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SUMMARY

Accurate risk prediction is an important step in developing optimal strategies for disease prevention and
treatment. Based on the predicted risks, patients can be stratified to different risk categories where each
category corresponds to a particular clinical intervention. Incorrect or suboptimal interventions are likely
to result in unnecessary financial and medical consequences. It is thus essential to account for the costs
associated with the clinical interventions when developing and evaluating risk stratification (RS) rules for
clinical use. In this article, we propose to quantify the value of an RS rule based on the total expected
cost attributed to incorrect assignment of risk groups due to the rule. We have established the relationship
between cost parameters and optimal threshold values used in the stratification rule that minimizes the
total expected cost over the entire population of interest. Statistical inference procedures are developed
for evaluating and comparing given RS rules and examined through simulation studies. The proposed
procedures are illustrated with an example from the Cardiovascular Health Study.
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1. INTRODUCTION

Accurate risk assessment and disease prognosis are essential in health care. To improve disease prevention
and management, risk stratification (RS) rules are often developed to assign subjects into different risk
groups where each group corresponds a particular intervention. For example, a commonly used RS rule in
cardiovascular disease prevention stratifies patients into low, intermediate, and high risk groups. Patients
are typically recommended to receive antihypertensive therapy if in the intermediate risk group and receive
statin if in the high risk group. In studies designed to develop RS rules, measurements of risk factors are
often ascertained at baseline and patients are followed over time for the occurrence of a certain clinical
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event. Since the risk of experiencing such an event may change over time, one must incorporate the time
domain when constructing RS rules. For example, cardiovascular RS rules are often based on the risk
of experiencing a cardiovascular event within 10 years since the measurement of the risk factors. In this
paper, we are interested in stratification rules for the risk of experiencing an event withint years since
marker measurement. Throughout, we use the terms “cases” and “controls” to denote subjects who will
and will not experience an event withint years, respectively, if the RS of interest has not been employed.
The potential disease status may be changed after patients receive RS-guided intervention.

When developing and evaluating RS rules, it is crucial to understand the potential clinical and financial
costs associated with assigning patients into incorrect risk groups and thus receiving suboptimal interven-
tions. Unnecessary medication costs arise when controls are incorrectly assigned to high risk groups.
Assigning cases to the low-risk category may lead to costs of life-years lost, productivity, and the subse-
quent medication. This signifies the importance of precise risk prediction and rigorous evaluation of RS
rules prior to their wide spread use in clinical practice.

In practice, RS rules are often derived from risk prediction models with a panel of markers. Based on
the predicted risk from the model, future subjects are assigned to different risk categories to receive the
corresponding intervention. There are 3 important steps in developing an effective RS rule: (1) construct-
ing a regression model predictive to the clinical response of interest (2) determining the appropriate risk
category corresponding to specific intervention, and (3) evaluating the resulting RS rule in an objective
and transparent way. While most of statistical methodological research focuses on the step of empirical
model building, the clear answer to latter 2 steps remains elusive. When evaluating the performance of
risk prediction models, measures of accuracy based on the discrimination and calibration have been con-
sidered (Gail and Pfeiffer, 2005; Cook, 2007). Discrimination measures the ability of the risk prediction
model in discriminating cases from controls. Calibration measures how well the predicted risk approx-
imates the true conditional risk given the marker measurements. However, neither of these 2 types of
measures are appropriate for evaluating the performance of RS. One of the most commonly used discrim-
ination measure is the receiver operating characteristic (ROC) curve (Pepe, 2003). Since the ROC curve
is scale invariant, a monotone transformation of predicted risks does not affect the discriminatory accu-
racy but could lead to dramatic changes in the assignment of risk groups. Calibration measures such as
the Hosmer–Lemeshow goodness of fit statistic are also inadequate because a perfectly calibrated model
may have poor performance in RS if the available markers have little power in predicting the outcome. To
comprehensively assess a risk model,Pepeand others(2008) advocated the use of a predictiveness curve
in conjunction with discriminatory measures. However, such an approach could not be directly applied
to evaluate the performance of RS-guided intervention. In the context of evaluating the incremental value
of a new marker for risk reclassification,Pencinaand others(2008) proposed to measure the net reclas-
sification improvement (NRI) based on the proportion of subjects reclassified into higher- or lower-risk
categories. The NRI can be used to compare RS rules but not to evaluate a single RS rule. Furthermore,
the NRI does not account for the differential costs associated with different types of incorrect assignment.

