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Chromosomal Haplotypes by Genetic
Phasing of Human Families

Jared C. Roach,1,* Gustavo Glusman,1 Robert Hubley,1 Stephen Z. Montsaroff,1 Alisha K. Holloway,2

Denise E. Mauldin,1 Deepak Srivastava,2 Vidu Garg,3 Katherine S. Pollard,2 David J. Galas,1,4

Leroy Hood,1,4 and Arian F.A. Smit1

Assignment of alleles to haplotypes for nearly all the variants on all chromosomes can be performed by genetic analysis of a nuclear

family with three ormore children.Whole-genome sequence data enable deterministic phasing of nearly all sequenced alleles by permit-

ting assignment of recombinations to precise chromosomal positions and specific meioses. We demonstrate this process of genetic

phasing on two families each with four children. We generate haplotypes for all of the children and their parents; these haplotypes

span all genotyped positions, including rare variants. Misassignments of phase between variants (switch errors) are nearly absent.

Our algorithm can also produce multimegabase haplotypes for nuclear families with just two children and can handle families with

missing individuals. We implement our algorithm in a suite of software scripts (Haploscribe). Haplotypes and family genome sequences

will become increasingly important for personalized medicine and for fundamental biology.
Introduction

Combinations of genetic variants occurring on the same

DNA molecule are known as haplotypes. Each gene in

the diploid genome has two sequences, one on each haplo-

type. Because of genetic variation, each of the two

sequences of a gene could determine distinct biological

functions for its gene products.1,2 Consequences can

include recessive disease due to compound heterozygosity

and alterations in expression level or allelic exclusion of

gene products due to phasing of promoter or enhancer

variants with respect to coding variants. The combination

of two or more variants on a haplotype could alter the

splicing, stability, transport, and translation of mRNA or

could code for sets of amino acids that together alter

protein properties such as stability, enzymatic activity,

and binding constants. The importance of haplotypes

extends beyond protein-coding sequences. For example,

they could affect sites of epigenetic modification. In turn,

epigenetic phenomena such as lyonization3 could exacer-

bate perturbations due to phase by causing one haplotype

to be preferentially expressed.

Most documented examples of the importance of haplo-

types are for local haplotypes that span no more than a

single gene, but the very important MHC haplotypes are

a notable exception.4 However, blocks of genes on the

same chromosome that work together in functional

networks could alter the function of those networks based

on the phasing of the transcripts for each gene in the

network. Information encoded in each chromosomemole-

cule controls its folding, interaction with the nuclear

proteins, and recombination with its homolog.5 The

sequences encoding this information are poorly under-
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stood, in part because full haplotypes spanning entire

chromosomes would be critical to a full understanding.

Such chromosome-spanning haplotypes have never before

been available. Many different haplotypes occur in the

human population. Because of recombination and muta-

tion, the haplotype of each chromosome of every indi-

vidual is different from all others, with the exception of

some chromosomes shared by identical twins. Therefore,

haplotypes that include rare alleles and span entire chro-

mosomes, or large portions of them, will play an increas-

ingly important role in understanding biology, health,

and disease.

There are three general strategies for deriving haplo-

types: (1) population inference, (2) molecular haplotyping,

and (3) genetic analysis.6 Population inference assigns,

where possible, haplotypes from a database to an individ-

ual’s genome and then might infer haplotypes on the

homologous chromosomes by exclusion. Generation of

the database and assignment of haplotypes might be

done simultaneously and iteratively on a number of haplo-

types. Molecular haplotyping begins by isolating single

molecules or populations of identical molecules of DNA

by cloning, molecular biology, or physical manipulation.

Each molecule is then partially or completely sequenced,

and all resulting variants are determined to be in a cis rela-

tionship. Genetic analysis infers haplotypes by applying

principles of genetic inheritance to genotype data in the

context of a pedigree. If overlapping haplotypes derived

from any of these three strategies are sufficiently character-

istic, longer haplotypes can be generated by tiling, or

haplotype assembly.7 For example, in the early stages of

the Human Genome Project, molecular haplotyping was

performed by sequencing isolated clones followed by
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haplotype assembly to produce haplotypes spanning

many hundred kilobases.8

Molecular haplotyping is currently limited because most

techniques can only provide a sequence from short mole-

cules, whereas other techniques that can be applied to

long molecules cannot provide a sequence for all variants.

Some new techniques show promise for large-scale

phasing. Kitzman et al.9 achieved haplotype blocks of

approximately 350 kb by employing a strategy of pooling

fosmid libraries. Fan et al.10 dispersed intact chromosomes

from a single cell and phased almost 90% of a panel of

~970,000 SNPs. Fan et al.10 also haplotyped rare SNVs

on a portion of chromosome 6. These techniques could

be improved, particularly if their development can be

driven with reference to fully determined chromosomal

haplotypes.

Current whole-genome sequences do not directly

produce full-chromosome haplotype information because

they are based on short molecular reads. Even in the

context of the pairwise end-sequencing strategy, many

read pairs do not span more than a single variant, and

the remaining reads provide only meager grist for haplo-

type assembly. However, despite this apparent inadequacy,

we demonstrate here that whole-genome sequences in the

context of pedigrees can generate complete chromosomal

haplotypes.

Whole-genome sequencing is required to generate these

complete chromosomal haplotypes because it is the only

approach that assays all alleles, including rare alleles such

as those arising by de novomutation in recent generations.

We present here an algorithm for phasing by genetic anal-

ysis and apply it to two nuclear-family pedigrees. Our

derived haplotypes span entire chromosomes, are nearly

100% accurate, and will be suitable for use in medical diag-

nostics. Our method can serve as a gold standard for other

approaches to phasing. The comprehensiveness is limited

mostly by the completeness of sequencing data. Therefore,

as whole-genome sequencing methods become increas-

ingly comprehensive, so will the haplotypes determined

with our algorithm. For families with at least two children,

all genomes in the pedigree can be phased, including

parental genomes. Families with more than two children

provide sufficient information to allow assignment of

nearly all recombinations to specific meioses, as recently

hypothesized.11 The implementation of our algorithm,

Haploscribe, brings a powerful approach to chromosomal

haplotype specification that will open up new possibilities

for exploring the functional implications of the phasing of

various types of chromosomal variants across short to large

chromosomal spans.
Subjects and Methods

Overview of Workflow
If the parental origin of both alleles of the variants of a chromo-

some were known, then the phase of those variants would also
The American
be known, as all the variants from one parent reside on one haplo-

type, and all the variants from the other parent reside on the other

haplotype. Knowing the result of every meiosis in every individual

in a pedigree would provide this parental origin information.

Every allele in each founder can be traced forward through the

pedigree through every descendant as if it were an informational

packet flowing through a series of binary switches following

Mendel’s Law of Segregation. The status of each of these switches

at a given position of the pedigree is encoded in algorithms as

meiosis-indicator vectors.12 Under this analogy, the packets of

allele information also flow through splitters to allow the same

allele to be distributed to more than one child of a parent. Each

bit in these binary meiosis-indicator vectors corresponds to the

parental origin (either maternal or paternal) of each allele in every

gamete. Each nonfounder (i.e., child) is the product of two

gametes, so each meiosis-indicator vector has two positions for

every nonfounder. For example, the pedigrees in Figure 1 each

have four nonfounders, so the meiosis-indicator vectors for these

pedigrees are eight-bit vectors. Our algorithm determines meiosis-

indicator vectors at every position of the reference genome.Where

this is not possible, such as in short blocks encompassed by the

confidence intervals for assignment of recombination positions,

the algorithm determines as many bits of the meiosis-indicator

vector as possible and leaves the remaining bits ambiguous.

Following an arbitrary convention, we use the label 0 to indicate

paternal origin in meiosis-indicator vectors, and 1 to indicate

maternal origin.With the exception of sex chromosomes inmales,

the parental origin of the haplotypes of the founders cannot be

known from genetic data alone. Therefore, for autosomes assign-

ment of the labels 0 and 1 is arbitrary in founders, and any packet

of allele information that flows through the pedigree from a partic-

ular founder can have all of its bits flipped without changing the

information contained in the meiosis-indicator vectors, as long

as all the bits are also flipped for the other allele of that founder.

If the number of nonfounders is n, and the number of founders

is f, then from an informational standpoint the number of distinct

meiosis-indicator vectors is 22n/2f. Each informationally distinct

meiosis-indicator vector is an inheritance state.13 For a nuclear

family of four, there are four inheritance states.14 For a nuclear

sextet, there are sixty-four inheritance states.

