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Abstract
We explore a connection between the singular value decomposition (SVD) and functional
principal component analysis (FPCA) models in high-dimensional brain imaging applications. We
formally link right singular vectors to principal scores of FPCA. This, combined with the fact that
left singular vectors estimate principal components, allows us to deploy the numerical efficiency
of SVD to fully estimate the components of FPCA, even for extremely high-dimensional
functional objects, such as brain images. As an example, a FPCA model is fit to high-resolution
morphometric (RAVENS) images. The main directions of morphometric variation in brain
volumes are identified and discussed.
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Introduction
Epidemiological studies of neuroimaging data are becoming increasingly common.
Common features of these studies generally include large sample sizes and subtle effects
under study. High-resolution three-dimensional brain images exponentially increase the
volume of data, making many standard inferential tools computationally infeasible. This and
other high dimensional data sets have motivated an intensive effort in the statistical
community on methodological research for functional data analysis (FDA, Ramsay and
Silverman, 2005). One group of FDA methods uses wavelets and splines to study and model
curves as well as more general functional objects such as brain images (Guo, 2002;
Mohamed and Davatzikos, 2004; Morris and Carroll, 2006; Reiss et al., 2005; Reiss and
Ogden, 2008, 2010). Another group employs principal components as a basis for modeling
functions and images (Crainiceanu et al., 2009, 2010; Di et al., 2008; Di and Crainiceanu,
2010; Greven et al., 2010; Staicu et al., 2010; Yao et al., 2005).

We follow the latter approach and put forward a generalization of principal components to
understand major directions of variation in such large-scale neuroimaging studies. However,
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unlike most eigen-imaging approaches, we connect the methods to formal linear mixed
models for imaging data. Our approach is based on FPCA (Ramsay and Silverman, 2005;
Yao et al., 2005) which captures the principal directions of variation in the population.
Subjects can be characterized in terms of their principal scores which are the coordinates in
the space spanned by the principal components. Estimating both principal components and
principal scores can be quite challenging in high-dimensional settings. We show how SVD
can be efficiently adapted for the estimation problem. Zhang et al. (2007) explored SVD of
individual functional objects which can be represented in a matrix form. In contrast, our
approach employs SVD of the entire data matrix of vectorized neuroimages. It is well-
known that left singular vectors of this SVD estimate principal components (Joliffe, 2002).
To estimate principal scores for sparse FPCA models with measurement noise Yao et al.
(2005) suggested to use estimated Best Linear Unbiased Predictors (BLUPs). We also
estimate principal scores by BLUPs but our approach is different in two ways. Firstly, and
most importantly, we consider high-dimensional FPCA settings where the covariance matrix
of vectorized images is not invertible. Hence, the approach of Yao et al. (2005) cannot be
applied directly. Secondly, we require neither specification of the distribution of the
principal scores, nor that they be independent and show how right singular vectors can be
used to estimate principal scores under minimal distributional assumptions. Once both
principal components and principal scores are estimated hypothesis testing can be done
using the standard tools of linear mixed model theory. Therefore, the approach yields a fully
specified model and inferential framework. We further give a didactic explanation of easy
methods for handling the necessary high dimensional calculations on even modest
computing infrastructures.

Our proposed data-driven method applies generally, though in this manuscript we
specifically apply it to morphometric images that would typically be used for voxel-based
morphometry (Ashburner and Friston, 2000). In an imaging setting, the basic data
requirement is a sample of spatially registered images, where the study of population
variation in the registered intensities is of interest. Since the methods vectorize the imaging
array information as a first step, whether the images are one, two, three or four (as in fMRI
or PET studies) dimensional is irrelevant; though we stipulate that alternate methods that
separate spatial and temporal variations (Beckmann and Smith, 2005; Caffo et al., 2010) are
more relevant in the 4D cases. Regardless, the methods are generic and portable to a wide
variety of imaging and non-imaging settings.

We also discuss the practical computing for the methods. We specifically demonstrate that
model fitting can be performed via a SVD that can be applied iteratively, loading only
components of the data at a time. Thereby, we demonstrate that the methods are scalable to
large studies and can be executed on modest computing infrastructures.

