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Abstract
Background—Prostate cancer is the second leading cause of cancer-related deaths in men,
accounting for over 30,000 deaths annually. The purpose of this study was to test whether
variation in selected candidate genes in biological pathways of interest for prostate cancer
progression could help distinguish patients at higher risk for fatal prostate cancer.

Methods—In this hypothesis-driven study, we genotyped 937 single nucleotide polymorphisms
(SNPs) in 156 candidate genes in a population-based cohort of 1,309 prostate cancer patients. We
identified 22 top-ranking SNPs (P ≤0.01, FDR ≤0.70) associated with prostate cancer-specific
mortality (PCSM). A subsequent validation study was completed in an independent population-
based cohort of 2,875 prostate cancer patients.

Results—Five SNPs were validated (P ≤0.05) as being significantly associated with PCSM, one
each in the LEPR, CRY1, RNASEL, IL4, and ARVCF genes. Compared to patients with 0–2 of the
at-risk genotypes those with 4–5 at-risk genotypes had a 50% (95% CI, 1.2–1.9) higher risk of
PCSM and risk increased with the number of at-risk genotypes carried (Ptrend = 0.001), adjusting
for clinicopathological factors known to influence prognosis.

Conclusion—Five genetic markers were validated to be associated with lethal prostate cancer.
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Impact—This is the first population-based study to demonstrate that germline genetic variants
provide prognostic information for prostate cancer-specific survival. The clinical utility of this
five-SNP panel to stratify patients at higher risk for adverse outcomes should be evaluated.

Keywords
Prostate cancer-specific mortality; survival; genetic variants; single nucleotide polymorphisms;
hazard ratio

Introduction
Prostate cancer accounts for over 200,000 cancer diagnoses each year in the U.S. Although
many men at diagnosis have localized tumors that will remain indolent and slow-growing, a
substantial number have tumors that will become aggressive, leading to over 30,000 prostate
cancer-specific deaths each year in the U.S. (1) Disease features such as Gleason score,
stage and serum prostate-specific antigen (PSA) may help distinguish patients at higher risk
for adverse outcomes, (2–4) however these factors alone do not accurately stratify patients
with indolent versus more aggressive tumors. Biomarkers that could predict which men are
at higher risk for having life-threatening prostate cancer would substantially improve patient
management, targeting aggressive therapy to those most likely to benefit and avoiding over-
treatment of low-risk patients.

Genetic background is known to play a role in the development of prostate cancer, (5–7) and
genetic variants have been associated with risk of more advanced disease (8) (9) or with
biochemical recurrence, (10–12) although these particular SNPs have not been associated
with PCSM. (13–17) Some earlier studies have correlated SNP genotypes with PCSM, (12,
18–24) but results have not been validated. Thus, while evidence suggests genetic
background influences prostate cancer outcomes, validated genetic markers associated with
lethal disease have yet to be characterized.

To search for genetic markers that distinguish high-risk patients for PCSM, we conducted a
hypothesis-driven candidate gene study focused on biological pathways (e.g., steroid
hormones, DNA repair, inflammation, circadian rhythm, vitamin D) for which there is
evidence for a role in modulating prostate cancer progression. Two independent population-
based prostate cancer patient cohorts, one from Seattle and one from Sweden, were studied.
Top-ranking SNPs associated with fatal disease in the Seattle cohort (P ≤0.01) were
subsequently genotyped in the Swedish cohort for validation. The results reported here are
the first to validate a panel of five SNPs in five genes that provide prognostic information at
diagnosis for risk stratification of patients with prostate cancer.

Materials and Methods
Study Subjects

Seattle Patient Cohort—The Seattle cohort was established from two population-based
case-control studies of prostate cancer in King County, Washington. (25, 26) In the first
study, cases were diagnosed between January 1, 1993, and December 31, 1996 and were 40–
64 years of age at diagnosis. In the second study, cases were diagnosed between January 1,
2002, and December 31, 2005 and were 35–74 years of age at diagnosis. Overall, 2,244
eligible patients were identified and 1,754 (78%) were interviewed. Blood samples were
drawn from 1,457 (83%) interviewed patients.