Genetic analysis is effective for determining the inheritance

state for nearly all segments of a reference genome.14 Because of

genetic linkage, the inheritance states of adjacent positions in a

pedigree are nearly certain to be identical. For example, in a family

quartet, the inheritance state will change between two positions

only if there has been a recombination between those positions

in one of the four meioses of the pedigree. If a recombination

occurs once every hundred megabases per meiosis (approximately

a Morgan), then an inheritance-state block will average 25 Mb.

Variants in whole-genome sequencing of quartets occur about

one per kilobase, so blocks contain an average of about 25,000

variants. Pattern recognition in the aggregate of all the variants

in a block nearly always uniquely determines the inheritance state

of that block. Boundaries between blocks can be precisely estab-

lished to within the boundaries set by a few variants (and thus

to within a few kilobases) because of the characteristic patterns

of these variants.

The assignment of indicator labels to founder alleles is arbitrary

but must be consistent across the entire length of each chromo-

some. Therefore, the inheritance states of all blocks on a chromo-

some for the pedigree can be converted to meiosis-indicator

vectors by setting the assignment of allele labels in those blocks
Journal of Human Genetics 89, 382–397, September 9, 2011 383
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Figure 1. Sextet Pedigrees and Representation of Inheritance
States
(A) Pedigree A and (B) pedigree B (CEPH 1463). Genomes for only
the individuals in generations II and III were used for genetic
phasing (nuclear-family sextets). The displayed grandparents in
generation I of pedigrees A and B have been sequenced, but the
data were not used for haplotyping. Grandparental data were
used to confirm the phasing of haplotyping for the nuclear fami-
lies composed by generations II and III.
(C) Inheritance states are represented by binary vectors indicating
the result of Mendel’s first law of segregation at a given aligned
position of all the genomes in a pedigree. For example, at this
hypothetical tetra-allelic position, the first child has received the
first allele from the first parent and the first allele from the second
parent; these are indicated as ‘‘00.’’ The other children receive the
other alleles, indicated as ‘‘11.’’ Combined, the binary inheritance-
state vector for this pedigree at this position is ‘‘00111111.’’
Because the labeling of the parental genotypes is arbitrary, the first
two bits in a two-generation nuclear-family inheritance-state
vector can always be set to 0. Most variant positions in the genome
are biallelic, and so inheritance state must be deduced from sets of
adjacent variants.
consistently with the arbitrary labeling of the first block. This

assignment is performed under the parsimonious assumption

that only one (or very few) recombinations occur between blocks.

The resultingmeiosis-indicator vectors can be used to phase nearly

every position for which data are available. The more children per

generation, the more likely the parsimony assumption holds, and

therefore the more likely it is that adjacent blocks will be properly

phased with respect to each other.

Phasing a position requires assigning an observed allele (e.g., A,

G, C, T, or D) to each of the indicators (0 or 1) in a founder and

then using themeiosis-indicator vectors to trace the allele through

the pedigree. As long as at least one individual in the pedigree is

homozygous at a position, then allele assignment in that indi-

vidual is trivial, and assignment in all other individuals in the

pedigree follows by iterative exclusion of previously assigned

alleles. Therefore, the only positions that cannot be phased are

positions at which every individual in the pedigree is heterozy-

gous for the same two alleles (e.g., all six individuals in a sextet

have the T/G genotype). Such positions are rare in large pedigrees

and furthermore could often not be ‘‘true’’ heterozygous positions

but rather reflect mapping of variant copies of repetitive DNA to

one locus. The larger a pedigree, the less likely it is that all individ-

uals will be truly heterozygous at any reference position, and the

resulting haplotypes will be more complete.

In the implementation of our algorithm presented here, we first

compute recombinations and blocks in all family quartets,

including overlapping quartets, and assign one of the four quartet

inheritance states to each block. We then build inheritance states

for the entire nuclear family from the intersections of all quartet

blocks, reconciling any conflicts and preserving any ambiguities.

In nuclear families withmore than two children, such as the sextet

examples presented here, this process also permits phasing of adja-

cent blocks with respect to each other. Meiosis-indicator vectors

are then determined by choosing parsimonious labelings of
384 The American Journal of Human Genetics 89, 382–397, Septemb
founder haplotypes, and haplotypes are determined by matching

alleles to meiosis indicators.

Pedigrees
We present data from two sextets (pedigrees A and B) to provide

example applications of our algorithm (Figures 1A and 1B).

Pedigree A is part of a clinical study; data are not available because

of preclusions in human subjects protocols. This study was per-

formed under the Western Institutional Review Board’s protocol

number 20100003. Procedures followed were in accordance with

institutional and national ethical standards of human experimen-

tation. Proper informed consent was obtained. Pedigree B is

Centre d’Etude du Polymorphisme Humain (CEPH) pedigree

number 1463 and is described by Coriell (Web Resources) with

whole-genome sequence data available from Complete Genomics

Incorporated (CGI) (Web Resources). CEPH labels for the individ-

uals in pedigree B are, in order: 12889, 12890, 12891, 12892,

12887, 12878, 12885, 12886, 12887, and 12893 (Figure 1B).

Genotype Sequence Generation
Generation of genotypes is also known as diploid genome

sequencing or whole-genome resequencing, and more succinctly if

less accurately as ‘‘whole-genome sequencing.’’ For pedigree A, we

contractedwithCGI to sequence thegenomesof these sevenindivid-

uals. These data had 21,891 Mendelian inheritance errors (MIEs)

across the sextet pedigree among 3,143,886 SNV positions variant

in at least one individual along the 2,684,578,480 autosomal bases

of the Genome Reference Consortium’s reference genome GRCh37

also known as hg19. Of all sporadic errors, four out of six will occur

in one of the four children, so the per-genome sporadic genotype

error ratio is 2.0 3 10�6. The fraction of the reference genome that

was fully called for the individuals of pedigree A ranged from 93.6

to 96.9%. Data for pedigree B were obtained from the CGI website.

Our algorithm is able to phase all variants that are mapped to

particular positions on a linear reference chromosome. Such vari-

ants include SNVs, insertions, deletions, and microsatellites. How-

ever, assignment of identical-by-descent (IBD) status between

pairs of individuals at sites of complex indels requires specialized

algorithms. Errors in phasing indels and microsatellites are more

likely to arise from uncertainty in mapping these variants to the

reference than they are from a failure of the haplotyping algo-

rithm. For this reason, SNVs are superior to indels for the purpose

of benchmarking haplotyping algorithms.

Compressions
Many loci in raw genome data that are heterozygous in all family

members and thus appear to be unphaseable are not truly hetero-

zygous—they reside in repetitive DNA, such as copy-number

variations or compression blocks. Compression blocks are regions

of the human reference sequence that represent more than one

portion of the actual human genome. For example, a duplication

present in all humans but represented only once in the reference is

a compression. Compressions were identified as regions of excess

heterozygosity in multiple pedigrees with unrelated founders.

Positions within compression blocks were filtered prior to further

analysis. We excluded positions from 57 compression blocks

encompassing 2946 kb of the reference genome.

De Novo Mutations and Genotyping Errors
De novo mutations and genotyping errors were identified, inso-

much as data allowed, and filtered prior to further analysis. MIEs
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(including de novo mutations) and inheritance-state consistency

errors were identified as described previously.14 Multiple indepen-

dent coverages of a haplotype from sequencing several siblings

enables error correction. For example, in blocks where all four

children are genetically identical, a single allele error in one child

could be corrected to the value observed in the other three chil-

dren. However, to maximally protect our algorithms from noise

that might result from incorrect error correction, we did not apply

such corrections to our workflow—we simply filtered all detected

mutations and errors by excluding data from these positions

from all individuals in the pedigree.
Quartet Inheritance States
Inheritance states were determined for all pairs of children with

respect to the two parents as described previously.14 A hidden

Markov model (HMM) algorithm predicted one of four states:

identical, haploidentical maternal, haploidentical paternal, or

nonidentical. To reduce noise, we prefiltered positions that are

heterozygous in all individuals. Such positions are likely to arise

from mapping errors associated with repeats, copy number varia-

tions, or unrecognized compressions. Partially called positions

were also prefiltered. Such positions are more likely to contain

errors than fully called positions. Aggressive filtering of variants

reduces false-state transitions that might otherwise result from

application of the HMM. Postprocessing of inheritance states

further suppresses false blocks reported by the HMM. Postprocess-

ing eliminates short states with atypical emission distributions

such as could arise from hemizygous inheritance patterns.