The ultimate value of an RS rule can be represented as the extra total cost/benefit if the RS-guided
intervention applied to the target population. Therefore, to effectively construct and evaluate an RS rule,
one should have information on the financial and medical costs/benefits associated with the interventions.
Therefore, an ideal data set to evaluate the RS rule would consist of patients whose intervention status
is known. With such a data set along with the cost/benefit information on the interventions, one may
comprehensively evaluate an RS rule based on the expected cost associated with incorrect assignment of
risk groups. In this paper, we propose a unified framework to determine the optimal risk categorization and
quantify the value of the corresponding RS rule based on the expected costs when the cost parameters are
assumed to be given. As a simple example, patients may be stratified into low or high risk groups where
low-risk patients would be managed without intervention and high-risk patients would receive a treatment.
Two types of costs may arise from such a stratification: the unnecessary intervention for controls, denoted
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by C0; and the cost of not receiving treatment for cases, denoted byC1. When evaluating an RS rule that
differentiates the high- and low-risk patients, it is important to account for the trade-off between these
2 types of costs (Cantorand others, 1999; Obuchowski, 2003) and develop an RS rule with a cutoff value
that optimizes the trade-off between these costs. In Section 2, we discuss the relationship between costs
and optimal threshold values of an RS rules based on a single marker. Procedures for comparing multiple
RS rules are also discussed. These procedures are generalized to the setting where multiple risk factors
are available for RS in Section 3. The proposed methods are illustrated in Section 3 with a data set from
the Cardiovascular Health Study (CHS) and simulation studies. Some remarks are given in Section 5.

2. OPTIMAL RS RULES WITH A SINGLE MARKER

Let T denote the time to developing a clinical event and suppose interest lies in predicting the risk of
failing by timet , that is,Y = I (T 6 t). We first consider the setting where a single continuous markerZ
is used to construct RS rules.Z could be a biomarker or a composite risk score established in the literature.
Without loss of generality, we assume that the goal is to assign subjects intok = 1, . . . , K increasingly
ordered risk categories.

2.1 Optimal threshold values of RS and prespecified costs

Let R(z): (−∞, ∞) → {1, . . . , K } denote the risk group assignment with markerZ = z based on its
predicted riskm(z). A subject would be assigned to a low-risk category ifm(z) is close to 0 and to a
high-risk category ifm(z) is sufficiently larger than 0. The risk threshold values for the optimal RS rule
are directly related to the costs associated with incorrect assignment of risk groups. An optimal rule would
assign cases to the highest risk category and controls to the lowest category. Letc1k andc0k denote the
cost associated with assigning cases and controls to thekth risk category, respectively. Then we expect
that c11 > c12 > ∙ ∙ ∙ > c1K and c01 < c02 < ∙ ∙ ∙ < c0K . Without loss of generality, we assume
that c1K = c01 = 0. Under this assumption,c1k essentially represents the additional cost incurred by
assigning a case to thekth category as opposed to the highest category; andc0k represents the additional
cost associating with assigning a control to thekth category when compared to the lowest category.

We propose to summarize the performance ofR(z) for the subpopulation with marker valueZ = z
using the expected cost associated with the stratification:

Cz(R) = E{Y c1R(z) + (1 − Y)c0R(z)|Z = z}.

We show in online Appendix A that among all possible stratification rules based onZ, the optimal strati-
fication rule that achieves the lowest expected costCz(R) is

Ropt(z) = min

{
k: max

06l6k−1
Pkl 6 μ0(z) 6 min

k+16l6K+1
Pkl

}
,

whereμ0(z) = pr(Y = 1|Z = z), Pk0 = 0, Pk(K+1) = 1, Pkl = 1/(1 + rkl), and rkl = rlk =
(c1l − c1k)/(c0k − c0l ), for 1 6 l , k 6 K . Here,rkl is the incremental cost by moving a diseased
subject from risk categoryk to l relative to the incremental cost by moving a disease-free subject from
risk categoryl to k.

For a given set of cost parameters, the optimal RS rule may suggest that not allK categories are
necessary. As an example, we show the optimal RS rule forK = 3 in Table1. When the relative cost
r32 > r12, the optimal rule classifies no subject as intermediate risk suggesting that there is no gain of
having the intermediate risk category under such a condition. In general for assigningK risk categories,
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Table 1. Optimal stratification rules under various configurations when K= 3. Here,∅ represents an
empty set suggesting that no subject would be assigned to the risk category

Ropt(z) r32 < r21 r32> r21

1 μ0(z) 6 P21 μ0(z) 6 P31
2 μ0(z) ∈ (P21, P32] ∅
3 μ0(z) > P32 μ0(z) > P31

the optimal RS rule will not contain empty cells or unnecessary risk strata if and only if

r21 > r32 > ∙ ∙ ∙ > r K (K−1). (2.1)

Under such an assumption, the optimal RS rule is

Ropt(z) =
K∑

l=1

I {μ0(z) 6 pk}, (2.2)

where pk = P(k+1)k =
1

1 + r(k+1)k
, (2.3)

which infers that

c1k−1 = c1k + (1 − pk−1)(c0k − c0k−1)/pk−1. (2.4)

Equations (2.3) and (2.4) characterize the relationship between optimal threshold values of an RS and the
cost parameters.

