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We show that the Saccharomyces cerevisiae recombination protein Rad52 and the single-strand DNA-binding
protein RPA assemble into cytologically detectable subnuclear complexes (foci) during meiotic recombination.
Immunostaining shows extensive colocalization of Rad52 and RPA and more limited colocalization of Rad52
with the strand exchange protein Rad51. Rad52 and RPA foci are distinct from those formed by Rad51, and its
meiosis-specific relative Dmc1, in that they are also detected in meiosis during replication. In addition, RPA
foci are observed during mitotic S phase. Double-strand breaks (DSBs) promote formation of RPA, Rad52, and
Rad51 foci. Mutants that lack Spo11, a protein required for DSB formation, are defective in focus formation,
and this defect is suppressed by ionizing radiation in a dose-dependent manner. DSBs are not sufficient for the
appearance of Rad51 foci; Rad52, Rad55, and Rad57 are also required supporting a model in which these three
proteins promote meiotic recombination by promoting the assembly of strand exchange complexes.
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Double-strand breaks (DSBs) in DNA can be caused by
chemical damaging agents, ionizing radiation, and repli-
cation at sites of single-strand nicks (for review, see
Friedberg et al. 1995; Kogoma 1997). Accurate repair of
DSBs can occur by a recombinagenic mechanism involv-
ing homologous joint molecule intermediates. RecA is
the central protein required for this process in Escherich-
ia coli (for review, see Kowalczykowski et al. 1994). The
eukaryotic Rad51 protein is structurally and function-
ally similar to RecA and can promote the formation of
homologous joints by strand exchange in vitro (for re-
view, see Ogawa et al. 1993; see also Sung 1994; Bau-
mann et al. 1996; Maeshima et al. 1996). RAD51 is re-
quired along with other members of the RAD52 epistasis
group for recombinagenic repair of damage-induced
DSBs in budding yeast (for review, see Game 1993; Fried-
berg et al. 1995; Shinohara and Ogawa 1995).

DSBs are also induced specifically during meiosis and
are intermediates in meiotic recombination (Fig. 1) (for
comprehensive reviews, see Kleckner 1996; Kupiec et al.
1997; Roeder 1997). The Spo11 protein appears to play a
direct role in formation of meiotic DSBs by way of a
transesterase cleavage activity (Keeney et al. 1997). Sev-
eral other yeast genes, including MER2, RAD50, and
MRE11, are also required for the formation of meiotic
DSBs, although less is known about their mechanism of

action. DNA ends at meiotic DSBs are resected to yield
38 single-stranded tails, and this resection requires
RAD50; breaks form but remain unresected in certain
non-null mutants termed rad50S. The mechanism that
promotes resolution of meiotic DSBs is closely related to
that which leads to recombinational repair of DSBs in
mitosis (for review, see Game 1993; Shinohara and
Ogawa 1995). Resected DSBs are converted to homolo-
gous joint molecules by invasion of a homologous duplex
by single-strand DNA (ssDNA). Normal formation of ho-
mologous joint molecules and recombination products
during meiosis requires several mitotic repair genes in-
cluding RAD52 (Borts et al. 1986; Ogawa et al. 1993; N.
Kleckner, pers. comm.), RAD51, RAD55, and RAD57
(Shinohara et al. 1992; Schwacha and Kleckner 1997).
The conversion of DSBs to homologous joint molecules
during meiosis involves additional functions that are not
required during mitotic repair of DSBs, including the
meiosis-specific recA homolog DMC1 (Bishop et al.
1992; Schwacha and Kleckner 1997). Consistent with an
in vivo role in homologous joint molecule formation,
strand exchange activity has been detected recently for
human Dmc1 in vitro (Li et al. 1997).

Immunostaining of spread meiotic nuclei of Saccharo-
myces cerevisiae has shown that Rad51 and Dmc1 pro-
tein complexes assemble at multiple discrete sites (foci)
on chromatin (Bishop 1994; Dresser et al. 1997). Rad51
and Dmc1 foci show extensive colocalization suggesting
both proteins assemble at common sites during recom-
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bination. These foci are likely to be associated with re-
combination as they are detected specifically when DNA
intermediates are present and as mutations that prevent
the appearance and disappearance of meiotic DSBs have
corresponding effects on foci (Bishop 1994; Shinohara et
al. 1997). Foci are likely to represent higher order struc-
tures of Rad51 and Dmc1 proteins involved in RecA-like
strand exchange because this process requires assembly
of higher order multimers on ssDNA (for review, see
Kowalczykowski et al. 1994; Stasiak and Egelman 1994).
Homologs of yeast Rad51 and Dmc1 have been shown to
assemble into foci during meiosis in a wide variety of
eukaryotes (for review, see Roeder 1997), and immuno-
electron microscopic studies indicate that antibodies
raised against Rad51 localize to recombination-associ-
ated ‘‘zygotene nodules’’ in lily and mouse spermato-
cytes (Anderson et al. 1997; Moens et al. 1997).