The binary representations of the four inheritance states are:

‘‘0000,’’ ‘‘0001,’’ ‘‘0010,’’ and ‘‘0011.’’ The first position in each

binary-state representation specifies the origin of the paternal

allele of the first child. The second position specifies the origin

of the maternal allele of the first child. The third position specifies

the origin of the paternal allele of the second child. The fourth

position specifies the origin of the maternal allele of the second

child. For example, ‘‘0010’’ indicates that the first child received

one allele from the first chromosome of their father and the other

allele from the first chromosome of their mother and that the

second child received one allele from the second chromosome of

their father and one from the first chromosome of their mother.

In the absence of grandparental data, which are excluded by

definition from quartet analysis, labeling of the parental chromo-

somes as ‘‘first’’ or ‘‘second’’ is arbitrary. Therefore, the inheritance

state that might be represented as ‘‘1001’’ could just as well be

written as ‘‘0011’’ by switching the labels of the paternal chromo-

somes. We canonically record binary representations of inheri-

tance states as the lowest binary number that can be achieved

by switching labels of one or both of the two sets of parental chro-

mosomes. Therefore, the first two digits in a binary representation

of an inheritance state are always 0.
Partial Quartet Inheritance States
Each position is assigned the state traversed by the most probable

Viterbi path through the HMM at that position. Thus, positions

that separate two high-confidence inheritance-state blocks and

that are consistent with both blocks will be assigned to one or

the other block. If these potential misassignments were not de-

tected, inheritance-state errors could occur because of inaccurate

block boundaries. In a postprocessing step, these uncertain posi-

tions are removed from the edges of adjoining states, chewing

back the edges of states until an informative position is reached.
The American
As a result, not all positions in the genome are assigned to a

high-confidence, fully determined quartet state. For example, in

the first family presented here, only 98.2% of the reference

genome is assigned to a high-confidence fully determined quartet

state. Much but not all of the remaining 1.8% of the reference

genome lies in reference gap positions.

For a given pair of children, portions of the genome between

two fully called inheritance states typically have ambiguity in

either but not both of the maternal- or paternal-state indicators.

For example, the short state between the confident states ‘‘0010’’

and ‘‘0011’’ most parsimoniously will harbor no recombinations

from the paternal meiosis and one from the maternal meiosis.

Therefore, the short, partially ambiguous state can be represented

with a , as an ambiguity variant: ‘‘0,1,’’. Intervals in which two

recombinations occur between informative variantsmight be fully

ambiguous; their inheritance states are represented as ,,,,. For

record-keeping purposes, intervals at the beginning and end of

chromosomes preceding or following the first informative variant

are represented as xxxx. The x represents the absence of informa-

tion; the , character represents ambiguous information. Most

probably, no recombination occurs in an interval represented

with an x. Barring multiple recombinations in other meioses

in a short interval, a recombination most probably does occur in

an interval marked with a ,. A more general probabilistic frame-

work could more precisely capture probabilities of recombination

in short intervals, but given the data density of whole-genome

sequencing, the use of such a framework would be unlikely to alter

results, except to indicate uncertainty across long regions with no

variants—but such uncertainty is known before analysis is begun,

so there is no gain. The process of intercalating partially deter-

mined inheritance states is illustrated in Table 1.
Sextet Inheritance States
Six overlapping quartets can be formed from a family with four

children. The inheritance state for the entire family at any posi-

tion can be constructed from the six quartet states at that position.

Each of the eight binary-state indicators (Figure 1C) for a sextet

inheritance state is represented in three of the 24 indicators of

the quartet states (four indicators for each of six states). Therefore,

considering all 64 possible labelings of parental chromosomes for

the six quartets (26 ¼ 64 possible labelings, but because of

symmetry only 23 ¼ 8 need be considered), one chooses the set

of labelings that maximizes the concordance of the three indica-

tors for each of the eight meioses. For almost all positions, there

will exist a labeling for which all indicators are concordant.

The x and d indicators are considered concordant with all other

indicators. However, positions in intervals that contain two

recombinations between informative variants will have overconfi-

dent inheritance-state indicators called in at least one quartet.

Therefore, if the number of ambiguity (d) indicators exceeds the

most frequent 0 or 1 indicator, a position is called ambiguous.

The process of building higher-order inheritance states from

quartet inheritance states is illustrated in Figure 2.
Alternative Approaches for Inferring n-tet Inheritance

States
A family with n � 2 children is an n-tet, or a ‘‘nuclear family of n.’’

Such a family can be tiled as a set overlapping quartets for all

possible pairs of children, or C(n�2,2) quartets. For example, a

family with four children provides six ways of pairing two of the

children into quartets. Once determined, these C(n�2,2) quartet
Journal of Human Genetics 89, 382–397, September 9, 2011 385



Table 1. Partial Inheritance State

Before Intercalation After Intercalation

0010 0010

0000 00,0

0001 0000

0011 000,

0010 0001

0011 00,1

0011

001,

0010

001,

0011

Column 1 is a list of quartet inheritance states as determined by an HMM algo-
rithm with postprocessing to eliminate the uncertain edges of blocks. Between
each inheritance state is an interval in which a recombination occurred. In this
interval, the inheritance state is partially unknown. The indicator for this ambi-
guity is a dot. The first two indicators for inheritance-state vectors are always
zero when they are represented in canonical form.
inheritance states can be overlaid to arrive at a single n-tet inheri-

tance state. Considering S inheritance-states and a genome of

length G, the computational complexity of an HMM-based state

inference is O(GS2). Therefore, the computational complexity

of deriving inheritance states for an n-tet by tiling quartets is
A

B

Figure 2. Constructing a Higher-Dimensional Inheritance State fro
(A) Initially, the inheritance states of each quartet pair are independ
position of the reference genome individuals B, C, and D have all rec
identical. Individual A received distinct alleles from both parents an
binary representations of each quartet state are inconsistent when p
(B) After enumerating all arbitrary reassignments of the first two ind
a consensus binary representation of the sextet inheritance state. At th
and C and D quartets are flipped, requiring that the second two indica
tency of the inheritance state.
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O(C(n�2,2)G42), or more simply O(GC(n�2,2)). Alternatively, for

larger families, not all quartets need be determined. However,

ignoring one or more quartets could lead to haplotyping ambi-

guity or errors, so computational speed increases would be offset

by degradation of the quality of the results.

As another alternative, all the data can be analyzed in a single

pass to directly arrive at an n-tet inheritance state without the

use of tiled quartet states. The number of inheritance states in

an n-tet is 22n�6, so the complexity of an HMM approach would

be O(G24n�12). Despite this much greater complexity compared

to tiling algorithms, the direct approach is feasible. Even without

optimization, an HMM can resolve all sextet states for a human

genome in a few hours on a modest processor. Certain speedups

substantially reduce the complexity of HMM algorithms. For

example, one approach is to only consider transitions between

states requiring exactly one recombination. Furthermore, non-

HMM algorithms for partitioning work fairly well and run with

complexity O(GS) or less. However, despite computational feasi-

bility, it is harder to parameterize and train algorithms that operate

directly on large pedigrees, both because fewer datasets are avail-

able and because they have a larger number of parameters.

Furthermore, the shorter the average length of a state, the more

easily noise can falsely invoke a state transition. Average state

length drops proportionally to the number of possible states,

and therefore noise becomes harder to suppress in larger families

unless the assumption of first-order Markov dependence is

abandoned. Noise can arise from real data aspects such as those

resulting from ancient selective sweeps, data generation errors,

mismapping of reads to the reference sequences, or imperfect

reference sequences. The complexity of postprocessing to identify
m Tiled Quartet States
ently labeled. Considering the pedigree shown, at some particular
eived identical alleles from the two parents, and so are genetically
d so is nonidentical with respect to each of the other three. The
laced in register with respect to each other.
icators, the best consistent matching of all six indicators produces
is position, the first two indicators of each of the B and C, B and D,
tors in each quartet also be flipped in order to maintain the consis-

er 9, 2011



Block Inheritance state
1 00010000 The first block is not relabeled. It is used to fix the labeling of the parental alleles.
2 .0010000 1111011.1010001.0101110.
3 00111010 10010000 01101111 11000101

