , where

½Eepp�T~½Eepp�z½DEepp�z½EeppA�z½DEeppA� ð33Þ

Using the nomenclature of Cleland [45], the binding mechanism

for a typical two-substrate ETC redox reaction

DredzAox'DoxzAred ð34Þ

can be classified by the reactant binding sequence (ordered

sequential, random sequential, and ping-pong), and molecularity

(uni, bi, ter, quad, etc) [46]. In an ordered sequential mechanism,

substrates binding to and products release from the enzyme follow

an exact order. In a random sequential mechanism, the order of

binding between the two substrates or the order of release between

the two products are random. In a ping-pong mechanism, one or

more products must be released before all substrates can react.

Since the ping-pong mechanism requires two separate catalytic

steps, whereas a major assumption for the Eepp complex is the

single rate-limiting catalytic step vTT , it is not incorporated at this

time. The general scheme for reversable ordered sequential bi bi

mechanism and reversable random sequential bi bi mechanism are

EzDred

KS,D{

DredEzAox

K
S,D{Az

Dred EAox

kz
TT

k{
TT

DoxEAred

K
S,DzA{

DoxEzAred

K
S,Dz

EzDox

ð35Þ

and

E
z

Aox

zDred

KS,D{

Dred E
z

Aox

E
z

Ared

zDox

K
S,Dz

Dox z E
z

Ared

;:KS,Az KS,D{Az;: ;:KS,DzA{ KS,A{;:

EAoxzDred

K
S,AzD{

DredEAox

kz
TT

k{
TT

DoxEAred

K
S,A{Dz

DoxzEAred

ð36Þ

respectively, where KS,D{KS,Az , KS,Dz , and KS,A{ are the equi-

librium dissociation constants for the binary Eepp{EC complexes,

while KS,D{Az , KS,AzD{ , KS,DzA{ , and KS,A{Dz are the

equilibrium dissociation constants for the ternary DEeppA complex.

Since the relative difference in the oxidized and reduced species of

either the donor or the acceptor EC are already accounted for in the

redox state function R, one can combine the contribution of both

redox species of an EC reactant into one state variable through the

constraints:

½DT �~½Dox�z½Dred �

½AT �~½Aox�z½Ared � ð37Þ

These constraints reduce the schemes in Equation 35 and 36 to

pseudo-isomerization reactions

EzDT

KS,D

DT EzAT

KS,DA

DT EAT ð38Þ

and

E
z

AT

zDT

KS,D

DT E
z

AT

;:KS,A KS,A;:

EATzDT

KS,D

DT EAT

ð39Þ

whose solutions are identical to the solution for irreversible ordered

sequential bi bi

½DEeppA�
½Eepp�T

~
½DT �½AT �

½DT �½AT �zKS,DA½DT �zKS,DKS,DA

ð40Þ

and for irreversible random sequential bi bi

½DEeppA�
½Eepp�T

~
½DT �½AT �

½DT �½AT �zKS,DA½DT �zKS,AD½AT �zKS,DKS,DA

ð41Þ

as found in [45,46].

In the situation where only one of the two substrate EC con-

centrations is varying while the other is held constant, one can

essentially consider the effects of the individual variation separately

as two separate and parallel reactions, each with a single substrate-

enzyme binding step

DTzEAT

KS,D

DT EAT

KS,A

DT EzAT ð42Þ

At steady-state, such independent binding reactions can always be

expressed using the Michaelis-Menten-type kinetics [41]. The

effects of the two independent reactions can be combined

multiplicatively to give

½DEeppA�
½Eepp�T

~
½DT �

½DT �zKS,D

� �
½AT �

½AT �zKS,A

� �
ð43Þ

where KS,D and KS,A are the Michaelis-Menten-like saturation

parameters that are characteristic of the enzyme complex.

Equation 43 can be rearranged to give a comparable form to

Figure 6. Eepp Reactant Binding Diagram. A simplified represen-
tation of how the binding of the EC reactants (green transition lines)
separates the futile cycles (red transition lines) from the active redox
cycles (original redox kinetic diagram).
doi:10.1371/journal.pone.0014820.g006
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the sequential mechanisms:

½DEeppA�
½Eepp�T

~
½DT �½AT �

½DT �½AT �zKS,A½DT �zKS,D½AT �zKS,DKS,A

ð44Þ

Here a saturation function is introduced as:

S(DT ,AT )~
½DEeppA�
½Eepp�T

ð45Þ

which could be applied to any of the three variations shown in

Equations 40, 41, and 44. Substitute ½Eepp�T S(DT ,AT ) for

½DEeppA� in Equation 32 and replace kz
TT ½Eepp�T and

k{
TT ½Eepp�T with the more familiar biochemical variable Vf ’

max

(apparent maximum forward velocity) and Vr’
max (apparent

maximum reverse velocity), one obtains the expression

J~
Vf ’

maxS(DT ,AT )R(Dr=o,Ao=r)T(XD,A) XD,A [ ½0,?)

Vr’
maxS(DT ,AT )R(Do=r,Ar=o)T(XD,A) XD,A [ ({?,0)

(
ð46Þ

which we label as the standard form of the chemiosmotic rate law.

This standard form applies to the reference system which only

contains the redox force of Equation 5. Adding other forces would

transform the system and consequently change the form of the rate

law. Combining the method in Equation 18 to set J~0, and the

method in Equation 24 to set X~0, the equilibrium constant of

the reaction in the reference system is found to be

Keq
o ~e(nFDEmD,A)=RT~Vf ’

max=Vr’
max ð47Þ

which relates the ratio of the two maximum velocities to the

midpoint redox potential of the reaction.