Subnuclear foci of Rad51 and RPA have been detected
in mitotic mammalian cells. Rad51 foci can be induced
by treatment with DNA-damaging agents but are also
found in untreated cells during S-phase (Haaf et al. 1995;
Tashiro et al. 1996; Maser et al. 1997; Scully et al. 1997;
Bishop et al. 1998). RPA also forms subnuclear foci,
which are components of ‘‘replication centers’’ in verte-

brate nuclei (for review, see Newport and Yan 1996).
These observations are consistent with the role of RPA
in replication (for review, see Wold 1997). Recently, im-
munostaining of spread mouse spermatocyte nuclei lo-
calized RPA to sites of homolog pairing and to Rad51 foci
consistent with a role for RPA during pairing and recom-
bination (Plug et al. 1997, 1998).

Here we show that two important recombination pro-
teins, Rad52 and RPA, are present in multiple sub-
nuclear complexes during meiosis in budding yeast.
These proteins codistribute with each other and with
Rad51 supporting the idea that they are all components
of multiprotein recombination complexes. Meiotic DSB
formation is shown to be associated with assembly of
RPA, Rad52, and Rad51. Mutants defective in DSB for-
mation are also defective in complex formation of all
three proteins during midprophase, and this defect can
be rescued with ionizing radiation, a treatment that in-
duces DSBs. Although DSBs may be necessary for assem-
bly of Rad51 complexes, they are not sufficient. Rad52,
Rad55, and Rad57 are also required for Rad51 focus for-
mation. We also report detection of a second type of RPA
complex in both meiotic and mitotic cells that is likely
to represent a form of the protein engaged in DNA rep-
lication.

Results

Rad52 and RPA are present in multiple
subnuclear complexes

The properties of the Rad52 and RPA proteins strongly
suggested that both Rad52 and RPA function in recom-
bination as oligomeric complexes (Mortensen et al. 1996;
Wold 1997; Shinohara et al. 1998) and would therefore be
detectable during meiotic prophase by immunostaining
of spread meiotic nuclei similar to Rad51 and Dmc1. As
predicted, multiple subnuclear foci were detected by im-
munostaining wild-type nuclei with polyclonal antibod-
ies directed against each of the proteins (Figs. 2A and 3).
The frequency of positive staining nuclei and the num-
ber of Rad52 and RPA foci per nucleus peaked in meiosis
when the majority of cells were in midprophase (∼3–4 hr
after induction of meiosis and sporulation). At 3 hr after
induction the average number of foci per nucleus was
27 ± 11 S.D. for Rad52 and 55 ± 18 S.D. for RPA with
maximums of 98 and 142, respectively. Unlike Rad51
foci, which were not detected until 3 hr after induction
of meiosis (Fig. 3A), Rad52 and RPA foci were detected in
a large fraction of nuclei starting immediately after
transfer to sporulation medium. The Rad52 and RPA foci
detected between 0 and 2 hr tended to be fewer in num-
ber (averages of 15 ± 10 S.D. and 24 ± 13 S.D. foci per
nucleus, respectively) and to stain less intensely than
those detected at 3 and 4 hr.

Colocalization of Rad52 with Rad51 and RPA

To determine whether Rad52 and RPA foci colocalize
with each other and with Rad51 foci, double-immuno-

Figure 1. DNA intermediates in DSB-mediated meiotic re-
combination. Many other genes are also required for one or
more of the steps shown (Shinohara and Ogawa 1995; Kupiec et
al. 1997); however, only those genes relevant to the work in this
paper are listed. (A) Meiosis-specific DSBs are generated by the
product of the SPO11 gene. RAD50, MRE11, and MER2 are also
required. (B) The ends at the sites of DSB are processed resulting
in resection of the 58 single strands. RAD50S refers to the ac-
tivity that is absent in rad50S mutants. (C) ssDNA ends at DSBs
invade homologous target duplex. Invasion leads to strand ex-
change with the ‘‘like’’ strand of a target duplex yielding a het-
eroduplex joint. All of the genes listed have been shown by
mutant analysis to be required for optimal efficiency of this
process. Mutant analysis has not shown directly that the genes
that encode RPA are required for this step; however, several
observations, including some presented in this paper, make it
likely that RPA is involved at this step. (D) DNA repair synthe-
sis generates two complete duplexes joined by a double Holliday
junction, which are then resolved into recombination products.
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staining experiments were carried out (Fig. 2B–E; Table
1). In wild type ∼26 ± 0.5% S.E. of foci detected were
Rad52–Rad51 double-staining foci (i.e., foci that con-
tained a detectable level of both Rad51- and Rad52-spe-

cific signal). We also examined a dmc1 mutant in which
Rad51 and Rad52 foci accumulate and stain more in-
tensely than those in wild-type cells (Bishop 1994; dis-
cussed below). Although the frequency of double-stain-

