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A General Framework for Detecting
Disease Associations with Rare
Variants in Sequencing Studies
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Biological and empirical evidence suggests that rare variants account for a large proportion of the genetic contributions to complex

human diseases. Recent technological advances in high-throughput sequencing platforms have made it possible for researchers to

generate comprehensive information on rare variants in large samples. We provide a general framework for association testing with

rare variants by combining mutation information across multiple variant sites within a gene and relating the enriched genetic informa-

tion to disease phenotypes through appropriate regression models. Our framework covers all major study designs (i.e., case-control,

cross-sectional, cohort and family studies) and all common phenotypes (e.g., binary, quantitative, and age at onset), and it allows arbi-

trary covariates (e.g., environmental factors and ancestry variables). We derive theoretically optimal procedures for combining rare

mutations and construct suitable test statistics for various biological scenarios. The allele-frequency threshold can be fixed or variable.

The effects of the combined raremutations on the phenotype can be in the same direction or different directions. The proposedmethods

are statistically more powerful and computationally more efficient than existing ones. An application to a deep-resequencing study of

drug targets led to a discovery of rare variants associated with total cholesterol. The relevant software is freely available.
Introduction

Genome-wide association studies (GWAS) with tagSNPs

have successfully identified common SNPs with small to

modest effects for virtually every complex human disease.

Technological advances in high-throughput sequencing

platforms have made it possible for researchers to extend

association studies to rare variants in targeted exons and

soon in the entire genome. Rare variants tend to be func-

tional alleles and have stronger effects on complex diseases

than common variants.1,2 Indeed, deep-resequencing

studies of candidate genes have already demonstrated the

influence of rare variants on several complex traits.3–5

Association testing with a single rare variant has limited

power because only a small percentage of study subjects

carry a rare mutation and there are a large number of tests

to be adjusted for. Collapsing or grouping methods, which

combine information across multiple variant sites within

a gene, can enrich association signals and reduce the

penalty of multiple testing. The simplest collapsing

method is the burden test, which is based on the number

of rare mutations each subject carries in a gene.6,7 A second

approach is the weighted sum statistic of Madsen and

Browning,8 which weights each mutation according to

its frequency in the unaffected subjects and permutes the

disease status to assess the significance of a Wilcoxon-

type test statistic. A third approach is the variable-

threshold (VT) idea of Price et al.,9 which uses the

maximum of the test statistics over all allele-frequency

thresholds and assesses statistical significance by permuta-

tion. The forgoing methods assume that the effects of the

combined rare mutations on the phenotype are in the

same direction. To detect opposite effects, Han and Pan10
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incorporated the signs of the observed effects into the

burden test, whereas Neale et al.11 and Wu et al.12 tested

the variance of the effects.

In this article, we provide a general framework for associ-

ation testingwith rare variants that reflects the spirits of the

existing methods but is statistically more powerful and

computationally more efficient. Our framework covers all

major study designs (i.e., case-control, cross-sectional,

cohort and family studies) and all common phenotypes

(e.g., binary and quantitative traits, and potentially cen-

sored ages at onset of disease) and allows any covariates

(e.g., environmental factors and ancestry variables). The

ability to accommodate covariates is critically important

because population stratification is expected to be a more

severe issue with rare variants than with common variants

but could be corrected by including suitable ancestry vari-

ables (e.g., the percentage of African ancestry or principal

components for ancestry) in the association analysis. We

combine information across multiple variant sites within

a gene by taking a weighted sum of the mutation counts

for each study subject and relate the combined information

and covariates to disease phenotypes through appropriate

regressionmodels. We derive theoretically optimal weights

that would produce the most powerful tests among all

valid tests and develop the corresponding testing proce-

dures. We employ score-type statistics, which are numeri-

cally stable even in the case of extremely rare variants and

computationally fast even in the presence of covariates.

We provide asymptotic normal approximation for both

fixed-threshold and VTmethods and develop permutation

and other resampling tests that can accommodate

covariates. We investigate theoretically and numerically

when normal approximation is appropriate and when
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resampling is required. We modify the popular methods of

Madsen and Browning8 and Price et al.9 to enhance statis-

tical power, avoid permutation, and accommodate covari-

ates. We construct data-adaptive test statistics that are

powerful even when the combined rare mutations have

opposite effects on the phenotype. The advantages of the

proposedmethods over the existing ones are demonstrated

both analytically and empirically. The software imple-

menting the proposed methods is available at our website.
Material and Methods

Suppose that a total of n subjects are genotyped on a total of m

SNPs in a gene and that there are d covariates. Here, the word

‘‘gene’’ refers to the group of variants that will be collectively

analyzed and might pertain to a subset of SNPs within a gene or

to a region or pathway involving multiple genes; covariates might

include nongenetic variables, such as age and smoking status, as

well as ancestry variables, such as the percentage of African

ancestry and principal components for ancestry. For i ¼ 1;.;n,

let Yi be the phenotype value of the ith subject; for i ¼ 1;.;n

and j ¼ 1;.;m, let Xji denote the number of the rare mutation

the ith subject carries at the jth SNP; for i ¼ 1;.;n and

j ¼ 1;.; d, let Zji denote the value of the jth covariate on the ith

subject. We can define

Xi ¼
24 X1i

«
Xmi

35; Zi ¼

2664
1
Z1i

«
Zdi

3775:
We focus on binary phenotypes in the main text but consider all

common phenotypes in Appendix A. It is natural to relate Yi to Xi

and Zi through the logistic regression model:

Pr ðYi ¼ 1Þ ¼ e b
TXiþgTZi

1þ e b
TXiþgTZi

; (Equation 1)

where b and g arem3 1 and (dþ 1)31 vectors of unknown regres-

sion coefficients. Because the first component of Zi is 1, the first

component of g corresponds to the intercept. We can write

b ¼ tx, where t is a scalar constant, and x ¼ b=t. Then Equation

(1) becomes

Pr ðYi ¼ 1Þ ¼ e tSiþgTZi

1þ e tSiþgTZi
; (Equation 2)

where Si ¼ xTXi. Note that x ¼ ðx1;.; xmÞT is a m 3 1 vector of

weights and that Si is a weighted linear combination of

X1i;.;Xmi with Xji receiving the weight xj. We will refer to x as

the weight function.

The score statistic for testing the null hypothesisH0 : t ¼ 0 takes

the form

U ¼
Xn
i¼1

 
Yi � ebgT

Zi

1þ ebgT
Zi

!
Si;

where bg is the restricted maximum likelihood estimator of g and

solves the equation

Xn
i¼1

 
Yi � eg

TZi

1þ egTZi

!
Zi ¼ 0:
The American
The variance of U is estimated by

V ¼
Xn
i¼1

viS
2
i �

 Xn
i¼1

viSiZi

!T Xn
i¼1

viZiZ
T
i

!�1 Xn
i¼1

viSiZi

!
;

where

vi ¼ ebgT
Zi�

1þ ebgT
Zi

�2:
Under H0, the test statistic T ¼ U=V1=2 is asymptotically standard

normal. In the absence of covariates,

U ¼
Xn
i¼1

ðYi � YÞSi;

and

V ¼ Yð1� YÞ
(Xn

i¼1

S2i � n�1

 Xn
i¼1

Si

!2)
;

where Y ¼ n�1
Pn

i¼1Yi.