System Transformation. One important point in using

Equation 46 is that although Equations 8 and 9 are equivalent

over the entire domain of X , they are only equivalent if the

equality in Equation 7 is not ‘‘perturbed’’. If the composition of X
changes such that an additional force Xd acts on the system, then

the equilibrium point of the flux ratio ought to change with respect

to the new force, and correspondingly the left hand side of

Equation 7 ought to change in the same amount, giving the new

relationship:

(Jz
o =J{

o )eXd=RT~e
(Xref zXd)=RT ð48Þ

where Jz
o and J{

o are the original forward and reverse fluxes with

respect to a reference thermodynamic force Xref . Since Xd could

separately affect Jz
o and J{

o , it creates a continuum of possibilities

that could satisfy Equation 48, all of which can be encompassed by

the introduction of a single dimensionless parameter f :

Jf ~
Jz

o e
fXd
RT T(Xref zXd) Xref zXd [ ½0,?)

J{
o e

(f {1)Xd
RT T(Xref zXd) Xref zXd [ ({?,0)

8<
: ð49Þ

where Jf is the final reaction flux, and f in ½0,1� represents the

fraction of influence Xd has on Jz
o and J{

o . Note that if f ~0, Jz
o

is unaltered while J{
o bares all the influence from Xd; conversely,

if f ~1, J{
o is unaltered while Jz

o bares all the influence from Xd.

The exponential terms efXd=RT and e(f {1)Xd=RT together represent

the operations necessary to transform the original reaction flux Jo

of the Eepp complex from a reference system to a new system with

the added force. In general, for each additional force, an

additional pair of exponential terms is applied to Equation 49.

Thus, for a number i of additional forces, the Jf of the final system

is expressed in terms of the J of the original system by:

Jf ~
Jz

o e

P
i
fiXi

RT T(Xref z
P

iXi) Xref z
P

iXi [ ½0,?)

J{
o e

P
i
(fi{1)Xi
RT T(Xref z

P
iXi) Xref z

P
iXi [ ({?,0)

8><
>: ð50Þ

Free Energy Transduction and Enzyme Slippage

(c). The standard form of the chemiosmotic rate law in

Equation 46 considers only the redox thermodynamic force Xred

of the reference system. Such a system exists when proton gradient

is not available either because the system cannot

compartmentalize protons (i.e. a continuous membrane is not

present to keep proton concentrations apart), or because the

proton concentrations exactly balance across the membrane

through clamping, both of which are observable and

controllable in in vitro experiments. Thus, the reference system

represents a fundamental basis from which the rate law for many

other in vitro or in vivo systems can be derived through the

transformation framework of Equation 50.

The incorporation of proton gradient can be viewed as such a

transformation. The free energy transduction reaction in a

chemiosmotic complex is driven by an overall thermodynamic

force Xchemio that is the sum of the two opposing forces:

Xchemio~Xredox{Xpmf

Xredox~nFDE

Xpmf ~mFDp ð51Þ

where Xredox is the redox force defined in the reference system, Xpmf

is the proton motive force (pmf), F is the Faraday constant, and n
and m are the stoichiometric values for the number of electron

transferred and net proton translocated respectively. In the pmf,

Dp~DYz
RT

F
ln
½Hz

out�
mout

½Hz
in �

min
ð52Þ

is the energy necessary to pump one proton across the membrane

with respect to the proton gradient and the membrane potential.

Schematically, the addition of Xredox transforms the kinetic diagram

of the redox reaction in Figure 4 to the diagram of the transduction

reaction in Figure 7. Energy transduction occurs when the free

energy of the electron carriers decreases by an amount Xredox, and

from this, an amount Xpmf is used to increase the free-energy of the

protons. At equilibrium, Xredox is in balance with Xpmf , but an

imbalance between the two would produces a net thermodynamic

drive. In accordance with Equation 49, Xpmf is a negative

perturbation force {Xd upon the reference system, and the

additional parameter fp is used to determine the fraction of the effect

of the the perturbation force that is distributed on the reference

forward Jz and reverse J{ fluxes. The transformed expression of

J is then:

Chemiosmotic Rate Law

PLoS ONE | www.plosone.org 10 September 2011 | Volume 6 | Issue 9 | e14820



J~
Vf 0

maxe
{fpXpmf

RT S(DT ,AT )R(Dr=o,Ao=r)T(Xchemio) Xchemio[½0,?)

Vr0
maxe

(1{fp)Xpmf
RT S(DT ,AT )R(Do=r,Ar=o)T(Xchemio) Xchemio[({?,0)

8><
>: ð53Þ

Since the equilibrium constant can be expressed as the ratio of the

rate constants, the equilibrium constant of the transformed reaction

with respect to the reference reaction is then

K
eq
chemio~

Vf ’
maxe

{fpXpmf
RT

Vr’
maxe

(1{fp)Xpmf
RT

~Keq
o e

Xpmf =RT ð54Þ

In general, a transformation such as the addition of the pmf

would shift the equilibrium constant of the original reaction

(Equation 54); however, if the sum of perturbations in Equation 50

affects the forward and reverse rate constants in an equal but

opposite manner, the original equilibrium will be preserved.