The manuscript is laid out as follows. Motivating data section describes the motivating data,
regional tissue volume maps (RAVENS maps) derived from structural brain MRI of former
organolead manufacturing workers. Methods section explains why fitting FPCA model is
identical to constructing SVD of the data matrix as well as provides necessary numerical
adaptation to high-dimensional data. In Application to RAVENS images section, the method
is applied to the RAVENS data. The last section concludes with a discussion.

Motivating data
The motivating data arise from a study of voxel-based morphom-etry (VBM) (Ashburner
and Friston, 2000) in former organolead manufacturing workers. VBM is a common
approach to analysis of structural MRI. The primary benefits of VBM are its lack of need for
a priori specified regions of interest and its exploratory nature. VBM facilitates

Zipunnikov et al. Page 2

Neuroimage. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



identification of complex, and perhaps previously unknown, patterns of brain structure via
regression models of exposure or disease status on deformation maps.

However, VBM, as its name suggests, is applied at a voxel-wise level, resulting in tens or
hundreds of thousands of tests considered independently. In contrast, regional analyses are
primarily confirmatory, requiring both specified regional hypotheses as well as an
anatomical parcellation. We instead analyze morphometric images to find principal
directions of cross-sectional variation of brain image shapes. While this approach is useful
for both analyzing deformation fields as an outcome (functional principal component
analysis), it is also useful for regression models where morphometric deformation is a
predictor (functional principal component regression) (Ramsay and Silverman, 2005).

The data were derived from an epidemiologic study of the central nervous system effects of
organic and inorganic lead in former organolead manufacturing workers, described in detail
elsewhere (Schwartz et al., 2000a,b; Stewart et al., 1999). Subject scans were from a GE 1.5
Tesla Signa scanner. RAVENS image processing (described further below) was performed
on the T1-weighted volume acquisitions.

RAVENS stands for Regional Analysis of VolumE in Normalized Space, and represents a
standard method for discovering localized changes in brain shape related to exposures
(Goldszal et al., 1998; Shen and Davatzikos, 2003). It has been shown to be scalable and
viable on large epidemiological cohort studies (Davatzikos et al., 2008; Resnick et al.,
2009). The method analyzes smoothed deformation maps obtained when registering subjects
to a standard template. Processing, and hence analysis, is performed separately for different
tissue types (gray/white) and possibly for the analysis of cerebrospinal fluid (CSF), which
may be informative for ventricular volume and shape. A complete description of RAVENS
processing can be found in Goldszal et al. (1998) and Shen and Davatzikos (2003). In this
study, we consider images collected over two visits roughly five years apart that were
registered using a novel 4D generalization of RAVENS processing (Xue et al., 2006). Hence
we investigate cross-sectional variation, separately at the first and second visits, as well as
longitudinal variation as summarized by difference maps between the two time points.

We emphasize that our proposed modeling does not depend on imaging modality and
processing. (Though, of course, processing and scientific context will dictate the utility of
the models.) The necessary inputs for the procedure are images registered in a standardized
space, where voxel-specific intensities are of interest. For example, the methods equally
apply to PET images of a tracer or DTI summary (e.g. fractional anisotropy, mean
diffusivity) maps.

Methods
In this section we discuss FPCA model. The relationship between FPCA and SVD will be
highlighted. This link will allow us to address efficiently the computational issues arising for
FPCA model in high-dimensional settings. Furthermore, the geometrical interpretation of
left and right singular vectors within FPCA framework will be closely examined.

Single level FPCA
Suppose that we have a sample of images Xi, where Xi is a vectorized image of the ith
subject, i=1,…,I. Every image is a 3-dimensional array structure of dimension p=p1×p2×p3.
For example, in the RAVENS data described in Motivating data section, it has a dimension
of p = 256×256×198 = 12,976,128. Of course, efficient masking of the data reduces this
number drastically (to three million in the case of the RAVENS data). Hence, we represent
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the data Xi as a p×1 dimensional vector containing non-background voxels in a particular
order, where the order is preserved across all voxels.