The true value of the weight function x ¼ ðx1;.; xmÞT is

unknown and must be determined biologically or empirically. If

we set xj ¼ 1ðj ¼ 1;.;mÞ, then T is a burden test, which counts

the total number of rare mutations each subject carries over the

m SNPs. If we believe that common variants are not associated

with the phenotype, then we set xj ¼ 0 if pj > c, where pj is the

minor allele frequency (MAF) of the jth SNP, and c is a given

threshold. If we set xj ¼ fpjð1� pjÞg�1=2ðj ¼ 1;.;mÞ, then the

weight function is in the same vein as that of Madsen and

Browning.8

If the choice of the weight function x is not proportional to b or

x is estimated from the data, then U is no longer the score statistic.

However, we show in Appendix A that the test statistic T is asymp-

totically standard normal under H0 regardless of how x is deter-

mined. The only condition is that if x is estimated from the data,

then the estimate converges to a constant vector as the sample

size n increases. This condition is satisfied by all sensible estimates,

including those based on estimated allele frequencies. If the

choice of x or the limit of the estimate of x is proportional to b,

then the corresponding test statistic T is themost powerful among

all valid tests.

The weight function x is similar to that of Price et al.9 The latter

authors showed that, for case-control studies with known allele

frequencies in the control population, the choice of xj ¼
fpjð1� pjÞg�1=2ðj ¼ 1;.;mÞ corresponds to the implicit assump-

tion that logðORjÞffpjð1� pjÞg�1=2ðj ¼ 1;.;mÞ, where ORj is the

odds ratio in the 2 3 2 table for the jth SNP. Our theory is much

more general in that it assumes unknown allele frequencies and

accommodates covariates. Indeed, the proposed test statistic is

optimal if x is proportional to the set of regression coefficients

(in the limit); this result holds for all phenotypes, including binary

and continuous traits, as well as potentially censored ages at onset

of disease.

Madsen and Browning8 suggested to set xj ¼ fbpjð1� bpjÞg�1=2

ðj ¼ 1;.;mÞ, where bpj is the estimate of the MAF of the jth SNP

in the unaffected subjects. Because the weights depend on the

phenotype values, the authors suggested a permutation-based

test. Our testing framework allows such data-dependent weights

because the frequency estimates converge to the true values as n

increases. To improve the accuracy of asymptotic approximation,

we suggest estimating the frequencies from all study subjects
Journal of Human Genetics 89, 354–367, September 9, 2011 355



rather than the unaffected subjects. Because the variants can be

very rare, we recommend adding pseudocounts when estimating

the frequencies, as was done by Madsen and Browning.8 The

weight functions based on the frequency estimates in the pooled

sample and the unaffected subjects will be denoted by Fp and Fu,

respectively; the constant weight function will be denoted by C.

The corresponding tests will be referred to as the Fp test, the Fu
test and the C test.

Although Fu is the weight function used by Madsen and Brown-

ing,8 our Fu test is fundamentally different from the Madsen and

Browning (MB) test. The latter is based on the sum of the ranks

of the Si’s with weight function Fu over the affected subjects. Mad-

sen and Browning8 proposed to assess the statistical significance of

their rank-sum statistic by permutation. They also suggested an

asymptotic normal approximation by standardizing the rank-

sum statistic by its mean and standard derivation. Because the

mean and standard derivation are estimated by permutation, the

asymptotic version of the MB test is many orders of magnitudes

slower than our asymptotic tests. The rank-sum statistic is

confined to case-control analysis without covariates.

Price et al.9 developed a VT method by taking the maximum of

the test statistics (i.e., Z scores) over all allele-frequency thresholds

and assessing statistical significance by permutation. We describe

below a more general approach that allows not only multiple

allele-frequency thresholds but also different types of weight

function; it also accommodates covariates and does not require

permutation.

We consider K choices of x, which could correspond to different

thresholds or different types of weight function, or both. (It is

assumed that K is small relative to n.) For the kth choice of x, the

corresponding Si is denoted by Ski. Then the score statistic is

Uk ¼
Xn
i¼1

 
Yi � ebgT

Zi

1þ ebgT
Zi

!
Ski;

and the test statistic is Tk ¼ Uk=V
1=2
k , where

Vk ¼
Xn
i¼1

viS
2
ki �

 Xn
i¼1

viSkiZi

!T Xn
i¼1

viZiZ
T
i

!�1 Xn
i¼1

viSkiZi

!
:

It is shown in Appendix A that, under H0, the random vector

ðU1;.;UKÞT is approximately K-variate normal with mean 0 and

covariance matrix fVkl; k; l ¼ 1;.;Kg, where

Vkl ¼
Xn
i¼1

UkiUli;

and

Uki ¼
 
Yi � ebgT

Zi

1þ ebgT
Zi

!(
Ski �

 Xn
i¼1

viSkiZi

!T Xn
i¼1

viZiZ
T
i

!�1

Zi

)
:

For the two-sided test, we consider the maximum of the absolute

test statistics

Tmax ¼ max
k¼1;.;K

jTkj :

Let tmax be the observed value of Tmax. The p value is given by

Pr ðTmaxRtmaxÞ ¼ 1� Pr ð jT1j < tmax;.; jTKj < tmaxÞ;

which is evaluated by treating ðT1;.;TKÞT as a K-variate normal

random vector with a mean of 0 and a covariance matrix of

frkl; k; l ¼ 1;.;Kg, where rkl ¼ Vkl=ðVkkVllÞ1=2. (The one-sided
356 The American Journal of Human Genetics 89, 354–367, Septemb
p value can be calculated in a similar manner.) We reject H0 if

the p value is smaller than the nominal significance level a.

The tests based on positive weight functions, such as C, Fu, and

Fp, will have low power if the mutations being combined have

opposite effects on the phenotype. The optimal choice of xj is bj,

which is unknown. We can estimate bj from the data. It would

be tempting to set xj to bbj, where bbj is an appropriate estimate of

bj. There are two major problems with this strategy. First, the test

statistic T will not be asymptotically normal. Second, the bbj’s are

highly variable (because the individual variants are very rare)

and can be quite different from the true values of the bj’s. As

a compromise, we set xj ¼ bbj þ d, where d is a given constant. We

refer to this weight function as EREC, an abbreviation of estimated

regression coefficients. The corresponding test statistic T will be

asymptotically standard normal as long as d is nonzero. Indeed,

the EREC test is asymptotically optimal in that xj will converge

to bj if we let d decrease to 0 as the sample size n increases to N.

The asymptotic normality and optimality require very large

samples. For small samples, we recommend to use a relatively large

value of d so that the weights are not unduly driven by the highly

variable bbj’s. For n < 2000, we set d ¼ 1 for binary traits and d ¼ 2

for standardized quantitative traits.