The current study includes 1,309 Caucasian patients with DNA available. These cases had
confirmed adenocarcinoma of the prostate and were ascertained from the Seattle-Puget
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Sound SEER cancer registry, which provided information on Gleason score, (27) cancer
stage at diagnosis, (28) diagnostic PSA level and primary therapy. (29) Vital status and
underlying cause of death were also obtained through the cancer registry, which links
quarterly to the Washington State Center for Health Statistics database. Underlying cause of
death was coded according to the International Classification of Diseases (30). A total of 60
patients died of prostate cancer over an average follow-up period of 8.5 years (range 0.8 –
15.9 years); vital status for this analysis was determined as of January 2009.

The study was approved by the Institutional Review Board (IRB) of the Fred Hutchinson
Cancer Research Center and written informed consent was obtained from all study
participants. Genotyping was approved by the IRB of the National Human Genome
Research Institute where genotyping was completed for the Seattle cohort.

Swedish Patient Cohort—The validation cohort is comprised of patients enrolled in
Cancer of the Prostate in Sweden (CAPS), a population-based study. (31) Cases were
recruited from four regions in Sweden through Regional Oncology Centers between July
2001 and October 2003. A total of 3,648 eligible patients were identified, 3,161 (87%)
participated and blood samples were obtained from 2,893 (92%). For the current study,
2,875 patients of European descent had DNA available for genotyping. Information on
clinicopathological factors was obtained from the National Prostate Cancer Register, (32)
including Gleason score, stage, diagnostic PSA level and initial treatment. Follow-up for
mortality as of June 2009 was based on record linkage to the Swedish Cause of Death
Register. (33) Prostate cancer was confirmed as the underlying cause of death (30) in 501
patients.

Written informed consent was obtained from all study participants. The research ethics
committees at the Karolinska Institutet and Umeå University Hospital approved the study.

Genotyping
A total of 937 SNPs primarily from candidate genes in biological pathways of interest for
prostate cancer (e.g., steroid hormones, inflammation, growth factors, DNA repair, circadian
clock, vitamin D) were genotyped in the Seattle cohort. Most SNPs were selected using the
Genome Variation Server (34); a tagSNP approach based on the HapMap CEU population
was utilized to select variants with a minor allele frequency (MAF) of ≥5% and an r2 ≥0.8.
Priority was given to selection of nonsynonymous SNPs, followed by tagSNPs and SNPs
previously reported to be associated with prostate cancer. For genotyping, the SNPlex
Genotyping System (Applied Biosystems, Inc., Foster City, CA) was used with GeneMapper
software to assign genotypes. Replicate samples (n = 140) were interspersed throughout all
genotyping batches. Genotyping scores, including quality control data, were re-checked by
different laboratory personnel to confirm the accuracy of each assay. Ninety-one SNPs were
removed due to genotyping failure (n = 58), monomorphism (n = 27), or a low MAF (n = 6).
The remaining 846 SNPs (Supplemental Table 1) were used for permutation testing to
identify variants associated with PCSM.

Twenty-two SNPs were found to be significantly associated with PCSM in the Seattle
cohort. For these SNPs, call rates were >95% and there was >98% agreement between
duplicate samples. In addition, all 22 SNPs were in Hardy-Weinberg equilibrium (P >0.05)
in 1,266 genotyped Caucasian controls who were age-matched to the Seattle patient cohort.

The 22 top ranking SNPs discovered in the Seattle cohort were then genotyped in the
validation cohort. The MassARRAY iPLEX system (Sequenom, Inc., San Diego, CA) was
used to genotype samples at Wake Forest University. Duplicate samples (n = 106) and two
negative controls that were blinded to the laboratory technician were included in each 96-
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well plate. The overall concordance level for 20 of the 22 SNPs was 99.9% among
duplicated samples. Two SNPs (rs228697 and rs1029153) failed genotyping.

Statistical Analyses
SNP Selection by Permutation Testing—Six Cox regression models (three adjusting
for age at diagnosis alone and three adjusting for age in addition to stage, Gleason score,
diagnostic PSA, and primary treatment) were completed under dominant, recessive and log-
additive (linear trend) genetic models. One-thousand permutation datasets were generated by
randomly permuting all 846 SNPs together across subjects while keeping the clinical
variables fixed, i.e., the clinical variables were retained with each subject and not permuted,
and the same six Cox models were run for each permuted dataset to obtain the distribution
of P-values under the null hypothesis of no SNP effect. False Discovery Rates (FDR, q
value) (35) were calculated based on the distribution of permutation P-values and the
observed P-values. This approach is the same as that of Morris and coworkers. (36) Using an
a priori determined threshold of P ≤0.01 from the original data to select the top ranked
SNPs, a total of 22 SNPs associated with PCSM were selected for validation. For these top
ranking 22 SNPs, the FDR ranged from 0.26 to 0.70, which we deemed acceptable due to
the affordable cost of genotyping in the validation cohort and the desire to not miss
potentially informative SNPs for validation.