Following Di et al. (2008) we consider a single level functional model: Xi(v) = μ(v) + Zi(v),i
= 1,…,I and v denotes a voxel coordinate. The image μ(v) is the overall mean image and
Zi(v) is a subject-specific image deviation from the overall mean. We assume that μ(v) is
fixed and Zi(v) is a zero-mean second-order stationary stochastic process with continuous
covariance function K(v1,v2) = EZi(v1)Zi(v2). Using Karhunen-Loeve expansions of the

random processes (Karhunen, 1947) , where ϕk(v) are the eigenfunctions
of the covariance function K(v1, v2) and ζik are uncorrelated eigenscores with non-increasing
variances σk. For practical purposes, we consider a model projected on the first N
components. We define vectors of eigenscores ζi = (ζi1,…,ζiN)′ which we assume to be
independent and identically distributed random vectors with zero mean and diagonal
covariance matrix Σ = diag{σk}. Note that from the above assumption it follows that for
each i components ζ′iks are uncorrelated. In other words, we do not impose any additional
assumptions on the distribution of eigenscores ζ′iks. Further, it will be more convenient to
consider normalized scores . With these changes the FPCA model becomes a
linear mixed effect model (McCulloch and Searle, 2001, Ch.6)

(1)

where  denotes uncorrelated zero mean random variables with unit variance. Eq.

(1) can be written in a convenient matrix form as , where columns of p × N

matrix ΦN are principal components ϕk's, and matrix  is diagonal with  on the main
diagonal. Statistical estimation of model (1) includes estimating eigenimages ϕk with
eigenvalues σk and eigenscores ξik. After these parameters are estimated, inference,
including hypothesis testing, can be done using standard linear mixed models techniques
(Demidenko, 2004; McCulloch and Searle, 2001).

The natural estimate of μ, the vectorized version of μ(v), is the sample point-wise arithmetic

average . The unexplained part of the image, X ̃i = Xi − μ ̂, is eigen-analyzed to
obtain the eigenvectors ϕk and eigenvalues σk. Denote X ̃ = (X ̃1,…, X ̃I) where X ̃i is a
centered p × 1 vector containing the unfolded image for subject i. Then covariance operator

K is estimated as . Given rank (K̂) = r the estimated covariance operator K̂

can be decomposed as  where p × r matrix Φ ̂r has orthonormal columns, ϕ̂k, and
r×r diagonal matrix Σ̂r has non-negative diagonal elements σ ̂1≥σ ̂2≥ .. ≥σ ̂r > 0. A small
number of principal components (or eigenimages), N, can usually explain most of the
variation (Di et al., 2008). The number of principal components, N, is typically chosen to
make the explained variability (σ ̂1 + … + σ ̂N) / (σ ̂1 + … + σ ̂r) large enough. Alternatively,
restricted likelihood ratio tests within linear mixed model theory can be adapted to choose N
by formally testing if the corresponding variance component is zero (Crainiceanu et al.,
2009; Staicu et al., 2010).
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The size of the covariance operator K̂ is p × p. For high-dimensional p the brute-force
eigenanalysis requires O(p3) operations and as a result is infeasible. Calculating and storing
K̂ becomes impossible when p reaches infeasible levels.

Nevertheless, it is still possible to get eigendecomposition of K̂ by using the fact that the
number of subjects, I, is typically much smaller than p. Indeed, if I<p then matrix X ̃ = (X ̃1,
…, X ̃I) has at most rank I and the SVD of X ̃

(2)

can be obtained with O(pI2 + I3) computational effort (Golub and Loan, 1996). Here, the
matrix V is p × I with I orthonormal columns, S is a diagonal I × I matrix and U is a I × I
orthogonal matrix. Full details on efficient SVD calculation for ultra high-dimensional p will
be provided in the next section. Now we will show the relation between FPCA (1) and SVD
(2).