Another possibility is if the perturbation force is a function of the

original thermodynamic force, then the equilibrium concentra-

tions of the reactants will not changed (albeit the equilibrium

constant would be modified). One such perturbation is the

‘‘slippage’’ in the free energy transduction process. Energy

transduction processes are prone to slippages in which efficiency

can be affected by several factors [47] such as increased proton

leakage or the loss of electrons to form ROS [6]. As a simple

illustration, the efficiency of the flux-force relationship in Equation

7 can be compromised if a short circuit occurs in the cyclic states

of the free energy transduction process (Figure 8). Alternate

enzyme transition cycles could diverge from the normal transduc-

tion path, dissipating portions of the free-energy acquired from the

high energy substrate without performing the transduction on the

secondary substrate. This decrease in the available free-energy,

expressed in terms of a smaller thermodynamic force, would lessen

the magnitude of the net transduction flux according to Equation

11. To describe this lost of thermodynamic force Xslippage without

explicitly expressing its content, a convenient c variable is

introduced:

c~
Xoriginal{Xslippage

Xoriginal

ð55Þ

such that c represents the percent of original thermodynamic force

Xoriginal available after losing a fraction through the slippage

transition path. c has the range between 0 to 1 as Xslippage has a

upper bound of Xoriginal . Setting Xslippage as the perturbation force

in Equation 49 but expressing Xslippage in terms of c and Xoriginal

with Equation 55 gives the slippaged corrected expression of J as

J~
Jz

o e
{fs(1{c)Xoriginal

RT T(cXoriginal) Xoriginal [ ½0,?)

J{
o e

(1{fs)(1{c)Xoriginal
RT T(cXoriginal) Xoriginal [ ({?,0)

8><
>: ð56Þ

Note that because the transformed thermodynamic force is a

fraction of Xoriginal (cXoriginal ), both of them would have the same

equilibrium point at Xoriginal~0. Thus, the perturbation by

slippage does not change the equilibrium point in the reaction

coordinate. Combining the result from Equations 53 and 56 into

Equation 50, one obtains the general expression for a free energy

transducting chemiosmotic rate law with slippage:

J~
V f ’

maxe
{fs (1{c)Xchemio{fpXpmf

RT S(DT ,AT )R(Dr=o ,Ao=r)T(cXchemio) Xchemio [ ½0,?)

V r’
maxe

(1{fs )(1{c)Xchemioz(1{fp )Xpmf
RT S(DT ,AT )R(Do=r,Ar=o)T(cXchemio) Xchemio [ ({?,0)

8><
>:

ð57Þ

Methods for Determining the Kinetic Parameter Values
The standard form of the chemiosmotic rate law, assuming a

parallel binding mechanism (Equation 43), contains a total of six

kinetic parameters: apparent maximum forward and reverse

velocities (Vf ’
max,Vr’

max), donor and acceptor reactant saturation

constants (KS,D,KS,A), and donor and acceptor redox state

constants (KR,D,KR,A) (Figure 9). Through the equilibrium

constant in Equation 47, the six parameters can be reduced to

five as either Vf ’
max or Vr’

max can be expressed in terms of the other.

One of the main advantages of this rate law is that all five of its

basis kinetic parameters can be fully determined through enzyme

kinetic studies (e.g. the consensus protocols of respiratory chain

spectrophotometric assays for clinical diagnosis http://lbbma.

univ-angers.fr/lbbma.php?id = 58). The principle technique for

these assays involves the use of an ultraviolet/visible (UV/VIS)

absorption spectrophotometer in which the time-course conver-

sion of a redox substrate species to its product species by an ETC

complex in a closed system (inside a curvette) is recorded to obtain

the initial velocity (rate) of the reaction. Homogenated tissues and

isolated mitochondria (where membranes are fragmented in both

cases) are specifically used as the reference system since its pmf can

be neglected due to the absence of an intact mitochondrial inner

membrane. Thermodynamic constants from the literature and

saturation reactant concentrations used in our experiments are

listed in Table 2. For our studies, the protocol is extended to

provide a complete time-series of the reaction until the substrate

species is completely exhausted or the system reaches an

equilibrium.

In the following sections, procedures to determine the five

kinetic parameters from the time-series data are described. With

the exception of the kinetics for the final electron acceptor in

complex IV, where both oxygen and water are reactants that are

open to the bulk concentration, these procedures apply to all

kinetic parameters in the ETC complexes. All of the fitting and

subsequent simulations of the rate equation are performed using

Mathematica 89s NonlinearModelFit function, which produces least-

squares fits that are defined to minimize the quantity

x2~
P

i rij j2, where the ri are residuals giving the difference

between each original data point and its fitted value. The

procedures and results are available in the form of Mathematica

notebook files at http://www.igb.uci.edu/tools/sb/mitochon-

dria-modeling.html.

Determining the Maximum Forward Velocity (Vf ’
max) and

the Saturation Parameters (KS,DandKS,A). As indicated in the

derivation of Equation 45, out of the three modulating function,

the S saturation function affects the reaction flux first. Thus its two

saturation parameters, KS,D and KS,A, can be obtained from the

instantaneous initial velocity of the reaction when there are no

products so that functions R and T have negligible contributions.

Furthermore, since it is assumed that the two binding reactions in

S are independent to each other, KS,D and KS,A can each be

determined separately by varying the starting concentration of the

corresponding EC substrate while saturating the EC substrate of

the other parameter to minimize its contribution. Consequently,

for each complex parameter determination, there are necessary

two sets of time-course enzyme kinetics assays: (1) the Dred set with

ð53Þ

ð57Þ
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variations in the initial concentration of the reduced donor

substrate specie; and (2) the Aox set with variations in the initial

concentration of oxidized acceptor substrate specie. To illustrate,

Figure 10A shows the time-series of complex I with variations in

the initial concentration of NADH , while Figure 10C shows the

time-series of complex I with variations in the initial concentration

of CoQH2.

For each assay set, an initial velocity is approximated for each of

the initial concentrations by calculating the change in concentra-

tion over a starting time period (dependent on the amount of

enzymes used). The initial velocity-concentration pairs are then

used as data points for calculating the residuals in the least-square

fitting of the corresponding Michaelis-Menten-like factor in

Equation 43 to obtain the associated saturation parameter

(Figure 10B and 10D). A final value of Vf ’
max is obtained by

averaging the fitted initial velocity value from both Dred and Aox

variation sets.