The sequence kernel association test (SKAT) of Wu et al.12

assumes that bj follows an arbitrary distribution with a mean of

0 and a variance of xjn, and tests the null hypothesis that n ¼ 0

by using a variance-component score statistic. The SKAT statistic

can be written as Q ¼Pm
j¼1xjU

2
j , where Uj is the jth component

of the score statistic for testing the null hypothesis that b ¼ 0

under Equation 1. The C-alpha statistic of Neale et al.11 is a special

case of Qwith xj ¼ 1 for binary traits without covariates. Our score

statistic U can be written as
Pm

j¼1xjUj. The Han and Pan10 (HP)

statistic is a special case of U (for binary traits without covariates)

in which xj ¼ �1 if bbj < 0 and the corresponding p value<0.1 and

in which xj ¼ 1 otherwise.

Because the asymptotic approximationmight not be accurate in

small samples, especially when the weight function x involves the

phenotype values Yi’s, we also provide permutation-type tests. In

the absence of covariates, we simply permute the phenotype

values Yi’s and calculate the test statistic T for each permutation.

Note that it is necessary to recalculate the Si’s after permuting

the Yi’s if the weight function x depends on the Yi’s.

Our permutation differs from that of Price et al.9 in that we

permute T, whereas they permuted
Pn

i¼1YiSi. The former is a

pivotal statistic, whereas the latter is not. (It is desirable to permute

a pivotal statistic.13) If the test is one-sided and the weight func-

tion does not depend on the phenotype values, then our permuta-

tion is equivalent to Price et al.’s9; otherwise, the two are different.

For VT methods, the numerators in the Z scores of Price et al.9 are

the same as ours, but the denominators are not the same as or

proportional to ours. Thus, the permutation p values are generally

different between the two methods. The permutation version of

the MB test requires ranking the Si’s for each permutation and is

thus substantially slower than our permutation tests.

In the presence of covariates, permuting the Yi’s it is not appro-

priate because Yi is generally correlated with Zi. Instead, we

generate Y�
i from the fitted null model:

Pr
�
Y�
i ¼ 1

� ¼ ebgT
Zi

1þ ebgT
Zi

;

replace the Yi’s with the Y�
i ’s, and recalculate the test statistic. (The

recalculation of the test statistic starts with re-estimating g and
er 9, 2011



Table 1. Type I Errora and Power of Asymptotic Methods with Different Weight Functions

n a

H0 : bj ¼ 0 H1 : bj ¼ x bj ¼ x/{pj(1 � pj)}
1/2

C Fp Tmax Fu C Fp Tmax Fu C Fp Tmax Fu

500 10�2 0.95 0.95 0.93 2.12 0.76 0.73 0.75 0.86 0.75 0.77 0.77 0.89

10�3 0.82 0.79 0.78 2.51 0.49 0.44 0.47 0.64 0.47 0.49 0.48 0.68

10�4 0.68 0.63 0.60 2.52 0.25 0.21 0.23 0.39 0.23 0.25 0.24 0.42

1000 10�2 0.98 0.97 0.97 1.96 0.81 0.77 0.80 0.88 0.89 0.91 0.90 0.96

10�3 0.92 0.89 0.89 2.53 0.55 0.50 0.54 0.67 0.68 0.73 0.71 0.84

10�4 0.88 0.74 0.78 3.05 0.31 0.27 0.30 0.43 0.44 0.49 0.47 0.65

2000 10�2 0.98 0.98 0.98 1.64 0.92 0.90 0.92 0.95 0.95 0.97 0.96 0.98

10�3 0.96 0.95 0.95 2.04 0.76 0.71 0.75 0.81 0.82 0.86 0.85 0.92

10�4 0.91 0.88 0.88 2.44 0.54 0.47 0.52 0.61 0.62 0.68 0.67 0.79

4000 10�2 1.00 0.99 0.99 1.37 0.97 0.96 0.97 0.98 0.97 0.98 0.97 0.99

10�3 0.98 0.98 0.97 1.61 0.88 0.84 0.87 0.90 0.86 0.90 0.89 0.94

10�4 0.98 0.96 0.94 1.85 0.72 0.65 0.70 0.74 0.69 0.75 0.73 0.82

a Divided by a.
recalculating the Si’s.) This process is repeated and is called (para-

metric) bootstrap.13 Both permutation and bootstrap are resam-

pling methods. In the absence of covariates, PrðY�
i ¼ 1Þ is the

sample proportion of cases.

Obtaining an accurate estimate of a small p value requires a large

number of resamples (i.e., permutations or bootstrap samples).

However, most p values are relatively large and can be estimated

accurately with a small number of resamples. Thus, we employ

a multistage procedure which filters out large p values with small

numbers of resamples and uses large numbers of resamples only

for the most extreme p values.
Results

Simulation Studies

We conducted extensive simulation studies to investigate

the performance of the proposed and existing methods.

We simulated case-control data with an equal number of

cases and controls from Equation 1 in which the first

component of g was set to –2. We considered mainly

the following six combinations of MAFs: (1) pj ¼ 0:001j

ðj ¼ 1;.;10Þ with a total frequency of 5.5%; (2)

pj ¼ 0:0005j ðj ¼ 1;.; 10Þ with a total frequency of

2.75%; (3) pj ¼ 0:00025j ðj ¼ 1;.;20Þ with a total

frequency of 5.25%; (4) pj ¼ 0:005 ðj ¼ 1;.; 10Þ with a

total frequency of 5%; (5) pj ¼ 0:0025 ðj ¼ 1;.;10Þ with a

total frequency of 2.5%; and (6) pj ¼ 0:0025 ðj ¼ 1;.;20Þ
with a total frequency of 5%. The genotype values were

simulated under Hardy-Weinberg equilibrium and linkage

equilibrium. We did not use sophisticated population

genetics models because we wished to control the number

of variants and their frequencies, which allowed us to see

clearly how the proposed and existing methods perform

under various scenarios. We evaluated both asymptotic
The American
and resampling methods. When the simulation studies

involved asymptotic methods only, we used 10 millions

replicates (i.e., simulated data sets) to evaluate type I error

and 100,000 replicates to evaluate power at a ¼ 10�2;

10�3, and 10�4. When the simulation studies involved

resampling methods, we used 1 million replicates to eval-

uate type I error and 10,000 replicates to evaluate power

at a ¼ 10�2 and 10�3. The resampling p values were ob-

tained from a three-stage procedure with a maximum of

1 million resamples. The null hypothesis corresponded

to H0 : bj ¼ 0 ðj ¼ 1;.;mÞ. We considered alternative hy-

potheses such as H1 : bj ¼ x ðj ¼ 1;.;mÞ and H1 : bj ¼ x=

fpjð1� pjÞg1=2 ðj ¼ 1;.;mÞ, where x was chosen such that

the power (of the most powerful method) was reasonably

high at a ¼ 10�2. We report below results from six series

of simulation studies, the first four without covariates

and the last two with covariates. The tests were two-sided

except for the third series.