Figure 2. (See facing page for legend.)
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ing foci in the dmc1 mutant was significantly higher
than that in wild type (42 ± 2.9% S.E., P = 0.0011,
<0.0001), the majority of foci detected in the mutant
were single-staining foci.

The intensity of both Rad52 foci and Rad51 foci was
variable within a single nucleus. This range in staining
intensity was seen for both single- and double-staining
foci and in both wild-type and dmc1 mutant nuclei. Fur-
thermore, the relative intensity of the two signals varied
from one double-staining focus to the next (Fig. 2E).

Because the frequency of Rad51–Rad52 colocalization
was fairly low, it was of interest to estimate the fraction
of colocalization accounted for by fortuitous superposi-
tion of complexes. Two methods were used to estimate
random colocalization frequency and these yielded simi-
lar estimates (3% and 6%; Table 1; see Materials and
Methods for a discussion of details and limitations of
these methods). These analyses indicate that the ob-
served level of Rad52 and Rad51 codistribution is not the
result of random distribution of foci on the spreading
surface.

Although the amount of Rad52–Rad51 colocalization
is significant, Rad52 foci show more extensive colocal-
ization with RPA. Rad52–RPA double immunostaining
of nuclei from a dmc1 mutant at 7 hr in meiosis showed
that 86 ± 5.0% S.E. of foci were double stained. The lim-
ited sensitivity of our Rad52 probes prevented analysis of
relative Rad52–RPA codistribution in wild-type cells
(see Materials and Methods).

Association of DSBs with Rad51, RPA, and Rad52 foci

Four genes required for DSBs are required for Rad51 foci
To determine whether the initiation of recombination is
required for the formation of Rad51 foci, we examined
strains carrying null mutations in one of four genes re-
quired for DSB formation: SPO11, RAD50, MRE11, and
MER2. We did not detect Rad51 foci in any of the four
mutants indicating that execution of an early stage in
meiotic recombination is required for the formation of
Rad51 foci (Figs. 2A and 3; Table 2).

Figure 2. Rad52, RPA, and Rad51 localize to discrete complexes in spread meiotic nuclei. Cells were induced to undergo sporulation
and spread meiotic nuclei were prepared and immunostained with antibodies that bind Rad52, RPA, or Rad51, (see Materials and
Methods). All nuclei were stained with DAPI to detect chromatin. Pictures shown are pseudocolored composites of monochrome
images. Immunostaining patterns are shown in green and DAPI staining patterns in blue. (A) Anti-Rad52, anti-RPA, and anti-Rad51
immunostaining of wild-type and spo11 meiotic nuclei. Nuclei shown are typical of those seen at the times indicated. In the
Rad51-staining set one of the spo11 mutant nuclei shown was treated with a dose of 100 krads of ionizing radiation 1 hr before
harvesting (cells were irradiated at 3 hr after meiotic induction). (B,C) Colocalization of Rad52 with Rad51. Double immunostaining
with a combination of Rad52 and Rad51 antibodies in wild type (B, 3 hr) and dmc1 (C, 7 hr). Antibodies used were rabbit anti-Rad52
and guinea pig anti-Rad51. Single-staining images are pseudocolored from the original black and white images and the merged image
is a two-channel combination of the original black and white images. Yellow indicates combination of the two signals. Arrows indicate
single-staining foci. (D) Rat anti-Rad52 and rabbit anti-RPA were used for detection in dmc1. The nuclei shown are from the same
preparations as in C. (E) Close ups of Rad52–Rad51 double-stained nuclei (using directly conjugated antibodies) showing single-staining
foci and double-staining foci with different relative contributions of Rad52- and Rad51-specific signals. Bars, 2 µm.