Determining the Redox State Parameters (KR,D and

KR,A). Beyond the transient period of the instantaneous initial

velocity, both R (Equation 31) and T (Equation 10) contribute

significantly in the modulation of the reaction flux. The T function

can be fully described by the time-dependent variables Dr=o and

Ao=r and the thermodynamic constant DEmD,A (Equation 30 with

pmf&0), leaving only the R function to be determined. R imposes

on the flux, a hyperbolic dependence on the ratios Dr=o and Ao=r

through the redox state parameters KR,D and KR,A, respectively.

Both ratios change continuously as the reaction progresses, and

their rate of change are related through the stoichiometric

coefficients of their constituent species in the overall reaction

(Equation 1 and 2); therefore, the effects of KR,D and KR,A are not

separable in the reaction, and must be considered together.

Given all other parameter values are fixed or determined, the

values for KR,D and KR,A can be determined by fitting the

simulation output from Equation 46 to the time-series from the

Dred or Aox variation assay sets. Although each time-series from

the two sets of assays differs in its total reactant concentrations, the

values of Dr=o and Ao=r only depend on the concentration ratio of

the respective redox-pairs at the specified time. Thus, ideally,

every one of the time-series can supply the full value range of the

ratios to obtain an estimate for KR,D and KR,A. However, because

KR,D and KR,A must be determined simultaneously, and the

factors containing them in the R function are symmetrical, the

estimated parameter values from fitting a single time-series are not

unique and might not provide the optimal representation of the

complex reaction over various conditions. This is demonstrated in

Figure 11A and 11B, where the best fit parameter values estimated

individually from the time-series 50mM, 75mM, and 100mM of the

NADH assays are shown to have a large variation in the

parameter values, and the subsequent simulations of the rate law

based on one of the three estimates are shown to have a poor

agreement with the time-series from the 25mM, 50mM, 75mM,

and 100mM CoQ assays (due to the level of measurement noise in

the time-series, 10mM and 25mM assays for NADH and 12mM
assay for CoQ are not included in this analysis). To obtain a better

estimate of the parameters, multiple time-series are used

simultaneously instead in a combined least-square fitting across

various initial concentrations. Even though individually the error

value may increase between the simulation time-series and the

experimental time-series used for the fitting, the estimated KR,D

and KR,A parameter values from the combined fitting produce

simulations that agree with the complex’s characteristics across a

much greater range of conditions. This is shown in Figure 11C

and 11D, where the same time-series from Figure 11A are

simultaneously used in a combined fitting of the parameters, and

the subsequent simulations of the rate law based on this combined

fitting are then shown to give a much better agreement with the

time-series from the CoQ assays.

Note that the ratios Dr=o and Ao=r would approach infinity

when the divisor concentrations (½Dox� and ½Ared �) approach zero

(refer to Equation 27). Thus to avoid numerical errors in the

simulation, a small amount of ½Dox� and ½Ared � are assumed to

have been created during the transient period before reaching the

steady-state.

Results and Discussion

Comparison with Existing ETC Energy Transduction
Equations

In Table 3 the new chemiosmotic rate law is compared to the

ETC rate equations from both the Korzeniewski and the Beard

OXPHOS models using complex I as the example. Each of the

three rate equations is derived using a thermodynamics approach

with the same formulation for the thermodynamic force (Equation

51) associated with the overall reaction of a given complex

(Equation 1). However, in spite of their common origins, the three

approaches differ in the level of detail at which the complex is

modeled, which in turn results in functional differences.

Korzeniewski’s rate equation follows Onsager’s linear force-to-

flux relationship, based on the local equilibrium approximation

Figure 7. Eepp Free Energy Transduction Kinetic Diagram. The
free-energy transduction processes in the Eepp enzyme transition
through a cyclic sequence of five states in both forward and reverse
directions (indicated by the forward flux Jz and reverse flux J{), in
which the enzyme: (1) starts in its free state Ezz; (2) binds with
electrons E{z; (3) binds to protons Hz{E{z; (4) couples the
internal electron transfer with the change in conformation Ez{{Hz;
(5) loses protons Ez{; and finally loses an electron to return to the
original free state Ezz in the first state.
doi:10.1371/journal.pone.0014820.g007

Figure 8. Electron Slippage. An alternate electron path between
states (2) and (5) is introduced in the enzyme transition mechanism that
short-circuits the normal cycle of the enzyme and uncouples the free
energy transduction to drive the proton translocation.
doi:10.1371/journal.pone.0014820.g008
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where thermodynamic forces vary slowly [48]. In contrast, Beard’s

rate equation and the chemiosmotic rate law work with non-linear

steady-states that are not bound to the same restrictions. In fact,

the derivation of Beard’s equation follows the same thermody-

namic force-to-flux relationships up to Equations 7 and 8, but

diverges in the representation of the forward and reverse fluxes in

Equation 4, where it simply assumes a mass-action reaction. By

modeling the overall reaction as an elementary mass-action

reaction, Beard’s equation does not account for the kinetics within

the complex. Its single kinetic parameter, denoted the activity

parameter x, is a scaling parameter that serves to adjust the

magnitude of the net flux (similar to ½DEeppA� in Equation 32), but

does not capture the maximum turnover rate of the enzyme or its

affinity towards substrates. In contrast, the Vf ’
max and Vr’

max of the

chemiosmotic rate law represent the apparent maximum velocities

of the reaction, which are modulated by both thermodynamic and

kinetic factors through the three bounded functions in Equation 46

(Figure 9).