We designed our first series of simulation studies to eval-

uate the proposed asymptotic methods with different

weight functions. We considered the aforementioned six

combinations of MAFs and generated data under the null

hypothesis H0 : bj ¼ 0 ðj ¼ 1;.;mÞ, as well as two alterna-

tive hypotheses H1 : bj ¼ x ðj ¼ 1;.;mÞ and H1 : bj ¼
x=fpjð1� pjÞg1=2ðj ¼ 1;.;mÞ.Weconsidered three (positive)

weight functions: C, Fp, and Fu. We also considered the

maximum of the test statistics based on weight functions C

and Fp, which will be referred to as Tmax. The results for the

first combination of MAFs are displayed in Table 1, whereas

those of the remaining five combinations are provided in

Tables S1–S5, available online. The performance of the tests

is affected more by the total allele frequency than the

number of variants or individual MAFs. The C test, Fp test,

and Tmax are conservative but less so as n, a, or total allele
Journal of Human Genetics 89, 354–367, September 9, 2011 357



Table 2. Type I Errora and Power of Asymptotic and Permutation
Methods

n a

Asymptotic Permutation

C Fp MB C Fp Fu Priceb MB

H0 : bj ¼ 0

500 10�2 0.99 0.98 0.98 0.71 1.02 1.02 1.01 1.00

10�3 0.89 0.87 0.89 0.62 0.99 1.01 0.99 1.01

1000 10�2 1.00 1.00 1.00 0.79 1.01 1.03 1.01 1.01

10�3 0.96 0.96 0.93 0.72 1.01 1.02 1.01 1.02

H1 : bj ¼ x

500 10�2 0.84 0.81 0.82 0.81 0.81 0.81 0.79 0.82

10�3 0.57 0.54 0.54 0.54 0.55 0.54 0.49 0.56

1000 10�2 0.86 0.84 0.85 0.85 0.84 0.84 0.82 0.85

10�3 0.63 0.58 0.60 0.60 0.59 0.58 0.53 0.60

H1 : bj ¼ x/{pj(1 � pj)}
1/2

500 10�2 0.83 0.85 0.82 0.80 0.85 0.84 0.81 0.82

10�3 0.56 0.59 0.54 0.52 0.59 0.57 0.51 0.55

1000 10�2 0.93 0.95 0.92 0.92 0.95 0.94 0.93 0.92

10�3 0.75 0.80 0.73 0.73 0.80 0.77 0.74 0.74

a Divided by a.
b With weight function Fu.

Table 3. Type I Errora and Power of Fixed-Threshold and VT
Methods

n a

Asymptotic Permutation

T1 T5 VT T1 T5 VT Priceb

H0 : bj ¼ 0

500 10�2 0.91 0.96 0.84 0.62 0.72 0.90 0.88

10�3 0.79 0.85 0.57 0.54 0.61 0.83 0.83

1000 10�2 0.96 0.99 0.86 0.73 0.81 0.93 0.93

10�3 0.88 0.90 0.66 0.68 0.70 0.89 0.88

H1 : b1 ¼ . ¼ b10 ¼ x, b11 ¼ 0

500 10�2 0.39 0.59 0.66 0.34 0.55 0.67 0.67

10�3 0.15 0.29 0.36 0.13 0.27 0.40 0.39

1000 10�2 0.50 0.61 0.68 0.46 0.58 0.69 0.69

10�3 0.23 0.33 0.40 0.21 0.30 0.43 0.43

H1 : b1 ¼ . ¼ b11 ¼ x

500 10�2 0.29 0.82 0.71 0.25 0.80 0.72 0.71

10�3 0.10 0.57 0.42 0.09 0.54 0.46 0.45

1000 10�2 0.35 0.82 0.68 0.32 0.81 0.69 0.68

10�3 0.13 0.57 0.41 0.12 0.54 0.44 0.42

a Divided by a.
b VT method of Price et al.9
frequency increases. As expected, theC test ismore powerful

than the Fp test under the first alternativehypothesis and less

powerful under the second alternative hypothesis; Tmax is

nearly as powerful as the C test under the first alternative

and nearly as powerful as the Fp test under the second

alternative. The Fu test is unacceptably liberal; therefore, we

will not consider this asymptotic test any further.

Our second series of studies was devoted to comparisons

of asymptotic and permutation methods. In addition to

the proposed methods, we evaluated the asymptotic and

permutation versions of the MB test, as well as the permu-

tation method of Price et al.9 with weight function Fu. We

simulated data in the same manner as the first series of

studies. We performed one-sided tests because the MB

and Price et al. tests were designed as one-sided. The results

for the first combination of MAFs are displayed in Table 2.

Because of the discreteness of the test statistic, the permu-

tation version of the C test is more conservative than its

asymptotic counterpart and consequently less powerful.

The permutation Fp and Fu tests do not appear to be conser-

vative; the former appears to be slightly more powerful

than the latter. The MB test was designed for the second

alternative hypothesis, for which the proposed asymptotic

test based on weight function Fp is more powerful than the

asymptotic version of the MB test whereas the proposed

permutation tests based on weight functions Fp and Fu
are more powerful than the permutation version of the

MB test. For weight function Fu, our permutation test is

more powerful than that of Price et al.9
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In the third series of studies, we compared fixed-

threshold and VT methods. We simulated 11 SNPs with

MAFs pj ¼ 0:001j ðj ¼ 1;.;10Þ and p11 ¼ 0:03. We consid-

ered the null hypothesis H0 : b1 ¼ b2 ¼ . ¼ b11 ¼ 0, as

well as two alternative hypotheses H1 : b1 ¼ b2 ¼ . ¼
b10 ¼ x, b11 ¼ 0 and H1 : b1 ¼ b2 ¼ . ¼ b11 ¼ x. For

fixed-threshold methods, we considered the thresholds of

0.01 and 0.05; the corresponding tests are referred to as

the T1 and T5 tests. For VT methods, we excluded the

thresholds for which the total numbers of rare mutations

were fewer than 10. As shown in Table 3, all the tests

appear to be conservative, especially when n and a are

small. The permutation T1 and T5 tests are more conserva-

tive than their asymptotic counterparts. In theory, T1 and

T5 are the most powerful under the first and second alter-

natives, respectively. Because the frequency estimates for

rare variants are highly variable, T1 turns out to be the least

powerful among all the tests under the first alternative. The

VT tests have good power under both alternatives, and the

asymptotic and permutation versions have similar power.

The permutation version of our VT test is slightly more

powerful than that of Price et al.9

In the fourth set of studies, we compared the C test, Fp
test, and EREC test, as well as the HP, C-alpha, and SKAT

tests. Note that the last four tests were designed to detect

variants with opposite effects. The EREC, HP, and C-alpha

tests were based on permutation, whereas the SKAT was

based on the Davies method.12 For the EREC test, bbj was

the estimate of the log odds ratio bj (after adding
er 9, 2011



Table 4. Type I Errora and Power of Asymptotic and Permutation
Tests for Detecting Potentially Opposite Effects