Assume for a moment that we calculated Eq. (2). Then . Given
all eigenvalues are different, the eigendecomposition of K̂ is unique. Thus,

(3)

where p × N matrix VN consists of the first N left singular vectors and SN is N × N diagonal
matrix with squares of the first N singular values on the main diagonal. Identities in Eq. (3)
determine the estimates of eigenimages ϕ̂k and eigenvalues σ ̂k. Estimated eigenfunctions ϕ̂k
and eigenvalues σ ̂k are used to calculate the estimated best linear unbiased predictors
(EBLUPs) of the scores ξik. For linear models with invertible covariance matrix Var (X ̃i)
and given μ BLUPs can be calculated as (McCulloch and Searle, 2001, Ch.9)

(4)

For instance, Yao et al. (2005) showed that for sparse FPCA models with measurement
noise Eq. (4) is equivalent to E(ξi|X ̃i) under a normality assumption on principal scores.
Greven et al. (2010) did not impose a normality assumption and employed Eq. (4) to
estimate principal scores in longitudinal FPCA models. Brute-force calculation of EBLUPs
based on Eq. (4) requires the inversion of p × p matrices (see also Crainiceanu et al., 2009;
Di and Crainiceanu, 2010) and becomes prohibitive for high-dimensional problems.

Our case is different in that Var (X ̃i) is not invertible for models (1) and (4) and can not be
applied directly. The derivation of the EBLUPs presented below requires neither
specification of the distribution of the principal scores ξik, nor that they be independent, and
is based on a projection argument in Harville (1976). For model (1) the BLUP is expressed
via pseudo-inverse matrices (Harville, 1976) as

(5)
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where (ΦNΣNΦ′N) is the unique generalized inverse of the matrix ΦNΣNΦ′N. Using results
from Demidenko (2004, Appendix) we can write

. SVD
representation (2) allows us to express X ̃i as X ̃i = VS1/2U′(:,i), where U′(:,i) is the ith column
of matrix U′. Combining this with the estimators for ΦN and ΣN in Eq. (3), we obtain the

estimated BLUPs as . It is easy to see that

 where U′(1: N,i) denotes the first N coordinates of vector U′
(:,i). Therefore, we get .

The result formally derived above can be informally and more intuitively seen as follows.
For the data matrix X ̃ = (X ̃1,…,X ̃I) we have two representations. The first one comes from
the data generating representation of X ̃ as X ̃ = ΦNΣNξ, where ξ = (ξ1, …,ξI) is N × I matrix
of principal scores. From the other side, there is SVD representation (2). Putting the two
together we demonstrated that fitting FPCA model (1) to data X ̃ is equivalent to finding the
best rank N approximation of X ̃.

To summarize, we demonstrated that: i) the eigenvectors ϕk are given by the left singular
vectors vk; ii) the normalized principal scores ξik are given by the rows of matrix U truncated
to the first N coordinates and scaled up by  iii) the variances σk are estimated by the
singular values sk scaled down I.

Implementation
Now we give details of a fast and efficient algorithm for calculating SVD with O(pI2 + I3)
computational effort and sequential access to the memory. It was easily implemented on a
regular PC and completed in minutes for the former lead workers RAVENS data. First step
is to use I ×I symmetric matrix X ̃′X ̃ and its spectral decomposition X ̃′X ̃ = USU′ to get U and
S1/2. For high-dimensional p the matrix X ̃ can not be loaded into the memory. The solution
we suggest is to partition it into M slices as X ̃′ = [(X ̃1)′|(X ̃2)′|…|(X ̃M)′], where the size of the
mth slice, X ̃m, is p/M × I which can be adapted to the available computer memory and

optimized to reduce implementation time. The matrix X ̃′X ̃ is calculated as 
and requires O(pI2) operations. Spectral decomposition forX ̃′X ̃ requires O(I3) operations
and calculates matrices U and S. The p × I matrix V can now be obtained as V =X ̃US−1/2.
Actual calculations can be performed on the slices of the partitioned matrix X ̃ as Vm =
X ̃mUS−1/2, m = 1;M and can be done with O(pI2) operations. The concatenated slices [ (V1)′
| (V2)′ |…|(VM)′] form the matrix of the left singular vectors V′. Hence, all components of
the SVD can be calculated without loading the entire data matrix into memory. The analysis
scales to nearly arbitrary large parameter spaces on very modest computing infrastructures.