Least-square fitting of the three rate equations over the entire

range of the experimental time-series data from an isolated

complex I kinetics assay allow a comparison of how well the

equations can reproduce the original time-series through their

respective parameters. Figure 12A shows that the chemiosmotic

rate law gives a better approximation of the experimental data

compared to Korzeniewski’s linear function, or Beard’s mass-

action based function. However, a more accurate comparison of

the principles guiding the three rate equations is given by fitting

them to the initial velocity of the time-series data, where the three

rate equations should theoretically converge. Figure 12B shows

that the output of the chemiosmotic rate equation, as well as the

original experimental data, fall between the other two approaches.

When the comparison is extended to all possible values of KR,D

and KR,A in the chemiosmotic equation (Figure 12C), one can note

that the output of the chemiosmotic equation becomes equivalent

to the output of Beard’s equation when both KR,D and KR,A are

equal to one, while it approaches the output of Korzeniewski’s

equation when both KR,D and KR,A approach zero.

This can be explained by noting that when both KR,D and KR,A

are equal to one in Equation 25, there is a direct correlation

between the external concentrations and the internal probabilities,

and Equation 19 becomes essentially the same as the Beard’s first-

order mass-action reaction representation of complex I. On the

other hand, when both KR,D and KR,A approach zero, all

probabilities in Equation 26 approach one. This results in a zero-

order reaction that is insensitive to changes in the external

concentrations, which is similar to the simulation output of

Korzeniewski’s linear flux equation.

An important result emerging from these comparisons is that

the new chemiosmotic rate law represents a more general

formulation of the kinetic and thermodynamic behaviors for a

chemiosmotic ETC complex; one which encompasses both

Korzeniewski’s and Beard’s formulations, and can smoothly

interpolate between them to cover a spectrum of biochemical

behaviors. Therefore, for a given overall reaction and a

thermodynamic force definition, the chemiosmotic rate law can

replace the existing ETC rate equations in the OXPHOS models

of Korzeniewski and Beard to incorporate biochemically relevant

kinetic parameters which allows a more accurate specification of

an ETC complex.

Kinetic Parameter Values and Sensitivity Analysis
This section covers the analysis of the kinetic parameter values

and their sensitivity in the chemiosmotic rate law applied to each

of the ETC complexes in isolation. A summary of the

experimental values obtained for all the kinetic parameters of

complex I, III, and IV are given in Table 4, and the corresponding

sensitivity in Table 5. In addition, the sensitivity of the slippage

parameter c with equal perturbations on the forward and reverse

rate constants (fs~0:5) is also included for comparison. The

sensitivity of all parameters are determined by calculating the

magnitude of variations needed to change the flux of an isolated

complex v by 1%. Thus, the lower the values in Table 5, the more

sensitive the flux is to changes in the corresponding parameter.

In summary, the sensitivity of Vf ’
max provides the least amount of

information about a specific complex since it is constant across

different complexes regardless of its parameter value or concen-

trations of reaction species. This is due to the fact that Vf ’
max is

independent from all other parameter and variable values in

Equation 46. Variations dKS,D and dKS,A depend only on their

respective parameters KS,D and KS,A, and total substrate

concentrations DT and AT . The smaller the value of KS,D or

Figure 9. The Standard Form of Chemiosmotic Rate Law. The rate law equation consists of four components which contain six kinetic
parameters that are experimentally determinable (V f ’

max,Vr’
max,KR,D,KR,A,KS,D,KS,A in blue).

doi:10.1371/journal.pone.0014820.g009

Table 2. Experimental Constants.

½DT � (mM) ½AT � (mM) DEm (mV)[2]

CI (D~NAD, A~CoQ) 100 100 359.49

CIII (D~CoQ, A = cyctC) 100 50 168.58

CIV (D~cyctC, A~O2) 50 Bulk 318.55

doi:10.1371/journal.pone.0014820.t002
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KS,A is compared to its respective total substrate concentration,

the larger the parameter variation is required to change the flux,

and therefore the less sensitive the parameter is. Compared to the

other parameters in Table 5, where only small variations dKS,D,

dKS,A, and dc are needed to affect the flux, multiple-fold changes

of KR,D and KR,A are necessary in order to affect the flux. These

large values of dKR,D and dKR,A suggest that the flux is not very

sensitive to changes in KR,D or KR,A. However, as shown

previously in Figure 12C, small changes in the values of KR,D

and KR,A can give rise to significant changes in the curvature of

the simulated reaction time-series. This is due to the fact that Dr=o

and Ao=r are time-dependent ratios of the species concentrations,

which tend to infinity when there are only substrate species

present, or become zero when there are only product species left.

Thus, in the beginning of a time-series, when the values of Dr=o

and Ao=r are large, KR,D and KR,A are small in comparison, and

their variations have negligible effect on the flux. However, as Dr=o

and Ao=r get smaller and closer to the values of KR,D and KR,A

over time, their effect on the flux would become much more

significant. In addition, the larger the value of the varying

parameter, the earlier the reaction flux is affected by the

concentration of the substrate (Figure 13). On the other hand,

the smaller the value of the varying parameter, the longer the

reaction maintains the same flux, resulting in a sharper change in

the flux at the end of the time-series, when the reaction runs out of

its reactant(s).