n a

Asymptotic Permutation

C Fp SKAT C Fp EREC HP C-alpha

H0 : bj ¼ 0

500 10�2 0.95 0.95 0.53 0.68 1.00 1.01 0.89 0.91

10�3 0.83 0.77 0.26 0.60 0.94 0.97 0.91 0.87

1000 10�2 0.99 0.98 0.75 0.77 1.02 1.02 0.97 0.96

10�3 0.97 0.95 0.57 0.73 1.02 1.04 1.01 0.97

H0 : bj ¼ x

500 10�2 0.77 0.74 0.33 0.73 0.74 0.72 0.71 0.36

10�3 0.49 0.45 0.09 0.46 0.47 0.44 0.41 0.14

1000 10�2 0.81 0.77 0.41 0.78 0.77 0.78 0.73 0.42

10�3 0.56 0.50 0.16 0.53 0.51 0.51 0.42 0.17

H1 : bj ¼ x/{pj(1 � pj)}
1/2

500 10�2 0.76 0.78 0.26 0.73 0.79 0.71 0.70 0.27

10�3 0.47 0.50 0.06 0.44 0.51 0.41 0.39 0.08

1000 10�2 0.66 0.70 0.22 0.63 0.70 0.65 0.57 0.21

10�3 0.37 0.41 0.06 0.35 0.42 0.35 0.26 0.06

H1 : b1 ¼ . ¼ b8 ¼ x, b9 ¼ �x, b10 ¼ � 2x

500 10�2 0.29 0.23 0.58 0.25 0.23 0.76 0.63 0.61

10�3 0.09 0.06 0.25 0.08 0.06 0.49 0.38 0.32

1000 10�2 0.31 0.27 0.81 0.28 0.27 0.88 0.86 0.81

10�3 0.10 0.08 0.54 0.09 0.09 0.66 0.65 0.56

H1 : b1 ¼ . ¼ b9 ¼ x, b10 ¼ �x / 2

500 10�2 0.77 0.74 0.50 0.74 0.75 0.82 0.76 0.54

10�3 0.49 0.45 0.21 0.46 0.47 0.57 0.47 0.26

1000 10�2 0.86 0.85 0.69 0.84 0.85 0.92 0.86 0.70

10�3 0.64 0.61 0.40 0.61 0.62 0.73 0.60 0.42

H1 : b2 ¼ b4 ¼ b6 ¼ b8 ¼ x, b10 ¼ �x, bj ¼ 0 (j ¼ 1, 3, 5, 7, 9 )

500 10�2 0.19 0.13 0.41 0.16 0.14 0.56 0.34 0.47

10�3 0.05 0.03 0.14 0.05 0.03 0.26 0.13 0.21

1000 10�2 0.24 0.17 0.65 0.21 0.17 0.71 0.54 0.67

10�3 0.07 0.04 0.35 0.06 0.05 0.42 0.27 0.39

H1 : b3 ¼ 2x, b4 ¼ �2x, b5 ¼ x, b6 ¼ �x, b j ¼ 0 (j ¼ 1, 2, 7 ~ 10)

500 10�2 0.10 0.02 0.61 0.08 0.02 0.69 0.18 0.65

10�3 0.01 0.00 0.27 0.01 0.00 0.36 0.06 0.36

1000 10�2 0.12 0.03 0.88 0.11 0.03 0.90 0.43 0.86

10�3 0.03 0.00 0.63 0.02 0.00 0.66 0.21 0.62

a Divided by a.

Table 5. Type I Errora and Power of Fixed-Threshold and VT
Methods with Covariates

n a

Asymptotic Bootstrap

T1 T5 Fp VT T1 T5 Fp VT

H0 : bj ¼ 0

500 10�2 0.97 1.00 0.98 0.90 1.01 1.02 1.01 1.01

10�3 0.82 0.99 0.92 0.75 0.94 1.00 0.98 0.97

1000 10�2 0.97 0.99 0.99 0.88 0.99 1.00 1.00 0.98

10�3 0.90 0.98 0.94 0.79 0.94 0.98 0.96 0.94

H1 : b1 ¼ . ¼ b10 ¼ x, b11 ¼ 0

500 10�2 0.23 0.46 0.56 0.53 0.23 0.46 0.57 0.55

10�3 0.06 0.19 0.27 0.25 0.07 0.19 0.27 0.27

1000 10�2 0.31 0.50 0.62 0.58 0.31 0.50 0.62 0.59

10�3 0.11 0.23 0.33 0.30 0.11 0.23 0.33 0.32

H1 : b1 ¼ . ¼ b11 ¼ x

500 10�2 0.19 0.79 0.77 0.72 0.19 0.79 0.77 0.73

10�3 0.04 0.54 0.48 0.44 0.05 0.54 0.49 0.45

1000 10�2 0.26 0.89 0.82 0.77 0.27 0.89 0.82 0.78

10�3 0.08 0.68 0.56 0.51 0.08 0.68 0.56 0.53

a Divided by a.
a pseudocount of 1 to each of the four cells in the

232 table). For the SKAT test, we used the default weighted

linear kernel function. We set pj ¼ 0:001j ðj ¼ 1;.;10Þ and
considered the null hypothesis H0 : bj ¼ 0 ðj ¼ 1;.; 10Þ
The American
and six alternative hypotheses representing different

numbers of causal variants anddifferent patternsofpositive

andnegative effects. As shown inTable 4, the SKAT is highly

conservative, especially when n and a are small. The EREC

test is slightly less powerful than the C test and Fp test

when the SNP effects are all positive but is much more

powerful than the latter when there are opposite effects.

The EREC test is more powerful than the HP test. It is also

more powerful than the C-alpha and SKAT, especially

when the mean of the regression coefficients is not 0.

The above four sets of studies contained no covariates.

We also conducted extensive studies with covariates. We

generated data in the same manner as before except that

we added a normally distributed covariate whose mean is

equal to the total number of rare mutations and whose

variance is equal to 1 and we set its regression coefficient

to 0.3. Some key results are presented in Tables 5 and 6.

The T1, T5, Fp, and VT tests are less conservative than in

the case of no covariates, and their asymptotic and boot-

strap versions have similar power. The EREC test has

similar power to the C and Fp tests when all SNP effects

are positive and is much more powerful than the latter

when there are opposite effects. The EREC test tends to

be more powerful than the SKAT, especially when the

mean of the regression coefficients is not 0.
Real Data

We considered high-depth sequence data from the exons

of 202 genes encoding known or potential drug targets14

for 1957 subjects randomly drawn from the CoLaus
Journal of Human Genetics 89, 354–367, September 9, 2011 359