2.2 The expected cost of an RS rule with optimal threshold values

Suppose the optimal threshold values,p = (p1, . . . , pK )T, are used to createK increasing risk categories.
A subject with predicted riskm(z) will be assigned to thekth risk category ifm(z) ∈ (pk−1, pk], where
0 = p0 < p1 < ∙ ∙ ∙ < pK = 1. The overall performance of such a stratification rule can be evaluated
based on the expected cost,C(m) = E{C(m, Z)}, where

C(m, Z) =
K∑

k=1

I {m(Z) ∈ (pk−1, pk]}E[{Y c1k + (1 − Y)c0k} | Z]

= c11E(Y | Z) +
K−1∑

k=1

d0k I {m(Z) > pk−1}{1 − E(Y p−1
k−1 | Z)},

wherec11 =
∑K

k=2(1− pk−1)(c0k − c0(k−1))/pk−1 andd0k = c0(k+1) − c0k. Utilizing (2.4), we represent
C(m) in terms ofp andc0 = (c01, . . . , c0K )′. The advantage of this representation is thatc0k is relatively
easy to ascertain based on the financial cost of applying the corresponding intervention to a healthy subject
if one is willing to ignore the side effects of the intervention. On the contrary, it is generally difficult to
determinec1k, the cost of cases receiving the incorrect intervention. Obviously, the RS with the true
conditional risk functionμ0(∙), achieves the lowest expected cost among all RS rules based onZ.

Since the commonly used risk threshold values are often derived from a series of careful adjustments
based on the empirical results from long-term clinical practice, it is not unreasonable to assume that
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such threshold values of a well-established RS rule are “optimal” with respect to a set of underlying
cost values, which are implicitly accepted by public. Under such an optimality assumption, one may use
C(m) to evaluate the RS rule. Furthermore, the expected cost functionC(μ0) provides a mechanism for
comparing RS rules based on different risk scores. For example, if 2 risk scoresZ(1) andZ(2) are available
for RS, one may prefer the risk scoreZ(1) over Z(2) if C(μ10) < C(μ20) and Z(2) over Z(1), otherwise,
whereμ j 0(z) = pr(Y = 1 | Z( j ) = z), j = 1, 2. When the risk scores involve potentially expensive or
invasive markers, one may also incorporate the cost associated with the ascertainment of the risk scores
when comparing their performances. Specifically, letCj be the average cost associated with ascertaining
the risk scoreZ( j ), then the expected costs associated withZ( j ) is C(μ j 0) + Cj . Thus, one may prefer
Z(1) over Z(2) if C(μ10) + C1 < C(μ20) + C2.

2.3 Evaluating the optimal RS rules

Let Ti andZi denote the event time and marker value for thei th subject, respectively. Due to censoring,
for Ti , one observes(Xi , δi ), whereXi = min(Ti , Tcen

i ), δi = I (Ti 6 Ti
cen), andTi

cen are the follow-up
time for thei th subject assumed to be independent ofTi and Zi with a commonG(t) = pr(Tcen > t).
Data for analysis consist ofn i.i.d. random vectors,{(Xi , δi , Zi ), i = 1, . . . , n}.
Estimating expected cost.Without censoring, the expected cost associated with a risk scorem(z) based on
knownp andc0, may be estimated nonparametrically by

C̃(m) = n−1
n∑

i =1

η{Yi , m(Zi )},

whereYi = I (Ti 6 t) andη{Yi , m(Zi )} = c11Yi +
∑K−1

k=1 d0k(1 − Yi p−1
k )I {m(Zi ) > pk−1}. However,

Yi is not always observable due to censoring. To incorporate censoring, we propose to modifyC̃(m) based
on the inverse probability weighting (IPW) estimator