Whereas a KR,A or KR,D value of zero makes the reaction

independent from the respective reactant concentration and a

value of one makes the reaction dependent on the reactant

concentration in a first-order mass-action fashion, a value larger

than one suggests an even higher dependence on the reactant

concentration than first-order. In addition, from Equation 24,

when either KR,D or KR,A is larger than one, the redox potential of

the respective boundary electron transfer reaction is necessarily

negative, indicating an energetically unfavorable reaction. These

derived relationships are important for the interpretation of the

experimental values of KR,A and KR,D in Table 4. For complex I,

both KR,D and KR,A are lower than one. In contrast, for both

complex III and complex IV, the cyctochrome c associated KR,D

or KR,A value is larger than one, suggesting a higher-order

Figure 10. Determination of the Maximum Forward Velocity (Vf ’
max) and the Saturation Parameters (KS,D and KS,A). A. Complex I

experimental time-series with varying starting NADH concentrations while ½CoQ� is held at 100mM . Dashed lines represent pipetted (targeted)

NADH concentrations. B. The corresponding fit of the function Vf ’
max

NADtotal

NADtotalzKS,D

� �
to the initial velocity (rate of change of concentration) and

the actual starting NADH concentration of each time-series in the NADH variation assay set plus an overlapping time-series from the
½CoQ�~100mM assay. C. Complex I experimental time-series with varying starting CoQ concentrations while ½NADH� is held at 100mM . Due to poor
separation between CoQ and CoQH2 absorption frequency in spectrophotometry assays, time-series are obtained by following the relative changes

in the NADH concentration (DNADH) instead. D. The corresponding fit of the function Vf ’
max

CoQtotal

CoQtotalzKS,A

� �
to the initial velocity and the actual

starting CoQ concentration of each time-series in the CoQ variation assay set plus an overlapping time-series from the ½NADH�~100mM assay.
doi:10.1371/journal.pone.0014820.g010
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Figure 11. Determination of the Redox State Parameters (KR,D and KR,A). Complex I KR,D and KR,A parameters are estimated simultaneously
through the least-square fitting of the Chemiosmotic rate law to the experimental time-series from the NADH variation assays. The fitted parameters
are then used to simulate and compare to the experimental time-series from the CoQ variation assays. To provide a common range of value to
compare the time-series, all experimental and simulation data are normalized by the respective total reactant concentration. A. Parameter fitting
using individual time-series of NADH variation assays (50mM , 75mM , and 100mM from left to right). Although the individual simulation output (in
cyan) matches closely to the experimental data (residual values: 0.1, 0.01, and 0.05 respectively), the corresponding parameter values varies
significantly (values shown in the Panel). B. Simulation results from the 75mM time-series fitted parameters in Panel A reveal a poor match (total
residual value: 10.4) to the time-series from the CoQ variation assays (25mM , 50mM , 75mM , and 100mM from left to right). C. Parameter fitting using
all three time-series from Panel A. Here the simulation outputs for the three time-series (represented by the green dashed lines and based on the
single set of KR parameter values shown in the Panel) show a looser fit to the experimental data (residual values: 0.2, 0.1, and 0.15 respectively). D.
However, the estimated parameter values from the combined fitting produce a much better match (total residual value: 0.58) to the time-series from
CoQ variation assays.
doi:10.1371/journal.pone.0014820.g011

Table 3. Comparison of Rate Equations for Complex I.

Equation

Korzeniewski J~kCI XCI

Beard
J~kf ½NADH�½CoQ�{kr½NAD�½CoQH2�, kf ~xCI Keq(Dpmf ), kr~xCI ,

Jz

J{
~

kf ½NADH�½CoQ�
kr½NAD�½CoQH2�

~eXCI =RT

Chemiosmotic
J~Vf ’

maxS(NADHtotal ,CoQtotal )R(NADHr=o,CoQo=r)T(XCI ), S(NADHtotal ,CoQtotal )~
NADHtotal

NADHtotalzKS,D

� �
CoQHtotal

2

CoQHtotal
2 zKS,A

� �
,

R(NADHr=o,CoQo=r)~
NADHr=o

NADHr=ozKR,D

� �
CoQo=r

CoQo=rzKR,A

� �
, T(XCI )~(1{e{XCI =RT )

Common XCI ~nFDECI {mFDpCI , Keq~e(nFDEmCI
{mFDpCI )=RT

doi:10.1371/journal.pone.0014820.t003
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dependence on the concentration of cytochrome c consistently

with the fact that two cyctochrome c are required for the

corresponding reaction. Thus, even though complex III and IV

are not very sensitive to the saturation concentration of

cytochrome c, the redox state ratio of cytochrome c has a

profound effect on the flux through the redox state function R.

Lastly, from Equation 55, it is clear that the effect of dc depends

largely on the redox potential of the system (Table 2).

Network Sensitivity Analysis
In this section, we conduct a more global sensitivity and

perturbation analysis with the same experimentally observable in

vitro homogenate environment, but with all the ETC complexes

functioning in tandem. The simple pathway model of the ETC

used for this analysis consists of interactions between a driving

dehydrogenase reaction, the three main electron transfer com-

plexes (complex I, III, and IV), and the three electron carrier

Figure 12. Comparison of Rate Equations. A. Least-square fitting of Koreniewski’s formulation, Beard’s formulation, and the Chemiosmotic rate
law over the entire range of an experimental time-series from complex I (100mM case). B. Least-square fitting of the three rate equations to the initial
velocity of the experimental time-series. C. The output of the Chemiosmotic rate equation gives approximately the same results as the Beard’s
equation when KR,D,KR,Af g = 1,1f g, and approaches the output of the Koreniewski’s equation when KR,D,KR,Af g = 0,0f g.
doi:10.1371/journal.pone.0014820.g012

Table 4. Experimentally Determined Parameter Values.