Table 6. Type I Errora and Power of Asymptotic and Bootstrap
Tests for Detecting Potentially Opposite Effects in the Presence of
Covariates

n a

Asymptotic Bootstrap

C Fp SKAT C Fp EREC

H0 : bj ¼ 0

500 10�2 0.97 0.97 0.63 1.00 1.00 0.97

10�3 0.85 0.80 0.37 0.94 0.92 0.93

1000 10�2 0.98 0.97 0.81 0.99 0.99 0.98

10�3 1.01 0.96 0.56 1.05 1.01 0.99

H1 : bj ¼ x

500 10�2 0.67 0.63 0.14 0.67 0.63 0.67

10�3 0.37 0.33 0.02 0.37 0.33 0.37

1000 10�2 0.74 0.69 0.23 0.74 0.70 0.75

10�3 0.45 0.40 0.06 0.46 0.41 0.47

H1 : bj ¼ x/{pj(1 � pj)}
1/2

500 10�2 0.65 0.68 0.32 0.65 0.68 0.65

10�3 0.35 0.37 0.08 0.36 0.38 0.35

1000 10�2 0.58 0.63 0.47 0.59 0.63 0.62

10�3 0.30 0.33 0.18 0.30 0.33 0.32

H1 : b1 ¼ . ¼ b8 ¼ x, b9 ¼ �x, b10 ¼ � 2x

500 10�2 0.20 0.14 0.55 0.20 0.14 0.73

10�3 0.05 0.03 0.23 0.06 0.03 0.44

1000 10�2 0.22 0.18 0.81 0.22 0.18 0.84

10�3 0.06 0.04 0.55 0.07 0.04 0.61

H1 : b1 ¼ . ¼ b9 ¼ x, b10 ¼ �x / 2

500 10�2 0.67 0.63 0.31 0.67 0.63 0.78

10�3 0.36 0.32 0.09 0.37 0.33 0.50

1000 10�2 0.79 0.76 0.53 0.79 0.77 0.89

10�3 0.51 0.48 0.23 0.52 0.49 0.67

H1 : b2 ¼ b4 ¼ b6 ¼ b8 ¼ x, b10 ¼ �x, bj ¼ 0 (j ¼ 1, 3, 5, 7, 9 )

500 10�2 0.13 0.08 0.34 0.13 0.08 0.48

10�3 0.03 0.01 0.11 0.03 0.01 0.21

1000 10�2 0.17 0.12 0.61 0.17 0.12 0.64

10�3 0.05 0.03 0.31 0.05 0.03 0.35

H1 : b3 ¼ 2x, b4 ¼ �2x, b5 ¼ x, b6 ¼ �x, b j ¼ 0 (j ¼ 1, 2, 7 ~ 10)

500 10�2 0.04 0.02 0.47 0.04 0.02 0.53

10�3 0.01 0.00 0.14 0.01 0.00 0.23

1000 10�2 0.07 0.01 0.82 0.07 0.01 0.81

10�3 0.01 0.00 0.52 0.01 0.00 0.52

a Divided by a.
population-based collection.15 We analyzed total choles-

terol (available in 1899 subjects) as a quantitative trait

and included eight covariates in the analysis: gender, age,
360 The American Journal of Human Genetics 89, 354–367, Septemb
age2, and the top five principal components for ancestry

constructed from the GWAS SNP data. One subject without

the gender and age information was removed. We em-

ployed the methods for quantitative traits described in

Appendix A.

We restricted our analysis to polymorphic variants that

are nonsense, missense, or splice site mutations. We

removed variants with observed MAFs>5% or mis-

singness>10%.We excluded any gene whose total number

of rare mutations is less than five and ended up with a total

of 172 genes. There were a total of 2304 variants in these

172 genes, and the number of variants per gene varied

from 1 to 70, with a median of 11. We applied both the

asymptotic and permutation versions of our T1, T5, Fp,

and VT tests, as well as the permutation EREC test. We

calculated the two-sided p values. With 172 genes, the

Bonferroni threshold at the 0.05 significance level corre-

sponds to a p value of 0.0003 or –log10(p value) of 3.5.

The results based on the asymptotic and permutation

methods are shown in Figures 1 and 2, respectively. One

gene was identified as the most significant by all the tests:

the asymptotic p values for T1, T5, Fp, and VT are 0.00011,

0.00011, 0.00021, and 0.00057, respectively; the corre-

sponding permutation p values are 0.00013, 0.00013,

0.00025, and 0.0012, respectively; the p value of the EREC

test is 0.00012. (The name of the gene is not disclosed

here because the main study has not been published yet.)

All the p values, except the VT’s, pass the Bonferroni crite-

rion. Similar evidence of association has been observed in

other samples of the sequencing project.14 There were 13

variants in the top gene. Their observed MAFs ranged

from 0.00026 to 0.0024, the total frequency being 1.13%.

Because the observed MAFs are all less than 1% in this

case, T1 and T5 are the same test. For the VT test, the

maximum occurs at the highest MAF. It is interesting to

point out that common SNPs in the top gene were previ-

ously identified to be associated with total cholesterol.16

We also performed a binary trait analysis by comparing

high (i.e.,>6.2mmol/l) anddesirable (i.e.,<5.2mmol/l) total

cholesterol values. There were 451 subjects with high total

cholesterol and 683 subjects with desirable total cholesterol.

The results of the analysis are shown in Figures 3 and 4. All

the tests identified the same top gene as was identified

in the quantitative trait analysis: the asymptotic p values

for T1, T5, Fp, and VT are 0.00022, 0.00022, 0.00057, and

0.00088, respectively; the corresponding bootstrap p values

are 0.00019, 0.00019, 0.00039, and 0.00033, respectively.

Again, T1 and T5 are the same test. The maximum of the

VT test occurs at the highest MAF, at which threshold 18

out of the 451 subjects with high cholesterol values carry

the rare mutations as opposed to 7 out of 683 subjects with

desirable cholesterol values. The p value of the bootstrap

EREC test is 0.000021, which is the most extreme among

all the tests and is even more extreme than all the p values

of the quantitative trait analysis. For eight out of the 10 vari-

ants in the top gene, there were moremutations in the high

group than in the desirable group (17 versus two); for the
er 9, 2011
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Figure 1. Quantile-Quantile Plots of p Values on the –log10 Scale for the Asymptotic T1, T5, Fp, and VT Tests in the Quantitative Trait
Analysis of Total Cholesterol
remaining two variants, there were fewer mutations in the

high group than in the desirable group (one versus five).

Thus, allowing opposite effects yielded stronger evidence

of association than assuming effects of the same direction.

Finally, we compared the proposed methods to the exist-

ing ones. The results for the SKAT are shown in Figure S1

(top panel). For the top gene, the SKAT yielded the p values

of 0.0014 and 0.00024 in the quantitative and binary trait

analyses, respectively, which are 10 times larger than the

p values of our EREC test. Because the other existing

methods do not allow covariates and some of them require

binary traits, we also performed the binary trait analysis

without the covariates for all the methods. The results
The American
are shown in the bottom panel of Figure S1 and in Figures

S2–S4. Although the top gene remains the same, the results

without covariate adjustment (for the top gene) are con-

siderably less significant than those with covariate adjust-

ment. For the top gene, the EREC test yielded a much

more significant result (p value ¼0.00013) than all the

other tests.
Discussion

We developed a very general framework for the association

analysis of rare variants. This framework enabled us to
Journal of Human Genetics 89, 354–367, September 9, 2011 361
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Figure 2. Quantile-Quantile Plots of p Values on the –log10 Scale for the Permutation EREC, T5, Fp, and VT Tests in the Quantitative
Trait Analysis of Total Cholesterol
evaluate existing methods and develop other methods.

Our theoretical analysis and simulation studies yielded

insights into the behavior of the existing methods. The

normal approximation works very well for the proposed

methods, and resampling is required only when the weight

function depends on the phenotype values. The proposed

methods are numerically stable and easy to implement.