C̃(m) = n−1
n∑

i =1

ŵi η{Yi , m(Zi )}, (2.5)

whereŵi = {I (Xi 6 t)δi + I (Xi > t)}/Ĝ(t ∧ Xi ) andĜ(∙) is the Kaplan–Meier estimator ofG(t).
Estimating the conditional risk.The true conditional risk functionμ0(z) = pr(Y = 1|Z = z) involved
in the optimal RS is unknown in general. To estimateμ0(z) nonparametrically, we consider the use of
the local logistic likelihood estimator (Tibshirani and Hastie, 1987) with IPW to account for censoring.
Specifically, we estimateμ0(z) by μ̃(z) = g0{θ̃0(z)}, whereg0(x) = ex/(1 + ex), {θ̃0(z), θ̃1(z)} is the
solution to the local IPW score equation

S̃z(θ0, θ1) =
n∑

i =1

ŵi

(
1

Zi − z

)
Kh(Zi − z)[Yi − g0{θ0 + θ1(Zi − z)}], (2.6)

whereKh(z) = h−1K (z/h), K (∙) is a smooth symmetric density function andh is the bandwidth with
h → 0 andnh2 → ∞ asn → ∞. In practice, the bandwidthh for estimating the conditional risk function
may be selected viaK-fold cross validation.
Interval estimation procedures forC(μ0). To obtain interval estimates forC(μ0), we show in online
Appendix B that̃C(μ̃) is consistent forC(μ0). Furthermore, under mild regularity conditions,n

1
2 {̃C(μ̃) −

C(μ0)} converges in distribution to a zero-mean normal with varianceσ 2. A 95% confidence interval for
C(μ0) may be obtained as̃C(μ̃) ± 1.96̂σ , wherêσ is a consistent estimator ofσ obtained by replacing all
the theoretical quantities inσ by their empirical counterparts.
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When there are multiple markers available, one may compare the performance in RS based on the
difference between the expected costs. For example, when there are 2 risk scores,Z(1) andZ(2), one may
compare their corresponding RS performances based ondC = C1(μ

(1)
0 ) − C2(μ

(2)
0 ), where

C j (m) =
K∑

k=1

E[ I {m(Z( j )) ∈ (pk−1, pk]}{Y c1k + (1 − Y)c0k}].

dC may be consistently estimated bỹ1C = C̃1(μ̃
(1)) − C̃2(μ̃

(2)), whereμ̃( j )(∙) is the estimated risk
function based onZ( j ) andC̃ j (m) = n−1∑n

i =1 ŵi η{Yi , m(Z( j )
i )}, for j = 1, 2. Using similar arguments

as given in online Appendix B, one may show thatn
1
2 (1̃C − dC) converges in distribution to a zero-mean

normal with varianceσ 2
1. The confidence intervals can be constructed accordingly.

3. APPROXIMATING OPTIMAL RS RULES BASED ON MULTIPLE MARKERS

3.1 Developing RS rules

When there are a panel of markers, denoted by a column vectorZ, available for risk prediction, one
may derive RS rules by first ascertaining the conditional risk function,μ0(Z) = pr(Y = 1 | Z). For the
subpopulation withZ = z, the optimal RS rule may be constructed by replacingμ0(z) in (2.2) with μ0(z).
In general, for any given risk prediction functionμ(z) and cost parameters, one may construct an RS rule
based onRμ(Z) =

∑K
k=1 I {μ(Z) 6 pk}, wherepk is given in (2.3). The total expected cost associated

with such a rule for isC(μ) = E{C(μ, Z)}, where

C(μ, Z) =
K∑

k=1

I {μ(Z) ∈ (pk−1, pk]}E[Y c1k + (1 − Y)c0k | Z].

The true conditional risk functionμ0(∙) minimizes the total expected costC(μ) among all functions ofZ.
To approximate the optimal RS rule based on available data, one needs to estimateμ0(Z). When the num-
ber of markers is not small, it is implausible to estimateμ0(Z) nonparametrically. A practical approach
is to approximate the conditional risk through regression modeling. For example, one may consider re-
gression models such as the Cox proportional hazards model (Cox, 1972), semiparametric transformation
models (Chengand others, 1995) or time-specific generalized linear models (GLMs) (Zhengand others,
2006; Uno and others, 2007). When the assumed regression model is the true model, one may estimate
μ0(Z) consistently by fitting the regression model.