Vf ’
max

mM

Min

� �
specific Vf ’

max

nmol

mgMin

� �
KS,D (mM) KS,A (mM) KR,D KR,A

CI (20mL mito) 21:18+1:1 106+5:5 12:07+2:8 16:48+5:0 0:03+0:02 0:3+0:15

CIII (1mL mito) 3:60+0:5 360+50 154:00+12 8:00+3 0:54+0:11 2:26+0:04

CIV (3mL mito) 7:05+1:0 235+32 5:15+1:5 1.0 [29] 3:56+0:05 0:10+0:01

Vf ’
max

mM

Min

� �
specific Vf ’

max

nM

mgMin

� �
KS,D (mM) KS,A (mM) KR,D KR,A

CI (20mL mito) 21:18+1:1 106+5:5 12:07+2:8 16:48+5:0 0:03+0:02 0:3+0:15

CIII (1mL mito) 3:60+0:5 360+50 154:00+12 8:00+3 0:54+0:11 2:26+0:04

CIV (3mL mito) 7:05+1:0 235+32 5:15+1:5 1.0 [29] 3:56+0:05 0:10+0:01

doi:10.1371/journal.pone.0014820.t004
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redox pairs (Figure 1A). Each complex is modeled using the

chemiosmotic rate law applied with the parameter values derived

from our experiments (Table 4), together with thermodynamic

constants from the literature and saturation reactant concentra-

tions used in our experiments (Table 2).

To analyze the sensitivity of a network, the most commonly used

tool is the flux control coefficient (FCC) [49], which represents the

relative change in the global steady state flux J resulting from an

infinitesimal change in a property of an individual complex i,

divided by the relative change of that complex’s activity vi from

the same infinitesimal change, and normalized by the correspond-

ing steady state flux and complex activity. The complex with the

largest FCC exerts the largest control on the flux at a particular

steady state, as an increase in the activity of this complex would

result in the largest overall flux increase. For the present study, an

expanded definition of FCC is used such that the properties of

interest are the individual parameters ji,j of the ith complex:

CJ
i,j~

vi

J

LJ=Lji,j

Lvi=Lji,j

ð58Þ

This expanded definition expresses quantitatively the effect that

small variations in the parameter ji,j have on the flux of the system

J , if the effect of ji,j on the local complex activity vi is known. The

FCCs are calculated for the simple ETC pathway by taking the

same parameter variation as in Table 5 to find the corresponding

changes in J numerically, and then dividing the result by vi. The

results are summarized in Table 6, which shows that regardless of

Table 5. Parameter Variation Resulting in 1% Change in Flux
J .

Complex I Complex III Complex IV

dVf ’
max

1% 1% 1%

dKS,D 7:6% 2% 20:4%

dKS,A 7:7% 13:5% N/A

dKR,D 6,000X 5,232X 220X

dKR,A 207X 255X 7,625X

dc 85:80% 45:66% 82:30%

doi:10.1371/journal.pone.0014820.t005

Figure 13. Sensitivity of KR,D and KR,A Values. A. The concentration time-series with respect to changes in KR,A while KR,D is held at 0.03 show
that variations in KR,A produce a subset of the time-series in Figure 12C close to the zero-order linear approximation. B. The curvature (dJ

dt
) time-series

obtained from the second-derivative of the concentration time-series in Panel A show that the closer the concentration time-series is to the linear
approximation, the larger the changes to the curvature time-series. C. The concentration time-series with respect to changes in KR,D while KR,A is
held at 0.3 show that variations in KR,D produce a subset of the time-series close to the first-order mass action approximation. D. The curvature time-
series obtained from the second-derivative of the concentration time-series in Panel C show that the closer the concentration time-series is to the
mass-action approximation, the smaller the changes to the curvature time-series, and also the lower the peak time of the curvature.
doi:10.1371/journal.pone.0014820.g013
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which parameter is varied, the control coefficients remain

consistent for the same complex. This indicates that for the same

small variation in vi, the parameters have the same effect on J

without significantly affecting the steady state concentrations.

Although FCCs can show the relative control of the individual

components in a pathway network, they have little predictive

value as each FCC is computed for a single steady-state. As the

state of the system changes, the values of the FCCs, may change

as well. To overcome the single steady-state limitation of the

FCC, we next apply threshold curve analysis [13] to study the

effects of different parameter perturbations on our simplified

ETC network across a continuum of steady-states. Compared to

the FCC, a threshold curve is not limited to just infinitesimal

changes in a parameter ji,j , but gives a complete range of

variations that result in 0% to 100% decrease in both vi and J.

The percent decreases in vi and J are plotted versus each other,

and the relationship curve between them gives not only a

measure of the global flux control by an individual enzyme

complex, but possibly also a threshold value for vi beyond which

the level of J would be significantly reduced.

An example is shown in Figure 14A, where variations in the

Vf ’
max parameter of complex I have a direct one-to-one effect on

the complex I activity v1, but a delayed effect on J. The two curves

are combined to form the complex I threshold curve in Figure 14B,

where it is paired with the threshold curves of complex III and IV

to produce the specific threshold profile of the system. The

threshold effects shown in these curves can be attributed to a

combination of: (1) an excess of complex activity due to an excess

of complex available in the system, which tends to produce a curve

with a plateau phase, followed by a sharp decline in J; and (2) the

buffering of individual complex activity perturbations by the

metabolic network (kinetic properties of the enzymes, structure of

the pathway network, concentrations of substrates, etc.), which is

responsible for the smoothness of the curves [50]. As such, the

clear threshold value of complex I, and the smooth threshold

curves of complex III and IV indicate that complex I is in excess

relative to complex III and IV, which affect J in a more gradual

and controlling manner. Thus, the threshold profile gives the same

conclusion as the FCC analysis, but offers a more complete view of

a network’s interactivity across the entire normalized range of J
steady-states.

Table 6. Flux Control Coefficients for the Parameters of ETC
Complexes.