The asymptotic tests are extremely fast. A computer

program implementing the proposed methods is posted

at our website. For a typical exome-sequencing study, it

takes only a few hours to run all the proposed asymptotic

and resampling tests.
362 The American Journal of Human Genetics 89, 354–367, Septemb
We have adopted score-type statistics, which are

computationally faster and more stable than Wald and

likelihood ratio (LR) statistics because the null model

does not involve rare variants and needs to be fit only

once. Our simulation studies revealed that Wald tests

tend to be overly conservative (resulting in substantial

loss of power) whereas likelihood ratio tests tend to

be too liberal (resulting in excessive false-positive find-

ings), especially for small n and low MAFs; see Tables

S6–S8.

Our work improves upon the pioneer work of Madsen

and Browning8 by using more powerful test statistics,
er 9, 2011
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Figure 3. Quantile-Quantile Plots of p Values on the –log10 Scale for the Asymptotic T1, T5, Fp, and VT Tests in the Binary Trait
Analysis of Total Cholesterol
accommodating covariates and avoiding permutation. For

case-control studies, Madsen and Browning8 estimated the

allele frequencies in the unaffected subjects only so that

a true signal from an excess of mutations in the affected

subjects would not be deflated by using the total number

of mutations in both affected and unaffected subjects.

According to our theory, the allele frequencies in the

unaffected subjects will be optimal if logðORjÞf
fpjð1� pjÞg�1=2ðj ¼ 1;.;mÞ and pj is the frequency of the

jth variant in the unaffected subjects. Even if that is the

truth, the frequency estimates are highly variable and

can be very different from the true values. The frequency

estimates in the pooled sample of affected and unaffected
The American
subjects are more stable and the corresponding Fp test

can be implemented through normal approximation

(rather than resampling).

The optimal choice of the frequency threshold depends

on the nature of association, which is generally unknown.

In addition, the frequency estimates for rare variants are

highly variable, especially for small samples with substan-

tial missing data. Thus, VT methods might be preferable to

fixed-threshold methods. Our VTapproach improves upon

that of Price et al.9 in three aspects: (1) it uses more power-

ful test statistics, (2) it can accommodate covariates, (3) it

can be implemented by normal approximation instead of

permutation.
Journal of Human Genetics 89, 354–367, September 9, 2011 363
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Figure 4. Quantile-Quantile Plots of p Values on the –log10 Scale for the Bootstrap EREC, T5, Fp, and VT Tests in the Binary Trait
Analysis of Total Cholesterol
The EREC test is capable of detecting rare mutations

with opposite effects. Simulation studies (Tables 4 and 6)

showed that the EREC test has similar power to the tests

assuming the same direction of effects when that assump-

tion holds and is much more powerful than the latter

when that assumption fails. In addition, the EREC test

outperforms the HP, C-alpha and SKAT tests. In the real

data example, the EREC test produced themost convincing

evidence of association for the top gene among all the tests.

Thus, we recommend the EREC test for general use.

The SKAT is computationally faster than the EREC, HP,

and C-alpha tests because it calculates p values analytically.

Simulation studies revealed that the SKAT is overly conser-
364 The American Journal of Human Genetics 89, 354–367, Septemb
vative, especially when n and a are small. The resampling

methods developed in this article can be used to obtain

accurate p values for the SKAT, and indeed any other tests,

with or without covariates.

Statistical analysis of rare variants is a very active research

area. Several othermethodshavebeenpublishedduring the

preparation of this article.17–19 We have not compared our

methods to all existing methods for several reasons: (1) we

wished to focus on the most commonly used current

methods, (2) some of the newly published methods are

based on different philosophies and thus would be difficult

to compare directly, (3) a comprehensive comparison of all

existing methods is beyond the scope of this article.
er 9, 2011



It is possible to incorporate biological and computa-

tional information about the functional effects of rare

variants, such as SIFT20 and PolyPhen21 scores, into the

association analysis. Indeed, our theory allows incorpora-

tion of any prior knowledge into the weight function. Effi-

cient use of functional or bioinformatics information

requires further investigation. It would be worthwhile to

explore Bayesian methods.

Grouping methods for rare variants are in the same vein

as the SNP-set methods for GWAS studies22–24 in that

multiple SNPs within a group are analyzed collectively to

enhance statistical power. Because the data are extremely

sparse for individual rare variants, the SNP-set methods

for common variants might not be applicable to rare vari-

ants. On the other hand, the methods for rare variants can

potentially be used to combine low-frequency SNPs in

GWAS studies.

We have considered one group of variants at a time. It

might be desirable to analyze several groups of variants

simultaneously. Our approach can be readily extended to

multiple groups of variants. Specifically, we divide variants

into, say, K groups according to certain criteria (e.g., MAFs)

and combine the information within each group. We can

express the score statistic for each group of variants as a

sum of n efficient score functions (see Appendix A) so

that the asymptotic joint distribution of the K score statis-

tics follows from the multivariate central limit theorem.

We can then use the asymptotic joint distribution to

form a multivariate test statistic. If we choose the

maximum of the K test statistics, then the formulas for K

weight functions presented in Material and Methods can

be directly applied. If we choose the chi-square statistic

with K degrees of freedom, then our method would be a

generalization of the combined multivariate and

collapsing (CMC) method of Li and Leal.7

We used the Bonferroni correction in the analysis of

the real data. This criterion is conservative if there is strong

linkage disequilibrium (LD) among the genes. More accu-

rate correction for multiple testing can be achieved by

accounting for the correlations of the test statistics. There

are two possible ways to do so: one is to use permutation

and the other is to use Monte Carlo.25 The latter is based

on efficient score functions, which are provided in

Appendix A.

This work and indeed all existing literature assume that

the quantitative trait data are obtained from a random

sample. In many sequencing studies, including several in

the National Heart, Lung, and Blood Institute (NHLBI)

Exome Sequencing Project that we are involved with,

only the subjects with the extreme values of a quantitative

trait are selected for sequencing. The case-control testing is a

validoptionbutmightbe inefficient if there is aquantitative

association. In addition, it might be desirable to analyze

quantitative traits that are not the one used to select the

subjects for sequencing. We are currently developing valid

and efficient methods for the association analysis of quan-

titative traits under such trait-dependent sampling.
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Appendix A

We relate Yi toXi and Zi through a generalized linear model

with the linear predictor bTXi þ gTZi, where b ¼ tx. Let h

consist of g and other nuisance parameters. Let lðt; h; xÞ
denote the log-likelihood function for t and h with a fixed

value of x. The corresponding score function and observed

Fisher information matrix are

�
Utðt; h; xÞ
Uhðt; h; xÞ

�
;

and �
Ittðt; h; xÞ Ithðt; h; xÞ
Ihtðt; h; xÞ Ihhðt; h; xÞ

�
;

where Utðt; h; xÞ ¼ vlðt; h; xÞ=vt,Uhðt; h; xÞ ¼ vlðt; h; xÞ=vh,
Ittðt; h; xÞ¼�v2lðt; h; xÞ=vt2, Ithðt; h; xÞ¼ �v2lðt; h; xÞ=vtvhT,
Ihtðt; h; xÞ ¼ ITthðt; h; xÞ, and Ihhðt; h; xÞ ¼ �v2lðt; h; xÞ=vhvhT.
The score statistic for testing the null hypothesis