In practice, simple regression models may fail to hold. As such, the estimated conditional risk function
may be a poor approximation to the true conditional risk and thus leads to suboptimal RS rules. Further-
more, inference procedures about the performance of the RS rule may be invalid if such procedures are
derived under the assumption of correct model specification. To overcome such difficulties, we propose
to employ simple statistical models as “working” models for approximating the true conditional risk and
derive procedures for making inference about the performance of RS rules without requiring the fitted
model to hold. A wide range of survival models including those mentioned above may be considered as
the working model. A simple example is to model the conditional risk functionμ0(Z) via the time-specific
GLM,

pr(Y = 1 | Z) = pr(T 6 t | Z) = g(βββTZ), (3.1)

whereg(∙) is a prespecified monotone and smooth link function andβββ is an unknown regression coef-
ficient. Without loss of generality, we assume that the vectorZ includes 1 as its first component. Here,
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both g andβββ could may vary with timet . Through the working model (3.1), one may approximate the

conditional risk for a subject withZ = z asg(β̂ββ
T
z), wherêβββ is the solution to

n−1
n∑

i =1

ŵi Z i {Yi − g(βββTZ i )} = 0. (3.2)

Uno and others(2007) showed that̂βββ is always convergent toβββ0, the unique solution toE[Z{Y −
g(βββTZ)}] = 0.

Based on the working model (3.1), one may construct RS rule using the risk prediction function
g(βββT

0Z). However, if the working model (3.1) fails to be a good approximation to the true model, it is
unclear whether such an RS rule is optimal in any sense and may not perform well. To improve the RS,
we propose to useβββT

0Z as a scoring system and predict the risk for a subject withZ asμβββ0
(Z), where

μβββ(Z) = pr(Y = 1 | βββTZ). An optimal RS rule based onμβββ0
(Z) may be constructed as in (2.2). Such a

rule would be optimal, with respect toC(μ), among all rules based onZ if the working model holds and
optimal within rules based on the linear risk scoreβββT

0Z if the working model fails to hold. Compared with
g(βββT

0Z0), it is straightforward to show that

E[{g(βββT
0Z0) − μ0(Z0)}2] > E[{μβββ0

(Z0) − μ0(Z0)}2]

and we expect that RS rules based onμβββ(Z) will have lower expected cost compared to that based on
g(βββT

0Z).
For any givenz, a consistent estimate ofμβββ0

(z) may be obtained aŝμβ̂ββ(z), whereμ̂βββ(z) is the non-
parametric local likelihood estimator similar to that proposed in Section 2.3 based on the synthetic data
{(Xi , δi , β̂ββ

T
Z i ), i = 1, . . . , n}.

3.2 Evaluating RS rules based on the total expected cost

The expected cost associated withμβββ0
(Z) averaged over the population,C(μβββ0

) = E{C(μβββ0
, Z)} can be

estimated bŷC(μ̂β̂ββ), where

Ĉ(m) = n−1
n∑

i =1

ŵi I {m(Z i ) ∈ (pk−1, pk]}{Yi c1k + (1 − Yi )c0k}. (3.3)

In online Appendix C, we demonstrate thatĈ = Ĉ(μ̂β̂ββ) is a consistent estimator ofC(μβββ0
). Furthermore,

n
1
2 {Ĉ − C(μβββ0

)} converges in distribution to a normal with mean 0 and varianceE(ζ 2
Wi ), whereζWi is

defined in (C.3) of online Appendix C.
As for most model evaluation measures,Ĉ(μ̂β̂ββ) is likely to underestimate the total expected cost

associated with the RS due to overfitting, especially when sample size is not large compared to the number
of markers. An effective approach to reducing the overfitting bias is the cross validation. We consider the
commonly usedK-fold cross validation, which randomly splits the data intoK disjoint sets of about equal
size and labels them asIκ , κ = 1, . . . ,K. For eachκ, based on all observations which are not inIκ ,
we obtain an estimatêβββ(−κ) for βββ via (3.2) and subsequently an estimateμ̂

(−κ)
βββ (z) for μβββ(z). Based on

μ̂
(−κ)

β̂ββ(−κ)
(z), we then compute the total expected cost estimateĈ(κ)(m) via (3.3) based on observations in

Iκ . Then, a bias corrected estimate forC(μβββ0
) is

Ĉ(cv) = K−1
K∑

κ=1

Ĉ(κ)

{
μ̂

(−κ)

β̂ββ(−κ)

}
. (3.4)



604 T. CAI AND OTHERS

For any fixedK, it is straightforward to show that̂Ccv is consistent forC(μβββ0
). Using arguments given in

Tian and others(2007), it is not difficult to show that the standardized̂Ccv,W = n1/2{Ĉ(cv) − C(μβββ0
)}

has the same limiting distribution as that ofn
1
2 {Ĉ − C(μβββ0

)}. Therefore, one may use the standard error
estimate based on (C.3) of the online Appendix to construct interval estimates forC(μβββ0

), which are
centered around the cross-validation estimate.