4 0011.010 1001.000 0111.111 1100.101
5 00110010 10011000 01010111 11100101

010011.0101100.1111001.06 1.011000
1110101000011001111001007 11011000

8 00100010 10001000 01110111 11011101

Meiosis 
indicators if 
father’s alleles 
are re-labeled

Meiosis 
indicators if 
mother’s alleles 
are re-labeled

Meiosis 
indicators if 
both are
re-labeled

Figure 3. Phasing Inheritance-State Blocks by Parsimony
An inheritance-state vector for four children of a sextet consists of 8 bits. The first, third, fifth, and seventh bits relate the paternal alleles
of each of the four children, and the second, fourth, sixth, and last bit relate thematernal alleles. If two bits are identical (i.e., 0 and 0 or 1
and 1), the alleles are IBD. If the bits are not identical (e.g., 1 and 0), the alleles are not IBD. If one of the bits is the ambiguity character (d)
then IBD is not determined between that pair of individuals. By convention, the first two bits of an inheritance-state vector are always set
to 0. Inheritance-state vectors can be converted tomeiosis-indicator vectors by relabeling the bits for each block so that they consistently
correspond to the meiotic origin of each allele, rather than simply relating IBD status between individuals. There are four possible
meiosis-indicator vectors for each inheritance-state vector. Adjacent blocks of the genome are separated by short distances between
informative variants that localize recombinations and so the parsimonious choice of the four labelings is the one that minimizes the
number of recombinations between adjacent states. If there has been a single recombination, there is exactly one choice of labeling
that represents a single recombination from the previous block (blue arrows). If there are two or more recombinations, then there could
be more than one parsimonious choice and ambiguity results (purple arrows). The set of meiosis-indicator vectors in red corresponds to
the parsimonious labelings that reflect one recombination each between blocks 1 and 3, 3 and 5, and 5 and 7. Blocks 2, 4, and 6 are
intervals in which recombinations have occurred and so contain an ambiguity character.
ambiguous state indictors also rises with the number of states.

Therefore, we focused our development on a robust workflow

based on initial determination of quartet inheritance states and

then application of tiling algorithms to build a single encompass-

ing inheritance state for larger pedigrees.

Sextet Meiosis Indicators
The freedom in labeling parental chromosomes permits labelings

to vary between adjacent inheritance states. Therefore, if inheri-

tance states are used to directly infer haplotypes, the phase of

haplotypes could be incorrect across inheritance-state boundaries,

and switch errors could be introduced. A switch error is an incor-

rect assignment of phase between two variants.15 To avoid switch

errors, inheritance-state vectors must be converted into meiosis-

indicator vectors before phasing. Meiosis-indicator vectors assume

a prior specific labeling of parental chromosomes. For each chro-

mosome in a nuclear family (assuming no grandparental informa-

tion is available) there is one degree of freedom for labeling each

parent. This degree of freedom is used to fix the labeling of the

parental chromosomes relative to a single inheritance-state block

of that chromosome. For clerical convenience we use the first

block for this purpose. Therefore, the first two bits of the first

nonambiguous full meiosis-indicator vector for each chromosome

will always be 0. If grandparental information is later (or concur-

rently) added to supplement the genetic analysis of a two-genera-

tion nuclear family, the labels could be switched to match grand-

parental haplotypes. Each meiosis-indicator vector (representing

a block of the chromosome) is obtained by parsimony from the

preceding vector by choosing a labeling of parental chromosomes

that minimizes the number of bit flips (Hamming distance)

between the vectors. The resultingminimal distance between fully

determined vectors is the number of recombinations between the

vectors. In nearly all cases, this distance is exactly one. When the
The American
distance is greater than one, multiple recombinations have

occurred, and there are two equally parsimonious assignments

of meiosis indicators. Subsequent use of such meiosis indicators

could result in a switch error (see Results). In practice, all fully

called vectors are separated from the next fully called vector by

a vector with an ambiguous bit corresponding to the recombinant

meiosis (or meioses) unless a recombination has occurred precisely

between informative variants that are at adjacent positions of the

reference genome (not seen in our data). The process of deter-

mining meiosis indicators is illustrated in Figure 3.

Meiosis-Indicator Hypercube
A hypercube provides a convenient visualization of the process of

converting inheritance-state vectors to meiosis-indicator vectors.

Any bit vector of length l can be represented as an l-dimensional

hypercube. A recombination flips a single bit of a meiosis-indi-

cator vector and so can be represented as a single edge of the

hypercube connecting two adjacent vertices.16 A surjective

mapping of the meiosis-indicator vertices to inheritance states

maps four vertices each to a single state. This surjective mapping

corresponds to the four informationally equivalent labelings of

the alleles of the two parents. Initially, our algorithm assigns

blocks of the reference genome to one of the inheritance states,

but does not immediately assign one of the four possible

meiosis-indicator vectors that might give rise to that state. A

seed block (e.g., the leftmost) is assigned to a position in the

meiosis-indicator hypercube. An adjacent block then has four

possible vertices to which it might be assigned. The chosen vertex

for the adjacent block is the closest, usually adjacent, of these four

vertices to the seed vertex. The assignment process continues

sequentially until all blocks are assigned. Ambiguity might arise

if two vertices of the four possible vertices of the next block are

equally distant to the vertex of the current block.
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We use the initial block of each chromosome as the seed block.

The choice of seed block is irrelevant unless the assigned inheri-

tance state is so grossly incorrect that parsimony cannot phase it

with respect to both flanking high-confidence blocks such that

those two blocks are properly phased with each other. Because

the first block is not flanked on both sides, it cannot be an

improper seed choice. Seed choice would not have altered any

results for either of the two pedigree analyses we present here.

Seed choice might be more important if there were long blocks

of odd inheritance states, as might occur if some DNAs analyzed

were sufficiently aneuploid. In this case, an improvement to the

algorithm might result if it checked for the possibility that the

most parsimonious explanation of the data is to ignore one or

more blocks.

To avoid some potential for ambiguity, the process can be

simplified. Paternal andmaternal meioses can be treated distinctly

and separately, resolving first one set and then the other. For each

set, each inheritance state could map to one of two (rather than

four) vertices of an (l�1)-dimensional hypercube. If n is the

number of children in a nuclear family, and r is the number of

recombinations between variants in different meioses of the

same parent, ambiguity arises if r ¼ n/2. Ambiguity never arises

with an odd number of children—but errors can occur. An error

because of failure of the parsimony assumption can occur in any

sized pedigree if r > n/2. Therefore, in nuclear families with four

children, two recombinations in the same parent occurring inde-

pendently in different meioses in the same interval will be recog-

nizable but unresolvable in the sense that the recombinations

cannot be unambiguously assigned to meioses. Three recombina-

tions will be recognized as one recombination and be falsely

assigned to the child with no recombination. Ambiguous or incor-

rect phasing because of multiple recombinations can only occur

in the genomes of parents (founders). Errors and ambiguity in

children (nonfounders) cannot occur because phase is fixed by

reference to parental genotypes.

Once the process is complete for the paternal hypercube, it is

repeated for the maternal hypercube. By separating analyses for

the two parental hypercubes, the calculation of potential ambi-

guity and errors is simplified. For example, in a pedigree with

five children, even if there are four recombinations between two

variants in four separate meioses, they will all be assignable to

specific meioses if two are paternal and two are maternal.
Autosomes and Sex Chromosomes
Ourmethod is described in detail for autosomes. Extensions to the

sex chromosomes are trivial and are derived from simplifications

of the algorithms for the autosomes. The pseudoautosomal region

is treated as an autosome with the constraint that the meiosis

indicators of the pseudoautosomal region match those of the X

and Y chromosomes where they abut. The meiosis indicator of

the Y chromosome is always 0—indicating paternal origin.
Haplotypes
All possible orderings of the genotypes for all individuals in the

pedigree at a coordinate can be considered in the context of the

meiosis indicators for that position. For the special case of all bial-

lelic variants, if x individuals are heterozygous or partially called,

the number of such orderings is 2x. Orderings incompatible with

the meiosis indicators are rejected. The remaining orderings

provide a list of all possible alleles for each of the two haplotypes

for each individual. For each of these lists, if at least one allele is
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called and all called alleles are identical, that allele is recorded.

Otherwise, ambiguity is recorded at that position. As long as at

least one individual in the pedigree has a homozygous genotype,

there will be a single consistent ordering, and so there will be no

ambiguity in haplotyping. If all individuals’ genotypes are hetero-

zygous (or cannot be distinguished from heterozygosity due to

partial or absent base-calling), then all orderings are consistent

with the meiosis indicators, and so the haplotypes will be ambig-

uous at that position. If a vector has a homozygous genotype in

one individual and partial or absent base-calling in one or more

other individuals, then the genotype vector can usually be unam-

biguously phased with the partial calls assigned to particular

haplotypes. The placement of these partial calls can result in

ambiguous haplotypes at these positions even though all the

called alleles are phased. Haplotyping within a block is illustrated

in Figure 4.