H0 : t ¼ 0 is Utð0; bh; xÞ, where bh is the solution to the

equation Uhð0; h; xÞ ¼ 0. Under H0, the random variable

n�1=2Utð0; bh; xÞ is asymptotically zero-mean normal with

a variance that can be consistently estimated by26

n�1
n
Itt
�
0; bh; x�� Ith

�
0; bh; x�I�1

hh

�
0; bh; x�Iht�0; bh; x�o:

Suppose that x is estimated from the data by bx. Then we

replace x in Utð0; bh; xÞ by bx. It can be shown that

Utð0; h; xÞ ¼ xTUbð0; hÞ, where Ubðb; hÞ is the score function

of b under Equation 1. Because n�1=2Ubð0; bhÞ is asymptoti-

cally zero-mean normal, bxT n�1=2Ubð0; bhÞhas the same

asymptotic distribution as x�Tn�1=2Ubð0; bhÞ, where x� is

the limit of bx. As a result, n�1=2Utð0; bh; bxÞhas the same

asymptotic distribution as n�1=2Utð0; bh; x�Þ. Thus, the test

statistic

Ut

�
0; bh; bx�n

Itt
�
0; bh; bx�� Ith

�
0; bh; bx�I�1

hh

�
0; bh; bx�Iht�0; bh; bx�o1=2

is asymptotically standard normal as long as bx converges to
a nonzero constant as n/N.

Let Ut;iðt; h; xÞ and Uh;iðt; h; xÞ be the ith subject’s contri-

butions to Utðt; h; xÞ and Uhðt; h; xÞ, respectively, and let Sth

and Shh be the limits of n�1Ithð0; h; xÞ and n�1Ihhð0; h; xÞ,
respectively. It is easy to show that n�1=2Utð0; bh; xÞ is

asymptotically equivalent to n�1=2
Pn

i¼1ui, where

ui ¼ Ut;ið0; h; xÞ � SthS
�1
hh Uh;ið0; h; xÞ:

We refer to ui as the ith subject’s efficient score function.27

To derive the joint distribution of the test statistics with K

weight functions, we use the fact that n�1=2Uk

is asymptotically equivalent to n�1=2
Pn

i¼1uki, where uki is

the ith subject’s efficient score function associated with

the kth weight function. Note that ðu1i;.; uKiÞði ¼
1;.; nÞ are n independent random vectors. By the
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multivariate central limit theorem and law of large

numbers, the null distribution of n�1=2ðU1;.;UKÞ is

asymptotically zero-mean normal, and the covariance

between n�1=2Uk and n�1=2Ul is consistently estimated by

n�1
Pn

i¼1UkiUli, where the Uki’s are obtained from the uki’s

by replacing all unknown parameters by their sample esti-

mators.

For quantitative traits, we replace Equation 2 with the

linear regression model:

Yi ¼ tSi þ gTZi þ ei;

where εi is normal with mean 0 and variance s2. Then the

score statistic and its variance are

U ¼
Xn
i¼1

�
Yi � bgTZi

�
Si;

and

V ¼ bs2

(Xn
i¼1

S2i �
 Xn

i¼1

SiZi

!T Xn
i¼1

ZiZ
T
i

!�1 Xn
i¼1

SiZi

!)
;

where

bg ¼
 Xn

i¼1

ZiZ
T
i

!�1Xn
i¼1

YiZi;

and

bs2 ¼ n�1
Xn
i¼1

�
Yi � bgTZi

�2
:

For multiple weight functions,

Uk ¼
Xn
i¼1

�
Yi � bgT

Zi

�
Ski;

and

Uki ¼
�
Yi � bgT

Zi

�(
Ski �

 Xn
i¼1

SkiZi

!T Xn
i¼1

ZiZ
T
i

!�1

Zi

)
:

To perform permutation tests without covariates, we

simply permute the Yi’s. In the presence of covariates, we

adopt the following procedure: (1) calculate the residuals

Ri ¼ Yi � bgTZiði ¼ 1;.;nÞ, (2) permute the Ri’s to yield the

R�
i ’s, (3) create new trait values Y�

i ¼ bgTZi þ R�
i ði ¼ 1;.; nÞ,

(4) replace the Yi’s by the Y�
i ’s, (5) recalculate the test

statistic, and (6) repeat steps 2–5 a large number of times.

We have implicitly assumed that the trait is univariate

and the subjects are unrelated. For repeated measures or

family studies, we use generalized linear mixed models28

to capture the dependence of trait values. Suppose that

the study contains n families with ni members in the ith

family. For i ¼ 1;.;n and l ¼ 1;.;ni, let Yil, Sil and Zil

denote the values of Y, S, and Z for the lth member of

the ith family. The random effects bi ði ¼ 1;.; nÞ are inde-

pendent zero-mean random vectors with density function
366 The American Journal of Human Genetics 89, 354–367, Septemb
f ðb; qÞ indexed by a set of parameters q. Conditional on bi,
the trait values Yi1;.;Yi;ni are independent and follow

a generalized linear model with density f ðyj Sil; Zil; biÞ.
The log-likelihood function is

lðt; h; xÞ ¼
Xn
i¼1

log

Z
b

Yni
l¼1

f ðYil j Sil; Zil; bÞf ðb; qÞdb;

where t is the fixed effect of Sil, and h includes the fixed

effects of Zil and parameters q. For repeated measures, the

log-likelihood takes the same form with Yil and Zil being

the trait and covariate values at the lth measurement

time for the ith subject and with Sil replaced by Si. We

can then use the arguments of the first three paragraphs

to derive the test statistics.

For potentially censored age-at-onset traits, we specify

that the hazard function for the age at onset conditional

on Si and Zi satisfies the proportional hazards model29

lðt j Si; ZiÞ ¼ l0ðtÞetSiþgTZi ;

where l0 is an arbitrary baseline hazard function and Zi is

redefined to exclude the unit component. Let Ti denote

the duration of follow-up for the ith subject, and let Di

indicate, by the values 1 versus 0, whether Ti is the actual

age at onset or the censoring time. Then the score statistic

and its variance are

U ¼
Xn
i¼1

Di

0BB@Si �

P
j˛Ri

ebgT
ZjSjP

j˛Ri

ebgT
Zj

1CCA;

and V ¼ Itt � ItgI
�1
gg Igt, whereRi denotes the set of subjects

whose durations of follow-up are no shorter than Ti, bg is

the solution to the equation

Xn
i¼1

Di

0B@Zi �

P
j˛Ri

eg
TZjZjP

j˛Ri

eg
TZj

1CA ¼ 0;

�
Itt Itg

Igt Igg

�
¼
Xn
i¼1

DiP
j˛Ri

ebgT
Zj

(X
j˛Ri

ebgT
Zj

�
Sj

Zj

�52

�
 X

j˛Ri

ebgT
Zj

!�1 X
j˛Ri

ebgT
Zj

�
Sj

Zj

�!52)
;

and a52 ¼ aaT. For multiple weight functions, we obtain

the efficient score functions by approximating the partial

likelihood score function with a sum of n independent

terms.30
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SCORE-Seq: Score-Type Tests for Detecting Disease Associations

With Rare Variants in Sequencing Studies, http://www.bios.
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