4. NUMERICAL STUDIES

4.1 Example: CHS

We illustrate our methods by evaluating stratification rules for predicting the risk of coronary heart disease
(CHD) using data from the CHS sponsored by the National Heart, Lung and Blood Institute. The CHS
is a population-based observational prospective study of risk factors for cardiovascular disease in adults
65 years or older. A full description of the design of CHS is reported inFriedand others(1991). One of
the most widely used clinical prediction score for CHD risk is the Framingham risk score (FR-score). The
FR-score was originally derived from proportional hazards models byAndersonand others(1991) and
updated byWilson and others(1998) based on the Framingham heart study. Separate models were fitted
for men and women with predictors including age, blood cholesterol, high-density lipoprotein (HDL)
cholesterol, blood pressure, present smoking status, and diabetes mellitus. We construct the FR-score
based on the coefficients given in Table 6 ofWilsonand others(1998). Since FR-score may have different
ability in RS among men and women, we evaluate its performance separately for the 2 populations and
only use women for illustration. We are interested in evaluating the performance of various risk scores
in stratifying patients into different risk categories for the occurrence of CHD events within 10 years. To
apply the proposed procedures, we ideally need (i) RS rules with optimal threshold values and (ii) a good
estimate of costc0. Since some CHS patients may have already received their intervention per American
Heart Association (AHA) guideline, the well-accepted risk threshold values of 10% and 20% may not be
optimal to CHS population and the accurate estimation ofc0 becomes complicated. While acknowledging
these limitations, we still simply assume the optimality of the threshold values of RS rules of interest and
estimatec0 as if no one had received the intervention for illustration purpose.

The analysis here includes 3313 females who have available information on the baseline FR-score vari-
ables and event times. Subjects in this data set were between 65 and 95 years old with a median age of 71.
There was little loss to follow up in CHS and the median follow-up time was 14.47 years. There were about
26.2% of subjects who experienced a CHD event during follow up and 19.6% of subjects experienced a
CHD event within 10 years. 43.0% were censored and 30.8% (1020) subjects in the sample died from other
causes without a CHD. Since the RS rules were developed for the prevention of CHD, we focused our
analysis on CHD events only and thus defineYi = 1 if subjecti experienced CHD within 10 years since
andYi = 0 if she did not experience CHD or died of other causes within 10 years. Thus, the model (3.1)
is assumed for the subdistribution of CHD. To estimate the censoring probability for the IPW weights, we
note that censoring occurs only if a patient drops out of the study prior to the occurrence of CHD or death.

To construct RS rules based on the FR-score, we follow the current guideline from the AHA (Mosca
and others, 2004, 2007) and consider a stratification rule which assigns a patient with FR-score= z into
the low risk group ifμ0(z) 6 0.10; the intermediate risk group if 0.10< μ0(z) 6 0.20; and the high risk
group ifμ0(z) > 0.20, whereμ0(∙) is estimated based on the local IPW likelihood estimator discussed in
Section 2.3. Lifestyle interventions were recommended for all women. For patients in the intermediate risk
group, antihypertensive therapy such as with a thiazide diuretic was recommended. The AHA guidelines
call for simultaneous lifestyle interventions and statin therapy for patients with high risk. Based on these
guidelines and the yearly cost of the corresponding medications, we assume that the cost associated with
assigning a patient who will not experience CHD events to the low, intermediate, and high risk groups
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to be 0, $240, and $600, which were calculated based on the annual costs for hydrochlorothiazide at the
dosage of 12.5 mg per day and simvastatin at the doseage of 40 mg per day. These parameters lead to an
estimated average yearly cost of $454 (per person) with a 95% confidence interval($439, $469) for the
RS rule based on the FR-score.