An incidental result of the haplotyping algorithm is thatmissing

data are inferred to the fullest extent allowed by the called data.

Briefly, any uncalled allele that can be assigned identity by

descent to any called allele can be matched to the called allele by

tracing the allele flow through the pedigree via meiosis indicators.
Results

Genetic Haplotyping

Wehaplotyped two nuclear-family pedigrees (Figure 1). For

each, we phased all the autosomes of a nuclear family with

four children. The density of SNVs permitted near deter-

ministic identification of all recombinations (Figure 5).

For pedigree A, genetic analysis phased 98.8% of the

3,082,065 fully called variants. For pedigree B, genetic

analysis phased 98.4% of the 3,262,115 fully called vari-

ants. Variants that are heterozygous in all six family

members of a pedigree cannot be phased.
Recombination Intervals

Pedigree A harbored 283 recombinations, and pedigree B

harbored 224 recombinations. The median resolution of

recombination location was 6.4 kb (mean: 15.1 kb).

Many of the longer intervals span centromeres or gap

intervals in the reference genome. In pedigree A, there

were two instances of recombinations occurring at the

same locus in two separate meioses within the same

parent, each at known hotspot.
Coverage of HapMap Markers

The markers chosen by the HapMap project are a useful

independent reference for the completeness of generated

haplotypes.17 There are 3,724,356 HapMap-verified SNP

positions (excluding compressions) in dbSNP131. In pedi-

gree A, 3,061,628 (82.2%) of these SNPs were fully called in

all six individuals and 3,612,554 (97.0%) were at least

partially called in at least one individual. In addition, the

alleles at some partially or uncalled positions could be in-

ferred from inheritance patterns. Most HapMap SNPs

were homozygous in all individuals, but 1,149,248 were

variable across the sextet genotypes. We phased 96.6% of
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A B Figure 4. Example of Haplotype Infer-
ence
Upper-case alleles are phased genotypes;
lower-case alleles are unphased. Haplotyp-
ing can be performed as a series of steps.
The first step, default or trivial phasing,
assigns phase to all homozygous positions.
The second steps phases alleles in children
or siblings that are identical by descent to
alleles phased in the first step. For nuclear
families with more than one child, a third
step phases parental alleles. (A) Trios
permit phasing in the child, but not at
positionsheterozygous in all three individ-
uals. (B) Quartets permit phasing in the
children, as well as within inheritance-
state blocks in the parents, but not at posi-
tions heterozygous in all four individuals.
Phasing in blocks of the parental chromo-
somes is possible because it is known that
no meiotic recombinations occur within
a block. Haploscribe performs all of these
phasing steps simultaneously bymatching
all possible phased genotypes to meiosis-
indicator vectors. Phasing between inheri-
tance-state blocks requires data from addi-
tional children, as described in the text.
HapMap SNPs in at least one member of the pedigree and

84.4% in all six members of the pedigree.

Use of a Grandparent for Verification of Phasing

Errors in raw data, a flawed reference sequence, or imper-

fections in implementing an algorithm could result in

errors in predicting recombinations. To estimate error, we

obtained sequences for one of the grandparents from

pedigree A (I-1 in Figure 1A) and all four grandparents for

pedigree B (I-1, I-2, I-3, and I-4 in Figure 1B). These grand-

parental sequences were not used in our phasing algo-

rithm. For each grandparent, the set of all homozygous

positions defines a haplotype that must have been trans-

mitted to their child, a parent in one of the pedigrees. By

comparing this transmitted haplotype to our computed

haplotype, we determine an upper bound for error result-

ing from our algorithm, because differences observed

between the two haplotypes are due to a combination of

sequencing errors, de novo germline mutations, somatic

variation, and haplotyping errors.

Of the homozygous positions in the genome of indi-

vidual I-1 from pedigree A, 889,227 were heterozygous in

her son (II-2). At each of these positions, this homozygous

allele should be transmitted from grandmother to father,

and all of these alleles will reside on the same haplotype

of individual II-2. We compared these transmitted grand-

parental alleles to the alleles of the haplotypes determined

for individual II-2 by our method as applied to the nuclear

sextet of pedigree A. This comparison bounded our switch-

error ratio to be less than 0.045% (Table 2). In two

instances our inheritance-state analysis of this sextet had

demonstrated two recombinations at the same location

in different meioses of the same parent—one instance

each for the mother and father. Genetic haplotyping in
The American
a nuclear sextet pedigree cannot parsimoniously phase

across such an interval (Figure 3), resulting in phase ambi-

guity. Our software arbitrarily assigns phase across such

ambiguities and so led to one long-range phase error in

this haplotype. Switch-error ratios for pedigree B were

comparable to those for pedigree A (Table 3). Our bioinfor-

matics workflow will treat blocks of adjacent variants as

a set of SNVs rather than as an indel. Therefore, for statis-

tics reported here, SNVs with identical genotype vectors

that are within 10 bp of each other are considered to be

a single genetic variant for purposes of tabulating switch

errors.

Reciprocal Switch Errors

If our algorithm incorrectly predicts the positions of

recombinations that form the boundaries of inheritance

states, then any errors in assigning haplotypes to a set of

parental genotypes should be reciprocal. That is, if one

allele of a genotype is improperly assigned to one haplo-

type, the other allele will be assigned to the other haplo-

type, producing switch errors on both haplotypes. All

true switch errors should be reciprocal with the exception

of those positions in a genome for whichMendel’s first law

of segregation is violated. These positions are most typi-

cally due to de novo mutations. If an apparent error based

on comparison to grandparental sequences were due to an

isolated sequencing error of an allele in one of the grand-

parents, then we would observe a discrepancy in one of

the parental haplotypes but not the other.

Our ability to detect reciprocal switch errors at single

positions in a genome is limited because we assay switch

errors only at SNVs for which the parental genome is

heterozygous and one or both of the grandparental

genomes are homozygous. Almost all such positions derive
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Figure 5. The High Density of Variants Determined by Whole-Genome Sequence Data Permits Full-Genome Haplotyping
(A) Haplotypes of all the autosomes for the four children of pedigree A. Blue and orange shades represent the two paternal and maternal
chromosomes, respectively; dark and light shades represent segments inherited from the corresponding grandfather or grandmother,
respectively.
(B) Expanded view of chromosome 1 showing the density of variants supporting the meiotic origins of each haplotype. Red, blue,
magenta, and green represent regions inherited from the paternal grandfather, paternal grandmother, maternal grandfather, and
maternal grandmother, respectively. The height of the gray bracket to the right of each graph corresponds to 1000 variants/Mb.
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Table 2. Switch-Error Ratios for the Father in Pedigree A

Smoothing
All
Variants

Fully
Called
Variants
Only

Ambiguous
Transitions

Switch-Error
Ratio for
Fully Called
Variants (%)

0 2154 366 2 0.0455%

1 182 22 2 0.0030%

2 44 2 2 0.0005%

3 14 2 2 0.0005%

4 6 0 2 0.0002%

5 4

6 4

7 4

8 0

All phase errors involve blocks of less than eight variants. The smoothing value
is the number of consecutive discordant variants for which a breakpoint is not
counted. In addition to outright errors, there are two ambiguous transitions
due to recombinations in a short interval in separate meioses of the same
parent. These two counts have been added to the switch-error count for tabu-
lation of the last column (switch-error ratio), thus producing a slight overesti-
mate of the error ratio. These ratios are low compared to previously reported
switch-error ratios, which are typically 0.5%–15%.15 Local errors produce
two switch errors, unless they are at the end of a chromosome; values in the
table therefore tend to be even.
from a single homozygous grandparent, a single heterozy-

gous grandparent, and the heterozygous parent. To directly

detect a single-position switch error would require two

grandparents who were homozygous but for different

alleles. Such positions are very rare. Switch errors are also

very rare. Not surprisingly, we do not see a concordance

of these two events and do not have data to report
Table 3. Switch-Error Counts for the Pedigree B (CEPH 1463) Conside

Smoothing Paternal Grandpaternal Paternal Grandmatern

0 521 114

1 102 16

2 57 10

3 32 8

4 24 8

5 16 8

6 14 4

7 12 4

8-9 6 4

10-11 4 2

12-15 2 2

16-39 0 2

40-48 2

49 0

There are no ambiguous phasings in this pedigree. The two intervals with two
resolvable.
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single-position switch errors. However, if switch errors

span more than one variant, we could see evidence of reci-

procity if at least one of these variants is represented by a

homozygous position in each of the two grandparents.