Simulations
In this section, we will illustrate the proposed methods in a simulation study. We generated
1000 data sets according to the following FPCA model

(6)
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where eigenimages ϕk are displayed in Fig. 1, ν = [1,300] × [1,300], and 
denotes independent identically distributed random variables following normal distribution
with zero mean and variance σk. The eigenimages can be thought of as 2D grayscale images
with pixel intensities on the [0,1] scale. The black pixels are set to 1 and the white ones are
set to zero. We set I=350 to replicate the sample size of the RAVENS data set. The
eigenvalues were set to be σk = 0.5k−1, k = 1,…,5. Generated images Xi's were unfolded to
obtain vectors of size p = 300·300 = 90,000. The simulation study took 32 min on a PC with
a quad core i7-2.67 Ghz processor and 6 Gb of RAM memory.

Fig. 2 displays means of the estimated eigenimages in the top panel, and the pointwise 5th
and 95th percentile images in the middle and the bottom rows, respectively. To obtain a
grayscale image with pixel values in the [0,1] interval, each estimated eigenvector, ϕ̂ = (ϕ̂1,
…,ϕ̂p), was normalized as ϕ̂→(ϕ̂ − minsϕ̂s) / maxsϕ̂s − minsϕ̂s). Top row of Fig. 2 displays
how on average our method recovers the spatial configuration. The percentile images in the
middle and bottom rows of Fig. 2 show a similar pattern as the average with small
distortions from the true functions (please note the light gray areas). We conclude that the
estimation of the 2D eigenimages is very good.

The total number of the normalized scores ξik in this simulation study was 350,000 for each
k. The left column of Fig. 3 shows the distribution of the true (generated) scores at the top
and the distribution of the corresponding estimated scores at the bottom. We see that the
EBLUPs recover the form of the underlying distributions. The accuracy of EBLUPs can be
seen in the right column of Fig. 3 which shows the distribution of the differences between
true and estimated scores. The top graph displays the boxplots of the differences. The
bottom one shows the medians, 0.5%, 5%, 90% and 99.5% quantiles of the distribution of
the difference. One very noticeable pattern here is the scores corresponding to the
eigenimages with lower variances have larger spread due to a reduced signal to noise ratio.
Results show that the EBLUPs estimate true scores very well.

Fig. 4 shows the boxplots of the estimated eigenvalues. We display the centered and
standardized eigenvalues, (σ ̂k−σk) / σk. The results indicate that eigenvalues are estimated
with essentially no bias.

Application to RAVENS images
In this section we apply our method to the RAVENS images described in Motivating data
section. The RAVENS images are 256 × 256 × 198 dimensional for 352 subjects, each with
two visits roughly five years apart. We analyze visit 1 and visit 2 separately. In addition, to
identify the principal directions of the longitudinal change we consider a difference between
images taken at visit 1 and visit 2. Although the data contains both white and gray matter as
well as CSF, for illustration, the analysis is restricted only to the processed gray matter data.
A small technical concern was of a few artifactual negative values in the data from the
preprocessing. These voxels were removed from the analysis. After processing, the
intersection of non-background voxels across images was collected. Such an intersection
greatly reduced the dimension of the data matrix from ten billion numbers to two billion
numbers divided as three million relevant voxels per subject per visit with seven hundred
and four subject-visits.

Following Motivating data section all calculations were performed in such a way that only
one of the manageable submatrices X ̃m needs to be stored in memory at any given moment.
The data matrix, of size 704 by 3 million, was divided into 100 submatrices of size 704 by
30 thousand (ten million numbers each). Note that on lower-resource computers the only
change would be to reduce the size of submatrices. All calculations repeated for each of the
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three data sets were performed in Matlab 2010a and took around 15 min for each set on a PC
with a quad core i7-2.67 Ghz processor and 6 Gb of RAM memory.

In the analysis, we first estimated the mean by the empirical voxel-specific arithmetic
average. The visit specific mean images are uniform over the template and simply convey
the message that localized changes in morphometry within subgroups get averaged over.
The same is true for the mean of the longitudinal differences. In our eigenimage analysis we
de-mean the data by subtracting out these vectors and work with de-meaned matrix X ̃.