Cox Models—The hazard ratio (HR), 95% confidence interval (CI) and P-value were
obtained for each of the 22 top ranked SNPs (Seattle cohort) under the best-fitting genetic
model for each SNP. Cox models using the same underlying best-fitting genetic model from
the Seattle cohort, but allowing for three sets of covariates (i.e., 1) age at diagnosis; 2) age at
diagnosis, Gleason score, stage, and diagnostic PSA level; and 3) age at diagnosis, Gleason
score, stage, diagnostic PSA level and initial treatment), were completed for each of the 20
SNPs genotyped in the Swedish cohort; a SNP was judged to be validated if the P-value
from one of the three models was ≤0.05 (one-sided test) and the effect on mortality risk was
in the same direction as in the Seattle dataset. HRs for the cumulative number of at-risk
genotypes were calculated by Cox models adjusted for age alone and for age plus the four
clinicopathological factors. The grouping by number of at-risk genotypes was done to ensure
that each group had an expected number of at least five fatal events based on the Seattle
cohort. The same grouping of at-risk genotypes (i.e., 0–2, 3, 4, or 5) was used to generate
Kaplan-Meier (K–M) curves. A backward stepwise Cox model (adjusted for age and the
four clinicopathological factors) was used to rank validated SNPs by level of statistical
significance. SNP by SNP interactions were also examined, and an interaction was
considered significant if the P-value associated with the HR was <0.001 (Bonferroni
adjustment, P ≤0.05).

Results
Characteristics of the two patient cohorts are shown in Table 1. Patients in the Seattle cohort
were younger at diagnosis than those in the Swedish cohort (mean age at diagnosis 59.9
versus 65.8 years, respectively, P <0.0001). A higher proportion of patients from Sweden
(17.4%) had died of prostate cancer relative to those from Seattle (4.6%) during a median
follow-up time of 6.5 years in each cohort. This is consistent with the higher prostate cancer
mortality rate in Sweden relative to the U.S. (37) The Swedish population also had a greater
proportion of cases with advanced clinicopathological features and who were treated with
androgen deprivation therapy.

Permutation testing on 846 SNPs revealed 22 variants that were significantly (P ≤0.01)
associated with PCSM in the Seattle cohort (Table 2). Genotyping data validated SNP
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rs1137100 minor allele G as being associated with a decrease in PCSM (HR = 0.82; 95% CI,
0.67–1.00; P =0.027) in the Swedish cohort under the same dominant genetic model
adjusted for the same covariates as in the Seattle dataset. Also under the same dominant
genetic model as used in the analysis of the Seattle dataset, but allowing for different
covariates, four additional SNPs were validated as being significantly associated with PCSM
in the Swedish cohort: rs627839 (P =0.024), rs2070874 (P =0.011), rs10778534 (P =0.022),
and rs5993891 (P =0.024).

Hazard ratios were then calculated according to cumulative number of at-risk genotypes. As
shown in Table 3 for the Swedish cohort, compared to men with 0–2 at-risk SNP genotypes,
those with four (HR = 1.51; 95% CI, 1.16–1.97) or five (HR = 1.46; 95% CI, 0.97–2.19) at-
risk genotypes had approximately a 50% higher risk of dying from prostate cancer, after
adjustment for age and clinicopathological factors. In these analyses, the HRs increased
directly with the cumulative number of at-risk genotypes (Ptrend =0.0005, adjusting for age
only, and =0.001 adjusting also for clinicopathological factors). The proportion of all
patients carrying four (28%) or five (6%) at-risk alleles was similar in both cohorts.

K–M curves were constructed according to the number of at-risk genotypes in each cohort
(Figure 1). As shown, compared to patients with 0–2 at-risk genotypes, those with all five
at-risk SNP genotypes had the lowest prostate cancer-specific survival in both the Seattle (P
<0.001) and the Swedish (P =0.004) cohorts.

Stepwise backward selection Cox models were completed to evaluate the relative ranking of
the five SNP genotypes in relation to PCSM. Based on models adjusted for age at diagnosis
and the four clinicopathological variables, the most significant SNP in the Seattle dataset
was rs1137100 (P =0.001) in the LEPR gene and in the Swedish dataset was rs10778534 (P
=0.045) in the CRY1 gene.