Because we had sequences for all four grandparents in

pedigree B (I-1, I-2, I-3, and I-4), we were able to check for

reciprocity of switch errors. For this pedigree, there was

one observed reciprocal switch error in the father’s genome

(II-5) and one in themother’s genome (II-6). The first recip-

rocal error spanned two adjacent SNVs in MUC3A/MUC3B

(MIM 158371 and 605633). These paralogs reside in a

compression block, and so their positions are prone tomis-

mappingbetweenparalogs. The second error spanned three

adjacent SNVs in an ancient LINE element at positions

prone to mismapping to other LINEs. The dearth of reci-

procity of errors indicates that the vastmajority of errors de-

tected inourhaplotypes arise froma subset of the rare errors

in whole-genome sequencing data or in the reference

genome and do not arise from errors in assignments of

meiosis indicators within our algorithm. Therefore, the

quality of genetic phasing can be expected to improve

even beyond its current accuracy as the quality of genome

sequence data and the reference improve.
Comparison with Molecular Data

We compared the pedigree A haplotypes with short molec-

ular haplotypes derived from short-read data. Of 89,381

short molecular haplotypes linking heterozygous variants,

only 15 were discordant with the genetic haplotyping. Of

the 39,827 loci that were heterozygous in all individuals

and therefore not genetically phaseable, 7,522 were reso-

lved by molecular phasing.
ring Fully Called Positions Only

al Maternal Grandpaternal Maternal Grandmaternal

100 168

12 20

4 0

2

2

2

2

2

2

2

2

2

0

recombinations partition the recombinations one to each parent, so phase is
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Quartet Phasing

Haplotyping on aquartetworks verywellwith the algorithm

presented here. However, inferred haplotypes for a parent

will not span any position for which a recombination occurs

in one of that parent’s gametes. Inheritance-state changes

can be used to infer whether a recombination is maternal

or paternal but are not sufficiently informative in a quartet

to infer which paternal or maternal meiosis accommodated

the recombination. Furthermore, if two recombinations

occur in separate meioses of the same parent in the same

interval (i.e., between two informative variants), a switch

error will result. For many purposes, such as evaluation of

compound heterozygosity within genes, a phase ambiguity

or error will only be important if it occurs within the bounds

of a particular gene. This likelihood depends on the length

(inMorgans) of the gene, which is best empiricallymeasured

because of the unevendistribution and intensity of recombi-

nation hotspots. Considering each of the six quartets of

pedigree B independently, on average the confidence inter-

valsof thepositionsof 42 recombinations (37%of112) inter-

sected known genes, impacting 47 of 20,545 genes with

National Center for Biotechnology Information GeneIDs,

or 0.023%. Therefore, when quartets are employed for

whole-genome genetic analysis, the haplotypes of much

less than 1% of genes will be ambiguously phased in the

parents. Phasing in the children of quartets will be unambig-

uous, as it is for all nuclear-family pedigrees.

Trio Phasing

A trivially degenerate application of our algorithm will

phase a family trio—a nuclear family with one child. There

is exactlyone inheritance state that canbe inferred for a trio,

so the inheritance-state portion of the workflow is simply

skipped. Equivalent algorithms for phasing a trio have

been previously described (e.g., by Marchini18). For a trio,

only the child’s chromosomes can be genetically haplo-

typed and only at positions for which at least one of the

three individuals is homozygous. To compare our results

to those one would obtain by only sequencing a trio, we

considered all four trio subsets of our analyzed family sextet

for pedigree A. There were 6,671,910 instances of positions

in which the genotype of a child was heterozygous. In

1,147,344 instances, the two parents were also heterozy-

gous, so the child’s genotype could not be phased from

trio data. Of these instances, 988,040 were resolvable in

the sextet because at least one sibling was homozygous.

Therefore, for full chromosomes, the extent of heterozy-

gous variant phasing in children rises from 83% in a trio

to 98% in a sextet, and the extent of heterozygous variant

phasing in the parents rises from near 0% to 98%.

In a trio, short sequence elements in the parents can be

phased by employing the exceptionally parsimonious

assumption that there are no recombinations in any

meiosis and that each parent transmits unaltered chromo-

somes. Therefore, each chromosome of each parent has

one haplotype identical to that transmitted to the child.

In this case the number and position of switch errors in
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parental chromosomes is unknown, and the number of

errors will average one per Morgan. This approach is

capable of phasing genes with some confidence but cannot

phase chromosomes. Therefore, we do not include this

approach in our algorithm.

Density of Variants

Three parameters are directly relevant for designing a

genetic haplotyping project for a nuclear family: raw data

quality, the number of children sequenced, and the density

of variants genotyped. Choice of reference sequence is a

fourthparameter that tendsnot be easily adjustable; ideally,

the reference sequence is collinear with the genomes of the

pedigree. Raw data quality is primarily responsible for local

switch-errors, as reported above. Long-range switch errors

can only occur in parents, as discussed above. These can

be largely eliminated in familieswith at least three children.

In such families, long-range switch errors could occurwhen

recombinations occur at the same position in different

meioses of the same parent. Increasing the number of

children analyzed will decrease such switch errors, as the

number of recombinations within an interval that can be

uniquely assigned tomeioses rises. Such errors will increase

with decreasing variant density as longer intervals between

variants aremore likely to harbormultiple recombinations.

Inpedigree B there is one intervalwith two recombinations.

These two recombinations occur in separate parents, so no

haplotyping ambiguity results. If the set of variants were to

be restricted to a SNP panel containing 425,220 fully called

variant positions in the pedigree (the set from the Affyme-

trix Genome-Wide Human SNP Array 5.0), then two such

intervals occur, again resolvable because the recombina-

tions are in different parents. If the set of variants is further

restricted (GeneChip Human Mapping 500K Array), then

three such intervals occur, all again resolvable because the

recombinations are in different parents. However, if the

variant density were to be restricted to 56,232 positions

(GeneChip Human Mapping 100K Array Set), then eight

such intervals occur, one of which would contain three

recombinations. We conclude that haplotyping parental

genomesof nuclear familiesworks bestwithwhole-genome

data but that itwill have a fairly low long-range switch-error

ratio even if the variant density is as low as a few hundred

thousand well-chosen SNPs per genome. However, the

number of local haplotyping errors rises as variant density

decreases. For the panel of 425,220 SNPs, 0.11% of hetero-

zygous genotypes were discordantly phased with respect

to the whole-genome analysis. For the panel of 56,232

SNPs, 1.2% of heterozygous genotypes were discordantly

phased. These local errors increase primarily because of

increasing uncertainty in the bounds of inheritance-state

intervals.

Use of Partially Called Positions to Improve

Resolution

To err on the conservative side, all inheritance-state

blocks were based on variant positions fully called in all
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individuals in the pedigree. Inclusion of partially called

positions improves resolution of some recombination

intervals. For example, for pedigree B, the mean length

of intervals drops from 14.1 kb to 12.2 kb. Of the 224

intervals, 29 were further constrained, resulting in the

reduction of the number of reference bases assigned to

ambiguous sextet inheritance states by 417,911 bp. The

average reduction of each of these 29 intervals was 14.4 kb.

The longer an interval (with length in this case excluding

reference gaps), the more likely an informative partially

called variant will exist within. Therefore, the intervals

with increased resolution tended to be longer than

average, with a mean of 29.4 kb when determined with

fully called variants. In a few cases there was a large percent

reduction in interval length (e.g., 74,134 to 2,209 bp ¼
97%) or reduction to very short length (e.g., 1021 to

368 bp). Partially called variants tend to have slightly

higher sporadic error than fully called variants. Use of

partially called variants would result in a small increase

in the number of phased genotypes in one ormore individ-

uals, but the phase of these positions would bemore uncer-

tain than the phase of fully called positions.

For some purposes, such as identifying target sequences

associated with recombination hotspots, there could be

increased value in further precision in localizing positions

of recombinations, ultimately to an interval between

adjacent base pairs. It is not clear how one could achieve

such precision in the absence of variants denser than those

found in human populations. Our attainment of a mean

precision (including reference gaps and centromeres) of

about 6 kb probably approaches the maximum achievable

precision without sacrificing accuracy. We could, for

example, assign every recombination to a single base

interval at the center of our confidence intervals or inform

our localization with population-level data on hotspots.