Figure 3. Time course analysis of Rad51,
RPA, and Rad52 staining in wild-type and
spo11 nuclei. The spo11 culture was split
at 3 hr and 50% was irradiated with a dose
of 100 krad (L). (A) Percent of nuclei that
contain subnuclear foci. Counts are de-
rived from images of 50–55 random nuclei
from each time point. Nuclei were scored
as staining positive if they contained at
least five foci. Spores present on the slide
were included in the calculation of total
nuclei. (B) The average number of foci
among staining positive nuclei in wild
type and spo11. (C) Analysis of DNA con-
tent by FACS for wild type and spo11. Be-
cause preparation of spread nuclei requires
an additional incubation of unfixed cells
for at least 25 min at 30°C, the samples in
this analysis are expected not to have pro-
gressed as far in the cycle as those used to
prepare spread nuclei. (D) Analysis of mei-
otic divisions by fluorescent microscopy
of DAPI-stained cells from wild type and
spo11.
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SPO11 is required for some but not all RPA and
Rad52 foci Given that most DSBs are detected starting
∼2 hr after induction of meiosis, the detection of RPA
and Rad52 foci at earlier times suggests that recombina-
tion is not required for appearance of all Rad52 and RPA
foci. To determine whether later Rad52 and RPA foci are
associated with ongoing recombination, the effects of a
spo11 mutation were examined. A spo11 mutation did
not alter dramatically the frequency of RPA foci during
premeiotic S phase (Fig. 3A). However, spo11 did reduce
the frequency of RPA staining to <15% at times after the
bulk of the culture completed premeiotic S phase (after 2
hr in spo11 compared to after 3 hr in wild type in the
experiment shown). Thus, although S-phase RPA foci
were SPO11 independent, the majority of post S-phase
foci were SPO11 dependent.

The effect of a spo11 mutation on the frequency of
Rad52-positive nuclei was significant, but not as pro-
nounced as it was for RPA-positive nuclei; ∼50% of nu-
clei retained Rad52 foci up to 3 hr after S phase was
complete, although the intensity of the foci remained as
low as that of early prophase foci (Figs. 2A and 3A). The
number of Rad52 foci per nucleus was also significantly
lower at similar times after S phase in spo11 compared to
wild type (Fig. 3B; P = 0.001, <0.0001).

Radiation induces formation of Rad51, Rad52, and RPA
foci in a spo11 mutant The observation that SPO11 is
required for normal appearance of foci suggested that fo-
cus formation was promoted by DSBs. This suggestion
predicted that DSBs induced artificially by ionizing ra-
diation would promote formation of recombination pro-
tein foci in the spo11 mutant. This approach was also

Table 2. Genetic requirements for focus formation I

Straina

Probeb

a-Rad51 a-Rad52 a-RPA

wt + + +
spo11 − +/−c +/−d

rad50 − N.D. N.D.
mer2 − N.D. N.D.
mre11 − N.D. N.D.

aStrains used are wild type (wt), NKY1314 and NKY1551;
spo11D, NKY676 and DKB490; rad50D, NKY1352 mer2D,
TNT464; mre11D, OSY17.
bAntibodies as per Materials and Methods. (N.D.) Not deter-
mined.
c+/− indicates less intense staining than wild type at 3–4 hr.
dFoci only prevalent at early times (see text).

Table 1. Analysis of Rad52, Rad51, and RPA distributions

Probe 1a Probe 2 Strainb Method

Percentages No. of foci/nucleusc

both 1 only 2 only both 1 only 2 only

A. Colocalization frequencies
a-Rad52 (rabbit) a-Rad51 (guinea pig) wt merged 25 42 33 7.7 (2.5) 14 (4.9) 11 (6.6)
a-Rad52TR (rabbit) a-Rad51F (rabbit) wt overlay 26 37 37 14 (5.0) 20 (6.0) 20 (7.8)
a-Rad52 (rabbit) a-Rad51 (guinea pig) dmc1D merged 45 40 15 28 (9.0) 25 (7.3) 8.8 (3.9)
a-Rad52 (rat) a-Rad51 (rabbit) dmc1D merged 38 28 34 17.8 (5.6) 13 (2.7) 16 (5.4)
a-Rad52TR (rabbit) a-Rad51F (rabbit) dmc1D overlay 42 27 31 29 (6.6) 19 (5.5) 21 (7.1)

a-Rad52TR (rabbit)d a-RPA (rabbit) dmc1D merged 91 1.1 8.1 70 (12.6) 0.8 (1.4) 6.2 (4.7)
a-Rad52 (rat) a-RPA (rabbit) dmc1D merged 81 6.2 13 39 (6.5) 3.0 (1.7) 6.5 (5.1)
a-Rad52TR (rabbit)d a-RPA p34 (rabbit) dmc1D merged 78 3.0 19 56 (9.3) 2.2 (1.7) 14 (8.6)

a-RPA (rabbit) a-Rad51 (guinea pig) wt merged 45 27 28 23 (7.2) 13 (4.5) 15 (7.2)
a-RPA (rabbit) a-Rad51 (guinea pig) dmc1D merged 55 20 25 38 (5.8) 14 (4.9) 18 (6.3)