Lastly, we tested the five genetic variants for SNP by SNP interactions. No evidence for
significant interaction between these markers was found (all P-values >0.001).

Discussion
Prostate cancer is a heterogeneous disease and current clinical and pathological features are
not reliably accurate for predicting individual patient outcomes. (38, 39) The ability to
distinguish patients at elevated risk for having aggressive, life-threatening prostate cancer at
the time of diagnosis could improve care for the subset of cases most likely to benefit from
aggressive therapy and help avoid over-treatment of patients whose tumors are likely to
remain indolent. Better biomarkers that can stratify patients according to tumor
aggressiveness are urgently needed. Thus, we undertook a hypothesis-testing candidate gene
approach to identify and validate genetic variants as prognostic markers for fatal prostate
cancer.

The current study was developed based on the notion that the genetic background upon
which cancer develops likely modulates tumor growth rate and propensity to metastasize as
well as treatment response. This idea is consistent with results from animal models that
demonstrate that genetic background influences cancer progression and metastatic potential.
(40, 41) Further support comes from a recent study of squamous cell skin cancer in humans
that showed somatic events in tumors can depend on an individual’s germline genotype. (42)

We and others (43) have hypothesized that inherited predisposition influences prostate
cancer progression. Variants in several candidate genes, including MIC-1, (18) SEP15, (21)
VDR, CYP27B1,and CYP24A1, (22) TLR-9, (19) Megalin, (20) CYP17, (23) and FASN, (24)
and two risk-loci (19q13 and 11q13) (12) have previously been associated with PCSM in
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individual studies, although results have not been validated in independent cohorts. More
recently, a GWAS of 196 patients with either metastasis or PCSM found no genome-wide
significant results, but one intergenic SNP was replicated (P =0.05) in a highly selected case
series. (44) In the present study we investigated a subset of these same candidate gene
variants, though none was among our top ranked 22 SNPs.

A nonsynonymous coding SNP (rs1137100) in exon 4 of the leptin receptor (LEPR) gene
was validated as the strongest marker associated with PCSM in our study. LEPR is a
cytokine receptor that is highly expressed in normal and malignant prostate tissue. (45) The
binding of leptin to its receptor, LEPR, leads to several downstream effects that may affect
prostate carcinogenesis, including stimulation of tissue growth, (46) inflammation, (47)
angiogenesis, (48) and bone mass regulation. (49) The latter effect makes LEPR an
interesting candidate for disease progression, (50) since the primary metastatic site for
prostate cancer is the bone and bony metastases are predictive of fatal prostate cancer. (51–
53)

The other SNPs significantly associated with survival in our study include rs627839, which
tags the RNASEL gene within the hereditary prostate cancer 1 (HPC1) locus. (54) A role in
prostate cancer has been suggested through the protein’s ability to increase apoptosis and
inhibit inflammation, cell proliferation and adhesion. (55, 56) Of the five genes highlighted
here, this is the only one previously evaluated in a study of prostate cancer that found no
mortality association. (57) Variant rs2070874 is in the promoter region of Interleukin 4
(IL4), which plays a role in cancer via activation of the Stat6 transcription factor. (58)
Studies have shown that IL4 inhibits tumor growth (59–62) and angiogenesis, (63) and
prevents invasion and migration of colon cancer cells. (64) Of note, rs2070874 is in perfect
LD with rs2243250, a promoter variant for which the minor allele confers diminished IL4
expression. (65) SNP rs10778354 tags the Cryptochrome 1 (CRY1) gene in the circadian
rhythm pathway. (66–68) Circadian clock genes regulate androgen levels, (69) which are
known to affect prostate cancer progression, (70) and may also function as tumor
suppressors through regulation of cell proliferation, apoptosis and response to DNA damage.
(71) Finally, rs5993891 is located in the ARVCF gene, a member of the p120catenin family
of proteins. Increased expression of ARVCF has been shown to disrupt cell adhesion, (72)
which may facilitate cancer progression. This SNP also tags the COMT gene, which encodes
a protein that neutralizes the genotoxic effects of catechol estrogens. (73, 74)