However, for haplotyping there is no value in assigning a

recombination more precisely than to an interval between

variants. Therefore, for purposes of the work described in

this paper, we have achieved a precision and accuracy in

defining recombination locations near the theoretical

maximum, as defined by utility for haplotyping.
Discussion

Many algorithms exist for haplotyping, although none to

our knowledge have been incorporated into workflows

capable of handling whole-genome data. Algorithms

implemented in Merlin and Genehunter recognize and

use inheritance states (summarized in Roach et al.14).

These software implementations were designed to work

with variants of relatively low density in comparison to

whole-genome sequence data. They employed probabi-

listic approaches because the exact localization of recombi-

nations was imprecise. Now, whole-genome sequence data

permit the assignment of 99.9% of the genome to exact

inheritance states. This high confidence in state determi-
The American
nation enhances noise suppression because otherwise

each position must be considered as possibly being one

of several states. Consequently, the haplotyping output

from our algorithms has an extremely low switch-error

ratio (Tables 2 and 3).
Completeness and Accuracy

Phasing algorithms (including Haploscribe) can be tuned

to increase the number of variants phased (increased com-

pleteness) but at an increased switch-error ratio (decreased

accuracy). Therefore, comparisons and contrasts between

different algorithms must include these two parameters.

For example, a comparison might explore the switch-error

ratio of an algorithm as a function of the number of vari-

ants covered. Furthermore, not all variants are equivalently

easy to phase. For example, very common SNPs are more

likely to be heterozygous in all family members than

very rare SNPs, and such fully heterozygous positions are

not possible to phase genetically. Also, some panels of

SNPs are more informative than others for the purpose of

recombination inference.

Our algorithm by default leaves unphased all variants for

which phase cannot be determined with near certainty.

These unphased variants either have uncalled or partially

called genotypes (about 5%–10% of all variants in current

CGI data) or reside in the small percentage of the genome

for which the inheritance state is too ambiguous for

phasing (affecting less than 0.1% of all variants). Because

the algorithm only reports results that are nearly certain,

it sacrifices some completeness for accuracy. This sacrifice

is appropriate if haplotypes are intended for diagnostic

purposes. The algorithm could be tuned to report more

complete results but with more switch errors. Currently

the single best approach to improving our results would

be to increase completeness and accuracy of genotype

data. Improvements in completeness and accuracy of

whole-genome data are rapidly being made by the research

community, so the specific results we report here should be

considered as reflecting a snapshot with the expectation

that these metrics will improve over time.
Molecular Phasing

Molecular phasing is a straightforward complement for

genetic phasing. Inmany cases, whole-genome sequencing

data include some information about local phase relation-

ships. For example, variants on the same sequenced DNA

fragment can be phased with respect to each other. Molec-

ular phase data can be used to phase positions that are

heterozygous in all individuals in a pedigree or to phase

across inheritance-state boundaries for which the phase is

ambiguous. The generation of sequence reads that are of

10,000 bases or more and that span at least several variants

should facilitate molecular phasing, as will application of

strategies such as pairwise end sequencing that provide

the sequences of nonadjacent alleles on the samemolecule.

Haplotypes derived from genetic and molecular phasing
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can be combined through the jigsaw-puzzle-like process of

haplotype assembly.19,20

Population-Based Phasing

Algorithms for population-based haplotyping, such as

Clark’s algorithm or that of PHASE,6 rely on the inference

of haplotypes by application of strong parsimony assump-

tions, such as requiring that alleles be assigned to common

haplotypes if at all possible. Therefore, such algorithms

overpredict common haplotypes. Also, if haplotypes are

sufficiently long, there are no common haplotypes because

even in isolated populations the most frequent haplotypes

are diluted among rare or unique combinations of the

many thousands of variants on these haplotypes. At

most, these haplotypes can span a fraction of a Morgan

because otherwise they would probably be broken by

recombination at least once in any pedigree. Furthermore,

population-based algorithms are incapable of accurately

phasing rare variants, such as those that never occur in

population reference data. Rare variants are important for

personalized medicine because they are often responsible

for detrimental functions. Even in the absence of rare vari-

ation, these methods could incorrectly phase rare combi-

nations of common variants, and these combinations

could be detrimental through their interactions. Therefore,

we do not recommend combining population-based

haplotypes with molecular and genetic haplotypes for

use in personalized medical applications.

Missing Individuals

Actual data for either or both parents are not strictly neces-

sary to enable our algorithms or workflow. A substantial

fraction of such missing data can be inferred from child

genotypes. However, missing data decrease signal and

increase noise, and so many of the advantages of our

approach would be attenuated. However, some phase

information could be obtained by sequencing two siblings

and not their parents. An exploration of the degradation of

the inheritance-state signal is provided in Figure 2 of Roach

et al.14 If only two siblings are available, uncertainty in

recombination location increases by several thousand

bases, but otherwise quartets can be assigned to identical,

nonidentical, and haploidentical states. In identical and

nonidentical states only homozygous alleles can be phased

(trivially), but in a haploidentical state if one of the siblings

is homozygous, heterozygous alleles of the other sibling

can be phased.

Multigenerational Pedigrees

We present algorithms and implementations for two-

generation nuclear families. These algorithms are exten-

sible to larger pedigrees. The most straightforward exten-

sions are by using tiling algorithms similar to those

described elsewhere (e.g., by Wijsman21 as well as Qian

and Beckmann22) and similar to those we use here to build

inheritance states for large families from tiled quartets. We

can phase multigenerational pedigrees with existing algo-
394 The American Journal of Human Genetics 89, 382–397, Septemb
rithms by using approaches such as tiling information

from trio analysis.21 However, to take full advantage of

multigenerational pedigrees with embedded quartets, our

algorithm can be extended by extending the scope of

inheritance states as implemented in our HMMs to arbi-

trarily structured pedigrees. Labelings of parental haplo-

types are matched where tiles overlap by matching the

alleles of haplotypes. Such extensions have been success-

fully applied to earlier generations of similar algorithms

such as those of Merlin and Genehunter.

Cell Lines

DNA for pedigree B was extracted from cell lines. Thus, we

had a greater expectation of somatic structural variations

than if we sequenced DNA from blood. Structural varia-

tions can produce errors in quartet inheritance states. If

they occur in one of the children, these errors will manifest

in all quartets involving that child but not in other quar-

tets. Therefore, the utility of multiple children facilitates

increased accuracy when data are derived from cell lines

because structural variations can be detected as discrep-

ancies between subsets of quartet inheritance states.

However, for the cell lines in our studied pedigree B, this

increased power to identify errors did not result in any

detected errors. We conclude that these cell lines were

sufficiently euploid to enable full and accurate haplotyp-

ing. However, many cell lines will harbor aneuploidy.

Our methodology should be useful for haplotyping such

cell lines in the context of large pedigrees.

Existing Methods

Existing methods for haplotyping have shortcomings

limiting their broadest applicability. Rule-based haplotyp-

ing (e.g., the algorithm of Wijsman21) has focused on the

power of trios and multigenerational families to haplotype

single variants. In these methods, recombinants are identi-

fied by trio-based phasing on families with at least three

generations of data. Addition of inheritance-state-based

inference permits increased resolution of recombination

localization. The information present in genotypes of

variants can then be maximally utilized. This increased

use of data permits phasing of parents and a larger number

of successfully phased variants throughout the pedigree.

Many algorithms apply a very stringent parsimony crite-

rion—that the total recombinations be minimized across

a pedigree. We relax this criterion considerably. Our parsi-

mony criterion is that the number of recombinations in a

given interval between informative variants is no more

than half the number of children. We can therefore

observe biological phenomena involving frequent or

closely spaced recombinations. Without a parsimony crite-

rion, multiple solutions would exist for the assignment of

recombinations to meioses.

Errors

Despite the near 100% accuracy of genetic phasing, a hand-

ful of errors can remain. Genetic haplotyping can result in
er 9, 2011



ambiguities or errors in parents if multiple recombinations

occur in the same interval but in different meioses of the

same parent. This source of ambiguity, however, does not

impair phasing in children, because their phase is fixed

by reference to homozygous positions in the parents. In

this study, genetic haplotyping resulted in two ambiguities

in pedigree A and none in pedigree B. In pedigree A, there

were two distinct short intervals in the genome at which

two recombinations occurred in separate meioses in the

same parent. For a family with fewer than five children,

genetic phasing in parents across such an interval cannot

be performed, and ambiguity results (Figure 3). Our specific

algorithmic implementation chooses phase arbitrarily in

such instances. In one case of two paternal meioses, it

chose the incorrect phase resulting in a switch error. In

the other case, because no grandparental information

was available, we could not determine if a switch error

resulted. Barring unknown mechanisms, the chance of

more than two recombinations in separate meioses of the

same parent between informative variants is likely to be

near zero, and so families with five children should be

impeccably phaseable with genetic methods. Only two

generations are needed by our algorithm. Grandparental

genomes, if available, provide an extra check on sequence

accuracy and will resolve any ambiguities that could rarely

arise in families with smaller numbers of children.