B. Estimates of fortuitous Rad52–Rad51 colocalization
Overlay sourcee

a-Rad52TR (rabbit) a-Rad51F (rabbit) unflipped 31 35 34 8.4 (3.1) 10 (5.4) 10 (4.5)
a-Rad52TR (rabbit) a-Rad51F (rabbit) flipped 6.1 48 46 2.4 (2.1) 16 (5.0) 16 (5.4)
‘‘Rad52’’f ‘‘Rad51’’f simulated 3.2 49 48 1.3 (0.95) 18 (5.9) 17 (6.2)

a(TR) Antibody is directly conjugated to Texas Red-X; (F) antibody is directly conjugated to fluorescein.
bStrains used are wild type (wt), NKY1314, or NKY1551 at 3 hr; dmc1D, ASY103, at 7 hr.
cNumbers shown are averages of foci per nucleus, considering only nuclei with five or more foci; numbers in parentheses indicate
standard deviations.
dStaining used direct conjugate after blocking goat anti-rabbit secondary with preimmune serum.
eOverlay sources are described in Materials and Methods. (Unflipped) Rad51 and Rad52 overlays from circular regions of wild-type
nuclei. These data serve as a reference for comparison with flipped and simulated overlays. (Flipped) Rad52 overlays from unflipped
analysis misoriented in six ways. (Simulated) The average of 600,000 focal patterns generated with Dotstat.
f‘‘Rad52’’ and ‘‘Rad51’’ refer to the source of input data for generation of simulated focus patterns (see Materials and Methods for
details).
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suggested by a previous study showing that ionizing ra-
diation partially suppresses the spore inviability pheno-
type of spo11 mutants (Thorne and Byers 1993). spo11
cells were induced to initiate meiosis and allowed to
complete the bulk of premeiotic DNA synthesis. The
cells were then exposed to 100 krads of g-rays (Friedberg
et al. 1995) and returned to sporulation conditions. As
predicted, irradiation induced the appearance of Rad51,
RPA, and Rad52 foci (Figs. 2A and 3). These results sug-
gest that DSBs promote recombination protein focus for-
mation.

To determine whether the number of Rad51 foci in-
duced by radiation was related to the amount of radia-
tion-induced damage, a meiotic culture of spo11 cells
was split into several aliquots and these aliquots were
treated with different doses of radiation. Two dose-de-
pendent effects on Rad51 foci were observed. First, con-
sidering only the fraction of the population that re-
sponded to radiation (i.e., that contained more than the
background level of foci), the average number of foci per
nucleus increased with increasing dose in a roughly lin-
ear fashion up to 100 krads (Fig. 4A). The number of foci
induced in this responding fraction was ∼0.25 foci per
krad. Second, the fraction of cells that contain foci 3 hr
after cells were irradiated increased with dose (Fig. 4B).
This increase in the responding fraction is not predicted
if a random distribution of foci among a single popula-
tion of nuclei is assumed (see legend of Fig. 4 for details).
This result suggests that the size of the radiation dose

can determine whether some cells contain foci 3 hr after
irradiation.

RPA foci are detected during mitotic S phase

A potential function of early RPA and Rad52 foci in pre-
meiotic replication is suggested by detection of SPO11-
independent foci at early times and by previous results in
metazoan cells (see Discussion). To determine whether
RPA forms visible complexes during mitosis in yeast,
100 spread nuclei from a log phase culture were exam-
ined; 43% of nuclei showed a similar punctate pattern to
that seen at early times after induction of meiosis (data
not shown). To determine whether mitotic nuclei that
contain RPA foci represent one or more specific stages of
the cell cycle, haploid MATa cells were arrested in G1

with the mating pheromone a-factor, washed free of the
pheromone, and returned to normal growth medium.
This treatment allows examination of at least one round
of synchronous mitosis. Aliquots of synchronized cells
were removed from the culture at 15-min intervals and
assayed for the formation of RPA foci and DNA content
(Fig. 5). RPA foci are rarely detected in a-factor-arrested

Figure 5. Time course of RPA staining in wild-type haploid
nuclei after release from a-factor arrest. Haploid cells were re-
leased from a-factor arrest, spread, and probed with anti-RPA
antibody. (A) Percent of unselected staining-positive nuclei. (B)
The average number of foci per focus-positive nucleus seen in a
sample of 20 nuclei (with the exception of the 0 hr time point,
sample size = 14). The nucleoli of these spread nuclei tended to
separate from the rest of the DAPI-stained material. Foci were
detected in the nucleolus in a fraction of nuclei in all time
points, but these were excluded from the analyses above. (C)
FACS profiles of the same time course. As explained in the
legend of Fig. 3, the cells used in this analysis are not expected
to have progressed as far in the cycle as those used to prepare
spread nuclei. (D) Representative nuclei from the 15-min time
point. Arrows indicate nucleoli. Bars, 2 µm.