Cook and others(2006) advocated the inclusion of C-reactive protein (CRP) for predicting cardio-
vascular risk for women. They derived a risk prediction model based on the women’s health study by
including age, systolic blood pressure, antihypertensive use, present smoking status, log(HDL), log(total
cholestrol), and log(CRP). We constructed the risk score based on the coefficients provided in Table1 of
Cook and others(2006). In Table2, we show the proportion of subjects stratified into each of the risk
categories based on the FR-score and based on the new score with CRP. Overall, the FR-score appears to
assign most subjects into the intermediate risk group. The new score with CRP appears to assign more
cases, that is, subjects experienced a CHD event within 10 years, to the high risk groups. For subjects who
did not experience a CHD event within cases, the new score assigns 5.3% of those to the low risk group,
42.7% to the intermediate risk group, and 32.4% to the high risk group. To assess the overall effectiveness
of the RS rule based on the new score, we use the same cost parameters as given above and obtained an
estimated average yearly cost of $431 with a 95% confidence interval($416, $446). To compare the RS
rules based on the FR-score and the score incorporating the CRP, we estimated the cost reduction due to
CRPdC as $23 with 95% confidence interval($5, $42), suggesting that including the CRP information
could potentially improve the accuracy of RS with respect to the expected cost. On the other hand, we
note that the cost of the fully automated quantitative CRP test based on the quantitative immunoassay is
reported to be around $50.00. When the additional cost of the CRP is taken into account, it is unclear
whether the improvement in RS due to CRP is substantial enough to recommend CRP for the general
population.

Instead of using the FR-score or score given byCook and others(2006), we also constructed RS
rule with risk factors based on the CHS data. We first fit a logistic regression working model relating
the risk factors to the binary responseY = I (T 6 10) and obtained a risk scorêβββ

T
Z. The risk of a

subject experiencing CHD within 10 years is predicted based on the aforementioned nonparametric local
likelihood estimator. Subsequently, the total expected cost was estimated via (3.3) and also (3.4) with
5-fold cross validation. Three models are considered: (i) age only; (ii) all variables but log(CRP); and (iii)
full model. The point and interval estimates for the expected cost under these settings are given in Table3.
With the refitting, the RS rule derived under the full model results in an average cost of $418 with standard
error $9 based on the cross-validated estimate. This cost is only slightly lower than the average cost for
the RS rule obtained based on the score provided byCookand others(2006).

To evaluate the incremental value of log(CRP), we compare the expected cost associated with the RS
derived from the full model and the model without CRP in terms of the difference in the total expect
cost. In this example, the bias-corrected estimate of the incremental value of CRP is $3 (95% confidence
interval [−9,15]). This confirms that there is a minimal gain for having the extra CRP information when
we obtain risk estimates by fitting models (ii) and (iii).

Table 2. Proportion of subjects who have (not) experienced a cardiovascular event within10 years and
are assigned to low, intermediate, and high risk groups based on the FR-score and the score with CRP

proposed byCook and others(2006)

Low With CHD High Low without CHD High
intermediate intermediate

FR-score 0.000 0.145 0.052 0.002 0.653 0.149
Score with CRP 0.005 0.081 0.111 0.053 0.425 0.325
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Table 3. Estimated expected costC and the incremental values based on the apparent error estimate and
the cross-validated estimator. Shown also are the standard error estimates (StdErr) and the lower and

upper bounds of the95%confidence intervals(CIs)

Apparent Cross validated StdErr 95% CI bounds
Lower Upper

(i) Age only 440 444 7 429 458
C (ii) w/o CRP 417 422 9 404 439

(iii) Full model 411 418 9 401 436
dC Full versus age only 29 25 9 8 42

Full versus w/o CRP 6 3 6 −9 15

Table 4. Bias, sampling standard error (SSE), average of the estimated standard error (ASE), and empir-
ical coverage levels of the95%confidence intervals (CovP) for the estimated costs under settings when
there is a single marker. For each configuration, results are summarized based on1000simulated data

sets

n Truth Bias SSE ASE CovP

200 151.53 −1.03 20.73 19.76 0.94
400 151.53 −0.43 14.03 13.98 0.96

4.2 Simulation studies

Simulation studies were conducted to evaluate the finite sample performance of the proposed procedures.
We generated marker valueZ from an exponential distribution with mean rate 10 and the survival timeT
from a log-normal model

logT = log(100) − (Z +
√

Z + 1) + ε, (4.1)

with ε ∼ N(0, 1). We generated the censoringC from a log-normal distribution which resulted in about
20% of censoring. For each simulated data set, we constructed RS rules for predicting 10-year survival
similar to the CHS example. That is, we assign subjects into the low, intermediate, and high-risk cate-
gories, determined by risk intervals,(0, 0.1], (0.1, 0.2], and(0.2, 1.0], respectively. We also assume that
the cost associated with assigning a patient who will not fail within 10-years to the low, intermediate,
and high risk groups to be 0, $240, and $600. Under such configuration, the total cost associated with the
optimal RS rule isC = $151.53. For all the simulation studies considered here, we estimated the con-
ditional risk function nonparametrically to ensure the consistency of the estimators. The bandwidth for
estimating the conditional risk function was selected via 5-fold cross validation by minimizing the mean
squared error, as described in Section2.3. The results for sample sizesn = 200 and 400 are summarized
in Table4. In general, the estimated expected cost has little bias. The estimated standard errors are close
to the empirical standard errors and the confidence intervals have proper coverage levels.