Complex I Complex III Complex IV Sum

Vf ’
max

0.0283 0.4751 0.5035 1.0069

KS,D 0.0241 0.4669 0.5087 0.9997

KS,A 0.0241 0.4660 0.5111 1.0014

KR,D 0.0205 0.4693 0.5090 0.9988

KR,A 0.0241 0.4683 0.5126 1.0050

c 0.0241 0.4672 0.5096 1.0009

doi:10.1371/journal.pone.0014820.t006

Figure 14. Threshold Curves and Threshold Profile. Threshold curves relate the changes in an individual complex’s activity (v) with the
changes in the global steady-state flux (J) of the network, through the changes in a parameter of the rate equation. A. A change in the value of
complex I’s V f ’

max parameter has a direct corresponding change in the complex I’s isolated activity (v1), but a more buffered effect on J , where a
threshold value can be identified. B. The two data series in Panel A are plotted against each other to represent the threshold curve of complex I.
Together with the threshold curves of complex III and IV, this combination plot represents the threshold profile of the network/system.
doi:10.1371/journal.pone.0014820.g014

Figure 15. Threshold Curves of Various Parameters. This
comparison of different complex I threshold curves shows that
variations in both the saturation parameters (KS,D or KS,A) and the
redox state parameters (KR,D or KR,A) produce the exact same
threshold curve as the Vf ’

max parameter, but the c parameter produces
a different curve due to the change in the thermodynamic property of
the complex.
doi:10.1371/journal.pone.0014820.g015
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The same threshold profile can be observed irrespective of

which kinetic parameter is used to establish the relationship

between that of vi and J , so long as the two are always compared

at the same steady-state. Figure 15 shows that this is true for the

complex I threshold curve with respect to modulations in the Vf ’
max

parameter, the saturation parameters (KS,D or KS,A), and the

redox state parameters (KR,D or KR,A). However, in the case of the

c parameter, the threshold is markedly changed because the

Figure 16. Parameter Perturbations and the Threshold Curve. Each parameter in the rate law perturbs the complex I threshold
curve and threshold profile in a different way. A. The saturation parameters (represented by KS,D) do not alter the metabolic network
significantly, which allows the threshold curve to maintain its shape and a threshold value. B. At KS,D~100, there are no perceivable effect on the
threshold curves of the other two complexes. C. The redox state parameters (represented by KR,D) have a significant effect on the metabolic
network, and thus the shape of the threshold curve as it changes v1 ’s order of dependency on the reactant concentrations. D. At KR,D~1:0, the
entire threshold profile is greatly affected by the changes in the metabolic network. E. The c parameter has no effect on the threshold curve until its
value drops below 0.1. After which, the threshold curve quickly approaches that of a straight line. F. At c~0:01, v1 becomes the sole rate-limiting
reaction.
doi:10.1371/journal.pone.0014820.g016
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thermodynamic property of the complex, and the structure of the

network are changed with the introduction of an alternative

pathway for the electron in the complex.

The threshold profile of the system is consistent for all kinetic

parameters because the threshold curve relates the relative

changes instead of the absolute changes in v1 and J . Thus,

threshold curves based on different kinetic parameters cannot

show how each parameter may alter the network. Instead, we look

at how the threshold profile of the system is changed by a single

value perturbation in a specific parameter. This is demonstrated in

Figure 16, which compares how perturbations in the saturation

parameters, redox state parameters, and the c parameter affect the

complex I threshold curve and the threshold profile of the system.

A visual metrics of comparing the threshold between the threshold

curves is presented as the area between two consecutive curves,

which represents the difference in the area under the two curves

(color coded also by the difference in the color index of the two

curves). The quantitative measure of each threshold curve in

threshold profile is presented in Table 7 as the fraction of the total

square plot area covered under the curve. From Figure 16A,

increases in the value of a saturation parameter (represented by

KS,D) shifts the threshold value of the curve to the left but the

plateau phase is maintained for a large range of parameter values.

The perturbed threshold profile in Figure 16B shows that even at a

value of 100mM, the effect of a saturation parameter is localized to

the threshold of its own complex and has no significant effect on

the threshold of the other two complexes. In contrast, Figure 16C

shows that increases in the value of a redox state parameter

(represented by KR,D) has a significant effect on the shape and

smoothness of the threshold curve as it changes v1’s order of

dependency on the reactant concentrations, indicative of a large

perturbation effect on the metabolic network. At KR,D~1:0, the

perturbed threshold profile in Figure 16D shows that this

perturbation in the metabolic network is propagated to complex

III and IV, and affects their threshold curves greatly. The c
parameter has essentially no effect on the threshold curve in

Figure 16E until its value drops below 0.1. This suggests that the

thermodynamic force of complex I, in the absence of the pmf, has

an excess in the redox potential, and that only ten percent of the

redox potential is necessary to drive the redox reaction of complex

I. After dropping below 0.1, the threshold curve quickly

approaches that of a straight line, showing direct effect on the

flux. The corresponding threshold profile in Figure 16D shows

that, at c~0:01, v1 becomes so rate-limiting that v3 and v4 of

complex III and IV are always in excess in relation to v1.

Conclusion
In short, we have developed a framework for modeling

mitochondria bioenergetics using a new chemosmotic rate law to

represent each ETC complex in the OXPHOS pathway. This

modular framework subsumes and generalizes several previous

approaches and relies on a small set of biochemically relevant

parameters. We have conducted enzymatic assays to derive those

kinetic parameters for complex I, III, and IV, and validated the

predictions of the model against experimental concentration time-

series. These results, together with detailed sensitivity analyses,

show that the parameters, originally derived from a simple

reference system, provide a good breadth of feasible physiological

responses of the complexes. In particular, threshold curves relating

the flux of one complex to the global flux of the system show how

each parameter in each complex can have a differential effect on

the threshold curve of the corresponding complex, as well as on

the overall threshold profile of the system (Figure 14B and 16).

The flexibility and accuracy of the model, coupled with the diverse

range of behaviors it is capable of generating through transfor-

mation of the system, suggest that in the future this approach could

enable the comparative modeling and analysis of mitochondria

from different systems and pathological states.
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