Figure 4. Ionizing radiation induces a dose-dependent response
for Rad51 focus formation. A spo11 mutant (NKY676) was in-
duced to undergo sporulation and exposed to g rays after 3 hr in
meiotic medium. Nuclei were prepared for immunostaining 3
hr after irradiation. (A) The average number of foci per positive
staining nucleus (i.e., per nucleus with more than four foci).
Error bars represent the S.E.M. obtained from three experiments.
(B) The percent of positive staining nuclei. The fraction of nu-
clei with less than five foci is larger than predicted if a normal
distribution of foci among nuclei is assumed. Normal distribu-
tions based on the mean and variance of the focus counts in the
total population were generated for each dose and used to de-
termine the expected frequency of nuclei with less than five
foci, assuming a single population. This method yielded pre-
dicted frequencies for nuclei with less than five foci of 0.52,
0.40, 0.26, 0.16, and 0.12 for 25, 50, 75, 100, and 200 krads,
respectively. The corresponding observed frequencies were
0.63, 0.50, 0.37, 0.27, and 0.22. All of these values are signifi-
cantly higher than the predicted frequencies using the binomial
probability test (P < 0.0058). This analysis indicates that the
distribution of foci in nuclei is not accounted for by a random
distribution of foci in a single population. Thus, the population
of cells irradiated displays heterogeneity with respect to the
ability to form or retain foci.
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cells, but appear in >90% of nuclei after the cells are
released from arrest (around the time of the G1/S tran-
sition). The frequency of nuclei containing RPA foci
drops dramatically when the majority of cells have com-
pleted S phase. Thus, when cells are released from a-
factor arrest, RPA foci are found predominantly within
an interval that includes late G1 and S phase. Although
Rad52 foci were detected in a subset of mitotic nuclei,
these foci stained very faintly. We did not observe sig-
nificant changes in the frequency of Rad52 focus-con-
taining nuclei as the culture progressed through the mi-
totic cell cycle (data not shown).

Genetic requirements for appearance
and disappearance of foci after DSB formation

Normal resection at DSBs is not required for focus for-
mation To determine whether normal resection of
DSBs to ssDNA is necessary for the formation of Rad51
or RPA foci, a rad50S mutant was assayed. Foci of each
type formed in the rad50S mutant (Table 3; Fig. 6) and
were retained at later times. At 8 hours after induction of
meiosis, 98% of rad50S nuclei contained RPA foci;
whereas 26% contained Rad51 foci. The average num-
bers of Rad51 and RPA foci detected in the rad50S mu-
tant were less than the numbers seen in wild type:
9.6 ± 4.5 S.D. and 13 ± 3.0 S.D. at 4 hr in the mutant com-
pared to 29 ± 14 S.D. and 47 ± 11 S.D. in wild type at 4 hr
for Rad51 and RPA, respectively. These results indicate
that a single-stranded binding protein and a strand ex-
change protein can assemble into oligomeric complexes
in the absence of normal single-strand resection of du-
plex ends.

RAD52, RAD55, and RAD57 are required for formation
of Rad51 foci RAD52, RAD55, and RAD57 are required

for the transition from DSB to homologous joint mol-
ecule, and the effect of null mutations in these genes on
the formation of Rad51 foci was determined. Mutations
in RAD52, RAD55, and RAD57 prevented the appear-
ance of Rad51 foci (Table 3; Fig. 6). Western analysis and
whole cell immunostaining were carried out in each of
the three single mutants to show that failure of Rad51
focus formation was not attributable to failure to express
Rad51 nor to a failure to transport it to the nucleus (data
not shown). We also did not detect Rad51 foci after irra-
diation of meiotic rad52 cells. This result is as expected
because the failure of rad52 cells to form Rad51 foci is
not the result of a defect in DSB formation. Unlike the
other mutants examined, a rad54 mutant did not have a
strong effect on the appearance or disappearance of
Rad51 foci in meiosis (Table 3; Fig. 6). This result is
consistent with previous data indicating that rad54
single mutants have limited effects on meiotic recombi-
nation and spore viability owing to partial redundancy of
RAD54 function (for review, see Game 1993; see also
Klein 1997; Shinohara et al. 1997).