To evaluate the performance of the proposed procedure for comparing multiple markers, we generated
markersZ1 andZ2 from a multivariate normal with mean 0, unit variance and correlation 0.3. The survival
time T was generated from

logT = log(20) − Z1 − 0.5Z2 + ε

with ε ∼ N(0, 0.52). The censoring was generated from a log-normal with mean 4 and unit variance 1
which resulted in about 30% of censoring. For each data set, we obtained point and interval estimates
for the expected costs associated with optimal RS rules based on each of the 2 markers. To compare the
performance of the 2 stratification rules, we obtained point and interval estimates fordC, the difference in
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Table 5. Bias, sampling standard error (SSE), average of the estimated standard error (ASE), and em-
pirical coverage levels of the95% confidence intervals (CovP) for the estimated costs under settings,
when there are2 markers for comparison. For each configuration, results are summarized based on1000

simulated datasets

Truth n = 200 n = 400

Bias SSE ASE CovP Bias SSE ASE CovP

Marker 1 191.03 0.92 32.80 32.13 0.93 0.17 22.81 23.05 0.94
Marker 2 326.67 −8.78 31.91 32.94 0.94 −3.74 22.94 23.87 0.95
Difference 135.64 −9.70 46.95 47.51 0.94 −3.91 33.99 34.31 0.94

the expected cost. The results were summarized in Table5 for sample sizesn = 200 and 400. Similar to the
previous setting, the proposed inference procedures generally perform well in finite samples. At sample
size of 200, the estimator fordC has about 7% of bias. This is partially due to the difficulty in estimating
the conditional risk function nonparametrically at sample size of 200. However, the bias decreases as the
sample size increases as we expected and all the interval estimators have proper coverage levels.

5. DISCUSSION

In an ideal cost/benefit analysis, one needs to first specify the decision-makers’s cost function, which
amounts to determine all the values ofc̄ = {(c1k, c0k), 1 6 k 6 K } in evaluating an RS rule. In this
paper, we proposed to circumvent the difficulty of assigningc̄ by using the established correspondence
betweenc̄ andp, if it is reasonable to assume the optimality of certain risk threshold values employed
by the medical community. While this is a useful practical approach, it remains desirable to specifyc̄ via
careful health economic analyses “a priori”. Once a good assessment ofc̄ becomes available, one may
improve an existing RS rule by adjusting the risk threshold values and properly evaluate the adjusted RS
rule. In our CHS example, we used very simple and naive cost parameters based on the financial cost
alone. However, to comprehensively evaluate the performance of RS rules, it is crucial to consider all
the financial and medical consequences of assigning cases and controls to different risk categories such
as the probability of preventing subjects from developing CHD and the subsequent life-years saved. A
comprehensive analysis should also take into account the current intervention the subjects are receiving
and assess the cost/benefit of changing the current intervention to the RS rule–suggested intervention. Our
current analysis of the CHS data assumed that the population is naive to the intervention of interest. It
would also be interesting to explore other mechanisms to account for death due to other causes since no
additional medication costs would incur after death. However, we do not have sufficient information on
the benefit and risk of the treatments and thus the results provided in the example section may have limited
applicability in practice.

One limitation of the proposed approach is to impose a universal cost function for the entire popula-
tion without allowing for heterogeneous cost–benefit profiles. It is conceivable that the appropriate cost
function and hence the corresponding optimal RS rule could be individualized for each patient. With any
specified cost function for an individual patient, the proposed methods can still be used in constructing
an optimal RS rule and provide the corresponding recommendation of appropriate clinical interventions.
On the other hand, when making public policy and regulatory decisions, it remains crucial to develop a
general guideline with stratification rules that are optimal on average over the entire population.

When there is a single marker or score, the proposed RS rule is constructed based on the conditional
riskμ0(z), which can be estimated nonparametrically. If one is willing to assume thatμ0(z) is a monotone
function, then one may estimateμ0(z) using a nonparametric isotonic regression techniques (Friedman
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and Tibshirani, 1984; Bloch and Silverman, 1997; Hall and Huang, 2001). Last, in order for the total
expected cost estimated from the current population applicable to a new population, the 2 populations need
to have the same joint distribution of(Z, Y). If the future population has a different marginal distribution
of Z and shares the same conditional risk function givenZ, then one may infer about the total expected
cost for the new population via appropriate reweighting.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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