Fig. 5 shows the proportions of morphometric variation explained by the first thirty
eigenimages for visit 1, visit 2, and the longitudinal difference. Cumulatively, the first thirty
eigenimages explain 46.6%, 45.7%, and 52.5% of variation in data for visit 1, visit 2, and
the longitudinal difference, respectively. The way eigenvalues decay on the most right graph
of Fig. 5 is a clear indication that the longitudinal changes can be accurately described by
the first thirty principal components explaining more than half of the longitudinal variation.
Although the number of principal components, N, is usually chosen to explain enough
variation (Di et al., 2008), our primary interest is the first few which identify the regions of
brain exhibiting the most morphometric variation. The pattern of the percentage decrease on
all three graphs of Fig. 5 flattens out after approximately the first ten principal components.
Therefore, we concentrate our analysis on the first ten principal components.

Table 5 provides the cumulative percentages of variability explained by the first ten
eigenimages. For visit 1 (top row) and visit 2 (middle row), they explain roughly the same
amount of observed variation, 30%. For the longitudinal difference (bottom row), they
explain 36.5% of the observed variability.

Top panel of Fig. 6 provides the estimated actual eigenvalues for the eigenimages. Notice,
however, that we are more interested in the relative size of the eigenvalues representing
quantitative measure of variability of the related eigenscores. Bottom panel of Fig. 6 plots
the distributions of the eigenscores corresponding to the first ten eigenimages. In Single
level FPCA section we showed that the estimates of the normalized eigenscores are given by
the right singular vectors of matrix X ̃. Therefore, the estimates of unnormalized eigenscores
can be obtained once we multiply them by the square root of the corresponding eigenvalues
provided in the top panel of Fig. 6. The estimated eigenscores serve as (signed) quantifiers
relating eigenimages to subjects and their RAVENS maps.

As we can see, the distribution of eigenscores in visit 1 and visit 2 are close to each other.
Comparisons of the principal scores versus age are shown in Fig. 7. The results show how
the major directions of volumetric variation are associated with cross-sectional baseline, age
adjusted for height. The scores for the first component, being related to total gray matter
volume simply display the well known decrease in overall volume with age. The final row
displays that, adjusting for height, brain aging is progressive, with greater total volume
declines with age. The other plots display non-significant relationship after having
accounted for baseline height. Thus principal directions of gray matter volumetric variation
appear unrelated to age and aging. The EBLUPs of the scores allow to perform more
rigorous hypothesis testing of a specific scientific conjecture using relevant covariates.

We now discuss overlap of the eigenimages with anatomical regions. Due to space
limitations we discuss and depict only the first three eigenimages. We consider two
independent separations of eigenimages. The first one quantifies the amount of variation of
parcellated regions in template space. The kth eigenimage explains  amount of
variation. Recall, each coordinate of ϕk corresponds to a voxel in template space. Therefore,
if the template is parcellated into R regions, then we can calculate the proportion of the
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variance explained by this particular region within eigenimage ϕk–on a scale from 0 to 1.
Formally, all unfolded voxels {1,…,p} of template space can be regrouped as a union of R
nonoverlapping subsets of voxels {Reg1,…,RegR}, where Regr consists of all region r

voxels. Then eigenimage ϕk(v) can be represented as , where
indicator I{v ε Regr} equals 1 if voxel v belongs to region r and equals 0 otherwise.
Therefore, the variance explained by the kth eigenimage can be further decomposed as