Rad52 and RPA accumulate in mutants that block re-
combination at later stages To determine whether as-
sembly of Rad52 and RPA foci depends on other proteins
that contribute to the conversion of DSBs to homologous
joint molecules, the effects of rad51, rad55, rad57,
dmc1, and rad51dmc1 mutations were examined. We
also examined the effect of a rad52 mutation on RPA
foci. Brightly staining foci were detected in all experi-
ments indicating that the appearance of RPA and Rad52
foci is independent of RAD51, RAD55, RAD57, and
DMC1 (Table 3 and typical examples of staining patterns
shown in Fig. 6). However, the disappearance of RPA and
Rad52 foci does depend on all four genes; foci did not
disappear at the normal time in any of the mutants. The
fraction of nuclei containing foci increased above the

Table 3. Genetic requirements for focus formation II

Straina

Probeb

a-Rad51 a-Rad52 a-RPA

wt + + +
dmc1 +++c ++ ++
rad50S + N.D. ++
rad51 (−)d ++ ++
rad51dmc1 (−) ++ ++
rad52 − (−) ++
rad55 − ++ ++
rad57 − ++ ++
rad54 + N.D. N.D.

aStrains used are wild-type (wt), NKY1314 and NKY1551;
dmc1D, ASY103; rad50S, NKY1392; rad51D, ASY102; rad52D,
DKB988xDKB992; rad54D, MSY241 or DKB1322; rad55D,
D012; rad57D, D0018 or D006.
bAntibodies as per Materials and Methods. (N.D.) Not deter-
mined.
c(++) Brighter foci and/or accumulate at late hours in meiosis
(see text).
d[−] Negative control.

Figure 6. (A) Anti-Rad51 immunostaining of mutant nuclei.
Nuclei representative of those seen at 3–4 hr are shown. (B–C)
Anti-RPA and anti-Rad52 immunostaining of rad51, rad51dmc1,
rad52, rad55, rad57, and rad50S mutants at the times indicated.
Sample nuclei with large numbers of intensely staining foci or
aggregates typical of those seen at later hours are shown. The
RPA staining example in late hour rad52 is a typical interme-
diate phenotype. Bar, 2 µm.
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wild-type level to >80% of nuclei after 7 hr in sporula-
tion medium as the mutants arrested in prophase. In
addition, the number of foci detected per nucleus was 2-
and 1.5-fold higher for Rad52 and RPA compared to wild
type at 3 hr and the focus intensity was greater on aver-
age than that seen in wild type at 3 hr.

Starting at 7 hr after induction of meiosis, a dramatic
change in RPA and Rad52 staining patterns was seen in
the rad51, rad55, and rad57 mutants. Rather than con-
tinuing to display a fine punctate pattern, spread nuclei
displayed four to six structures that appeared to be
roughly spherical or ellipsoidal with diameters of
0.7 ± 0.1 S.D. (in µm). By 9 hr 95% of nuclei showed this
pattern. These larger structures were not found in
spreads of dmc1 mutant nuclei where the punctate pat-
tern persisted.

Discussion

DSBs promote assembly of recombination complexes

Assembly of recombination complexes comprising
Rad51, Rad52, and RPA is closely associated with the
formation of meiotic DSBs. The assembly of such com-
plexes is observed whether DSBs are formed during nor-
mal initiation of meiotic recombination or by ionizing
radiation (IR). In irradiated spo11 nuclei the efficiency of
focus induction is roughly 0.25 foci per kilorad in the
subpopulation of cells that responds to radiation. This
number is remarkably similar to estimates of the effi-
ciency of DSB induction in response to IR in diploids
(0.33–0.65 DSBs per krad) (Resnick and Martin 1976;
Frankenberg et al. 1980). The impact of mutations that
block the formation of DSBs, as well as dose dependence
after IR, make it likely that assembly of recombination
proteins during normal meiosis depends on formation of
DSBs. An alternative possibility, which we think less
likely, is that SPO11 might have a second function that
promotes assembly independent of its direct role in DSB
formation. If this were the case, assembly could be
closely coordinated with break formation but not
mechanistically dependent on it. For a discussion of
DSB-independent interactions between homologs in
meiosis see Kleckner (1996).

In addition to observing a dose-dependent increase in
the number of IR-induced Rad51 foci, we also observed
that the fraction of nuclei that contained foci was greater
after high doses of radiation than after low doses. This
observation suggests that not all the cells given low
doses of radiation are equally competent to induce or
retain Rad51 foci. This heterogeneity requires further
study.