The five validated SNPs highlighted above represent the first evidence for this panel of
genetic variants being associated with prostate cancer mortality. Two variants (rs228697 in
PER3 and rs1029153 in CXCL12) associated with PCSM in the Seattle cohort were not
evaluated in the Swedish cohort due to genotyping failure. Thus, additional investigation of
these variants is warranted. Strengths of this project include the population-based patient
cohorts, the discovery-validation study design, the large number of patients and outcomes in
the validation cohort, and the hypothesis-driven approach focused on genes in biological
pathways of interest. One potential concern relates to the sample size in the discovery
cohort, which may have missed additional SNP associations due to limited power. The
smaller size of the Seattle cohort and regression to the mean likely explain the reduced HRs
associated with the five SNP genotypes observed in the Swedish cohort relative to the
Seattle cohort. Another potential issue is the difference in clinicopathological factors
between the two cohorts. To accommodate these dissimilar features, adjustment covariates
were allowed to vary in the Cox models, although this does potentially lead to multiplicity
and false positives. It would be important to confirm our findings in a U.S. cohort with
similar clinical features to those of the Seattle cohort so that covariate models could be fixed
for validation. The focus on fatal events reduces potential bias related to different screening
practices between the two cohorts that likely account for the differing clinical
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characteristics. Interestingly, the proportion of patients carrying 4 or 5 of the at-risk
genotypes was similar in the two cohorts. Because Gleason score and stage are strong
predictors of PCSM, adjustment for these factors in multivariate models is important even
though it may diminish the magnitude of the SNP-PCSM associations.

In conclusion, our study provides initial validation for five germline genetic variants that are
associated with lethal prostate cancer outcomes. Three of these polymorphisms (rs1137100,
rs2070874, rs10778534) were significantly associated with PCSM in multivariate models
that included the traditional clinical factors (i.e., Gleason score, stage) used to predict
outcomes, suggesting that these variants contribute independent data beyond the standard
prognostic variables. Two other SNPs (rs627839, rs5993891) were validated to be
associated with PCSM in models that adjusted for age at diagnosis alone. There was also
preliminary evidence for a dose-response effect according to the number of at-risk
genotypes carried. A validation study of this five-SNP panel for stratification of patients at
the time of diagnosis into those at higher risk for adverse outcomes is urgently needed.
Understanding the individual prostate cancer patient’s risk for progression to lethal disease
will allow more informed counseling of patients regarding therapy options, follow-up plans,
and approaches for secondary prevention. Such high-risk patients should benefit most from
early aggressive therapy and be ideal candidates for novel adjuvant treatment trials aimed at
improving patient survival.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Kaplan-Meier curves for prostate cancer-specific survival by number of at-risk genotypes
for a 5-SNP panel in the Seattle cohort (panel A) and the Swedish cohort (panel B).
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Table 1

Clinicopathological Characteristics of Two Population-based Prostate Cancer Patient Cohorts

Seattle Cohort (N=1,309) Swedish Cohort (N=2,875)

N % N %

Age at diagnosis, years

    Mean 59.9 65.8

    Median 60.0 64.9

    Range 35.0 – 74.0 44.6 – 80.4

Follow-up time, years

    Mean 8.5 6.0

    Median 6.5 6.5

    Range 0.8 – 15.9 0.3 – 8.6

Prostate cancer-specific death

    No1 1,249 95.4 2,374 82.6

    Yes 60 4.6 501 17.4

Age at death, years

    Mean 63.9 71.2

    Median 65.2 71.2

    Range 44.9–78.3 48.5–85.7

Stage

    Local 1,023 78.2 1,885 65.6

    Regional 254 19.4 651 22.6

    Distant 32 2.4 266 9.3

    Missing 0 0.0 73 2.5

Gleason score

    2 – 4 67 5.1 106 3.7

    5 – 6 680 51.9 1,269 44.1

    7 432 33.0 782 27.2

    8 – 10 126 9.6 467 16.2

    Missing 4 0.3 251 8.7

Diagnostic PSA level, ng/mL

    < 4 178 13.6 148 5.1

    4 – 9.9 722 55.2 993 34.5

    10 – 19.9 191 14.6 651 22.6

    ≥ 20 118 9.0 1,003 34.9

    Missing 100 7.6 80 2.8

Primary therapy

    Radical prostatectomy 770 58.8 713 24.8

    Radiation therapy 359 27.4 682 23.7

    Androgen deprivation 61 4.7 927 32.2
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Seattle Cohort (N=1,309) Swedish Cohort (N=2,875)

N % N %

    None 115 8.8 488 17.0

    Other 4 0.3 22 0.8

    Missing 0 0.0 43 1.5

1
Includes men who died of other causes and were censored at time of death (Seattle, n=102; Sweden, n=258)
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