, where non-negative weights . Weights Wkr sum over the
R regions to one and represent the proportions of variance σk explained by the regions. The
second separation of eigenimages takes into account the sign of voxel values. Each
eigenimage ϕk(v) can be split into two parts as , where

 is the positive loading and  is the negative
loading. Note that because of sign invariance of SVD, the separation between positive and
negative loadings is comparable only within an eigenimage. Subject i is loaded on the kth
eigenimage through score ξik. Therefore, subject i total loading can be split into the positive
and negative parts as . In other words, for principal score ξik
negative and positive voxel values correspond to the opposite directions (loadings) of
variation. In our study, the template has been divided into R = 91 regions displayed in Table
5. However, the approach is general and applicable to any parcellation. In Table 2 we
provide the variance explained by the labeled regions of the template for Visit 1. The twenty
five regions with the highest loadings for each of the first three eigenimages are provided.
Tables 1, 2, and 5 give now a way to determine a (signed) quantitative contribution of each
particular region. For instance, the right middle temporal gyrus (130) explains 4.5% of the
variance within eigenimage 1, which in turn explains 12.58% of the total variation. Hence,
the right middle temporal gyrus explains 4.5% 12.58%= 0.57% of the total variation and has
a mostly positive loading within eigenimage 1. Similarly, Tables 3 and 4 provide the
regional quantifications of explained variation for Visit 2 and the longitudinal difference,
respectively.

As we showed in the Introduction section the estimated principal components (eigenimages)
are left singular vectors of matrix X ̃. Each left singular vector is of size p≈3·106 unfolded
voxels. Therefore, each voxel is represented by a small value between negative and positive
one and squares of the voxel values are summed to one. The distribution of the negative and
positive voxel loadings are presented in Fig. 8 in red and blue, respectively. The voxel
values of the estimated eigenimage ϕ̂ = (ϕ̂1,…,ϕ̂p) were transformed as ϕ̂→256·(ϕ̂−minsϕ̂s)/
(maxsϕ̂s−minsϕ̂s) separately for voxels with positive and negative loadings. The transformed
negative and positive loadings overlaid with the template are presented in Figs. 9, 10, and
11. Note that our approach does not incorporate spatial structure or smoothness. In part, this
has been taken into account at the preprocessing step when a 3D Gaussian kernel had been
used to smooth original brain images. However, the found eigenimages obey some regional
boundaries despite the above-mentioned ignorance of spatial relationships. We believe that
it highlights considerable potential of the methods within these settings.

Discussion
In this paper we proved a connection between SVD and FPCA models. This coupling
allowed us to develop efficient model-based computing techniques. The developed approach
was applied to a novel morphometric data set with 704 RAVENS images. Principal
components of morphometric variation were identified and studied. An alternative to our
analysis would be a more formal separation of cross-sectional and longitudinal
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morphometric variation within multilevel functional principal component analysis
framework suggested in Di et al. (2008).

There are a few important limitations in the presented methodology. First, we have not
assumed noise in the model. RAVENS data represent preprocessed and smoothed images.
However, there are a considerable number of studies collecting functional observations
measured with non-ignorable noise. The ideas proposed in Huang et al. (2008) and Eilers et
al. (2006) can be explored to develop a feasible smoothing procedure for spatial principal
components. Another related development could be a rigorous incorporation of 3D spatial
structure.

Our model assumes that the functional data are densely, rather than sparsely, observed. The
issue of sparsity was addressed in Di et al. (2008) and Di and Crainiceanu (2010) for
multilevel models. The proposed efficient solutions were based on smoothing of the
covariance operator which is infeasible for high-dimensional data. Therefore, there is a great
demand in computationally efficient procedures of covariance smoothing in the high
dimensional context.
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Fig. 1.
True grayscale eigenimages.
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Fig. 2.
Grayscale images of the averages (top row), the 5th pointwise percentiles (middle row), and
the 95th pointwise percentiles (bottom row) from the simulation study.
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Fig. 3.
Left panel shows the distribution of the true scores (top) and the estimated scores (bottom).
Right panel shows the boxplots of the difference (ξik−ξ̂ik).Boxplots are given at the top. The
bottom picture shows the medians (black marker), 5% and 95% quantiles (blue markers),
and 0.5% and 99.5% quantiles (red markers). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 4.
Boxplots of normalized estimated eigenvalues, (σ ̂k−σk)/σk. The zero is shown by the solid
black line.
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Fig. 5.
Proportions of morphometric variation explained by the first thirty eigenimages (from left to
right: visit 1, visit 2, and the longitudinal difference).
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Fig. 6.
Normalized distributions of the eigenscores corresponding to the first ten eigenimages (from
left to right: visit 1, visit 2, and the longitudinal difference).
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Fig. 7.
Plots of normalized eigenscores corresponding to the first 5 principal components against
the age of the subjects adjusted for height. First row (visit 1), second row (visit 2), and third
row (longitudinal difference). Red lines show fitted least squares lines adjusted for height.
(For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 8.
Distributions of the intensities of the first three eigenimages (visit 1 (top row), visit 2
(middle row), and the longitudinal difference (bottom row)). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 9.
The first three estimated eigenimages for visit 1. Each eigenimage is represented by eleven
equidistant axial slices. Negative loadings are depicted in red, and positive ones are in blue.
(For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 10.
The first three estimated eigenimages for visit 2. Each eigenimage is represented by eleven
equidistant axial slices. Negative loadings are depicted in red, and positive ones are in blue.
(For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 11.
The first three estimated eigenimages for the longitudinal difference. Each eigenimage is
represented by eleven equidistant axial slices. Negative loadings are depicted in red, and
positive ones are in blue. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Table 5