In addition to the global ambiguities, there were isolated

variants that were ambiguously or incorrectly phased.

Ambiguous phasing will occur at any position for which

all individuals in a pedigree are heterozygous. Ambiguous

phasing could rarely occur for some individuals at posi-

tions in short segments for which the inheritance state is

incompletely known (less than 0.1% of the genome). How-

ever, even in these short segments, most phasing is clear.

These segments occur at the ends of chromosomes and

in recombination intervals between informative variants.

Isolated incorrect phasing of a variant could result if there

is a sequencing error or an error in assigning inheritance

states and meiosis indicators. For pedigree A, considering

fully called positions that are homozygous in the paternal

grandmother, there are 197 inconsistencies between the

reported allele in the grandmaternal genome and the

paternal allele derived from that genome. Several dozen

of these will be due to de novo mutations in the paternal

germline arising from the grandmaternal gamete,14 a few

will be from undetected errors in the paternal genome

sequence, and most will be from sequencing errors in the

grandmaternal genome (Table 2). Increasing the size of

pedigrees to include three or more generations rather

than two should reduce such errors. Our implementations

of our algorithms do not handle pedigrees more complex

than a two-generation nuclear family, but could be

extended, because the concept of inheritance states and

meiosis indicators can be applied to any pedigree. Addi-

tionally, improvements to data quality could be accom-

plished by combining molecular and genetic techniques.

For example, molecular techniques that locally resolve
The American
intervals with fully heterozygous positions or with mul-

tiple recombinations would complement the two rare

weaknesses of genetic phasing. Population data can also

be used to leverage these other phasing techniques. How-

ever, for medical purposes, results that include population

inference are likely to have an unacceptably high error

ratio.

Utility

Accurate haplotypes have many uses. Most importantly,

the information they sequentially encode determines bio-

logical function and underlies human disease. They can be

used to improve power in disease association studies by

reducing multiple test correction. They can be used in

studies of population genetics, including the study of

human migrations and evolutionary selection. They pro-

vide data that permit insight into mechanisms and control

of basic biological phenomena such as recombination,

nuclear organization, and allelic exclusion. Together with

increased understanding of population genetics and re-

combination mechanics, they might explain observations

of linkage disequilibrium that abound in the genome, such

as throughout the MHC locus. Finally, haplotyping algo-

rithms aid the detection and correction of errors and infer-

ence of missing data in pedigrees.

Our prediction is that as the cost of human genome

sequencing declines, individual genome data will increas-

inglybecomeapartof apersonalmedical record.We suggest

that this shouldbedone in thecontextof sequencing family

genomes. The advantages include decreased sequencing

error due to the application of genetic analysis, the ability

to distinguish rare variants from sporadic error, and the

ability to determine chromosomal haplotypes. With the

addition of phenotypic data, family sequences might

enable identification of Mendelian disease genes and

possibly modifier genes. Comprehensive personalized

medicine will increasingly require both identification of

rare alleles in patients and their assignment to haplotypes.

Themedical utility of geneticmethods for haplotyping is

limited to individuals who have access to the genome

sequences of their parents and siblings. Approximately

65% of women in the USA have or will have two or more

children. Approximately 80% of the remaining 35%

have or will have at least one sibling. Assuming similar

statistics for males, 81% of the American population could

directly benefit from genetic haplotyping, if genetic infor-

mation fromat least one sibling and/or at least two children

was obtained.23 To gain confidence levels appropriate for

clinical utility for quartets that are missing one or both

parents, genotyping data would have to be supplemented

by molecular haplotyping data and employed in a hybrid

algorithm. There are two ways in which genetic haplotyp-

ing canalsobenefit individuals not part of aquartet or larger

nuclear family. First, accumulated data from many thou-

sands of individuals will provide exact genetic global

haplotype references including rare alleles, much as the

HapMap currently provides approximate population-based
Journal of Human Genetics 89, 382–397, September 9, 2011 395



local haplotypes for common alleles. Second, molecular or

population-based inference methods for haplotyping can

be developed and constantly improved through virtuous

cycles of technology refinement by reference to gold stan-

dard haplotypes derived from genetic analysis.
Appendix A: Ambiguity and Error as a Function

of Number of Children

Proof Outline

Only the paternal inheritance hypercube need be consid-

ered. Results on the maternal hypercube follow by sym-

metry. The number of vertices of the hypercube is 22(n�2)�1,

where n is the family size, and n � 2 is the number of

children. Because labeling of the first indicator is arbitrary,

the minimum recombination distance Dr between binary

complement vectors is zero (e.g., Dr(1111,0000) ¼ 0 and

Dr(1010,0101)¼ 0). LetHD be theHamming distance. Then

Dr(v1,v2) ¼ min[(HD(v1,v2)),(HD(v1,complement(v2)))]. Let

vn and vnþ1 be adjacent inheritance-state vectors. Ambiguity

in the meiosis-indicator vector phasing will arise if

HD(vn,vnþ1)¼ HD(vn,complement(vnþ1)). An error will arise

if the true number of recombinations is greater than the

minimum recombination distance. Because of symmetry

of the hypercube, one only need consider a single recombi-

nation path between the zero vector and the vector of all

ones. So for example, for a four-child pedigree, one such

path is 000040001400114011141111. If the inheri-

tance state 0011 were to precede the vnþ1 inheritance state

1111, it would not be clear whether the best parsimonious

choice for vnþ1 would be 0000 or 1111. Therefore, phasing

would be ambiguous across that junction. Generalizing,

two results follow. First, if n is the number of children in

a nuclear family, and r is the number of recombinations

between variants in different meioses of the same parent,

ambiguity arises if r ¼ n/2. Ambiguity never arises with an

odd number of children, but errors can occur. Second, an

error because of failure of the parsimony assumption can

occur in any sized pedigree if r > n/2. Setting degenerate

parameterization of n produces results that are consistent

with intuition. For example, if n ¼ 1 (a family trio), then

all parental phasing is ‘‘wrong’’ in the sense that the likeli-

hood of a phase error cannot be estimated from the data. If

n ¼ 2 (a family quartet), then all single recombinations

can be detected but phasing is always ambiguous.
Appendix B: Description of Haploscribe

Four PERL scripts currently constitute the Haploscribe

workflow:

1. The script ‘‘intercalate_partial_binary_blocks.pl’’ is

applied to the quartet states of each individual. The

output fromthis script isa listofblocks that encompass

every position on all chromosomes. Ambiguity indi-

cators are placed for positions without clearly deter-
396 The American Journal of Human Genetics 89, 382–397, September 9
mined inheritance-state indicators. The input file is

‘‘smoothed_blocks.txt.’’ The output file is ‘‘smoothed_

blocks_with_intercalated_partial_blocks.txt.’’

2. The script ‘‘increase_dimensionality_of_inheritan-

ce_state_hypercube.pl’’ takes all tiled quartets of the

sextet and builds a single list of sextet inheritance

states. The input files are the six ‘‘smoothed_blocks_

with_intercalated_partial_blocks.txt’’ files. The out-

put file is ‘‘increased_dimensionality_blocks.txt.’’

3. The script ‘‘decanonicalize_binary_inheritance_vec-

tors.pl’’ converts sextet inheritance-state indicator

vectors into meiosis-indicator vectors. The haplo-

type assignment of the first block of each chromo-

some is arbitrarily set, and all other blocks are phased

relative to the preceding block. The output file is

‘‘decanonicalized_blocks.txt.’’

4. The script ‘‘haplotype_sextet.pl’’ takes as input the list

of meiosis-indicator vectors for each block together

with a list of genotype vectors and their positions.

The output is the set of haplotypes for the genome.

The output file is ‘‘phased_genotype_vector.txt.’’
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Web Resources

The URLs for data presented herein are as follows:

CEPH Resources, http://ccr.coriell.org/Sections/Collections/NIGMS/

CEPHResources.aspx?PgId¼525&coll¼GM

Institute for Systems Biology, http://www.systemsbiology.org/

Public_Resources/Downloadable_Software

Online Mendelian Inheritance in Man (OMIM), http://omim.org

Whole-genome sequencedata for pedigreeA fromCompleteGeno-

mics, www.completegenomics.com/sequence-data/download-

data/
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