Labeled regions of the brain template. Abbreviations: PLICICPL = posterior limb of internal capsule including
cerebral peduncle left, PLICICPR = posterior limb of internal capsule including cerebral peduncle right.

1 Medial front-orbital gyrus right

2 Middle frontal gyrus right

3 Lateral ventricle left

4 Insula right

5 Precentral gyrus right

6 Lateral front-orbital gyrus right

7 Cingulate region right

8 Lateral ventricle right

9 Medial frontal gyrus left

10 Superior frontal gyrus right

11 Globus pallidus right

12 Globus pallidus left

14 Putamen left

15 Inferior frontal gyrus left

16 Putamen right

17 Frontal lobe WM right

19 Angular gyrus right

23 Subthalamic nucleus right

25 Nucleus accumbens right

26 Uncus right

27 Cingulate region left

29 Fornix left

30 Frontal lobe WM left

32 Precuneus right

33 Subthalamic nucleus left

34 PLICICPL

35 PLICICPR

36 Hippocampal formation right

37 Inferior occipital gyrus left

38 Superior occipital gyrus right

39 Caudate nucleus left

41 Supramarginal gyrus left

43 Anterior limb of internal capsule left

45 Occipital lobe WM right

50 Middle frontal gyrus left

52 Superior parietal lobule left

53 Caudate nucleus right

54 Cuneus left

56 Precuneus left

57 Parietal lobe WM left
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59 Temporal lobe WM right

60 Supramarginal gyrus right

61 Superior temporal gyrus left

62 Uncus left

63 Middle occipital gyrus right

64 Middle temporal gyrus left

69 Lingual gyrus left

70 Superior frontal gyrus left

72 Nucleus accumbens left

73 Occipital lobe WM left

74 Postcentral gyrus left

75 Inferior frontal gyrus right

80 Precentral gyrus left

83 Temporal lobe WM left

85 Medial front-orbital gyrus left

86 Perirhinal cortex right

88 Superior parietal lobule right

90 Lateral front-orbital gyrus left

92 Perirhinal cortex left

94 Inferior temporal gyrus left

95 Temporal pole left

96 Entorhinal cortex left

97 Inferior occipital gyrus right

98 Superior occipital gyrus left

99 Lateral occipitotemporal gyrus right

100 Entorhinal cortex right

101 Hippocampal formation left

102 Thalamus left

105 Parietal lobe WM right

108 Insula left

110 Postcentral gyrus right

112 Lingual gyrus right

114 Medial frontal gyrus right

118 Amygdala left

119 Medial occipitotemporal gyrus left

128 Anterior limb of internal capsule right

130 Middle temporal gyrus right

132 Occipital pole right

133 Corpus callosum

139 Amygdala right

140 Inferior temporal gyrus right

145 Superior temporal gyrus right

154 Middle occipital gyrus left
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159 Angular gyrus left

165 Medial occipitotemporal gyrus right

175 Cuneus right

196 Lateral occipitotemporal gyrus left

203 Thalamus right

243 Background

251 Occipital pole left

254 Fornix right

255 Subarachnoid cerebro-spinal fluid
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