Normal degradation of DNA at DSB sites is not
required for subnuclear assembly of Rad51 or RPA

The formation of foci in a rad50S mutant indicates that
normal resection at DSBs is not required for assembly of
RPA and Rad51. In vitro studies on Rad51 indicate that
its strand exchange activity depends on the ability of the

protein to assemble on ssDNA (Sung and Robberson
1995). Single strand tails form at the sites of DSBs in vivo
and these tailed species accumulate in rad51 single mu-
tants suggesting that they are normal substrates for
Rad51 assembly (Shinohara et al. 1992). Given these ob-
servations, the ability of Rad51 foci to form in a rad50S
mutant was not expected because a rad50S mutation
dramatically reduces single-strand resection at DSBs (Al-
ani et al. 1990). The ability of Rad51 and RPA to form
foci in rad50S mutants can be explained in one of two
ways. First, Rad51 assembly may occur by a mechanism
that does not depend on a ssDNA substrate. Although it
is unlikely that Rad51 and RPA can assemble directly on
the duplex DNA ends that accumulate in rad50S, the
Spo11 protein is attached covalently to the 58 ends of
unresected DSBs in a rad50S mutant (Keeney et al. 1997),
and other proteins may be associated with ends as well.
It is possible, therefore, that assembly of Rad51 and RPA
is promoted by interaction with one or more proteins
that are associated with DSB ends in the rad50S mutant.
A second type of explanation for Rad51 and RPA foci in
the rad50S mutant is that the ends at DSBs, while not
resected normally, might contain single-stranded regions
that go undetected in DSB assays. A helicase might un-
wind DNA at the sites of breaks and produce ‘‘split
ends’’ in a manner roughly analogous to the action of the
E. coli exonuclease V (RecBCD proteins) in the absence
of RecD subunit (for review, see Myers and Stahl 1994).
Alternatively, limited resection of ends might occur in
the rad50S mutant.

Disassembly of recombination protein complexes

Disassembly of Rad52 and RPA complexes depends on
Rad51, Rad55, Rad57, and Dmc1. Previously it was
shown that Rad51 foci do not disappear at the normal
time in a dmc1 mutant (Bishop 1994). Rad52 and RPA
foci behave in a similar manner in dmc1 mutants as well
as in rad51, rad55, rad57, and rad51dmc1 mutants. RPA
foci also accumulate in a rad52 mutant. The increase in
the fraction of cells containing foci and in the number of
foci detected per nucleus at later times in these mutants
is likely to be related to the fact that recombination
events are blocked between the DSB and the homologous
joint molecule stages in these mutants. The mutational
blocks that prevent disappearance of foci also cause an
apparent increase in the number of molecules in each
focus, indicated by an increase in staining intensity in
these mutants. This increase may be a result of the in-
crease in the average size of ssDNA tracts caused by
these mutations (Bishop et al. 1992; Shinohara et al.
1992; A. Shimohara, unpubl.).

Rad52, Rad55, and Rad57 promote assembly of Rad51
during meiotic recombination

Although they are likely necessary, DSBs are not suffi-
cient for the appearance of Rad51-containing recombina-
tion complexes. At least one of the functions of Rad52,
Rad55, and Rad57 during meiotic recombination is ei-
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ther to recruit Rad51 into oligomeric complexes or to
stabilize the complexes once they form; we use the
phrase ‘‘promotes assembly’’ to refer to both possibili-
ties. The involvement of Rad52, Rad55, and Rad57 in
assembly of Rad51 is fully consistent with the observa-
tion that all three of these proteins play a role in the
normal conversion of DSBs to homologous joint mol-
ecules in vivo (Schwacha and Kleckner 1997; N. Kleck-
ner, pers. comm.). Given that RPA interacts with Rad52
in vivo and in vitro (as discussed below), RPA may also
be required for Rad51 assembly, but we have yet to test
this possibility because the experiment is complicated
by the fact that all the RPA-encoding genes are essential
(Heyer et al. 1990; Brill and Stillman 1991).

Rad52 may promote assembly by direct contact with
RPA and Rad51. Rad52 has been shown to interact di-
rectly with both Rad51 (Shinohara et al. 1992; Milne and
Weaver 1993; Donovan et al. 1994; Shen et al. 1996; Sung
1997a) and RPA (Park et al. 1996; Shinohara et al. 1998).
Our results show that Rad52 colocalizes with the same
two proteins providing support for the view that these
interactions are biologically relevant as have genetic
suppressor studies (Milne and Weaver 1993; Firmenich
et al. 1995; Smith and Rothstein 1995). The protein–pro-
tein interactions of Rad52 are likely to promote assem-
bly of complexes by forming a bridge between Rad51
monomers and the RPA–ssDNA complex. Recruitment
by protein–protein interaction may be essential for the
recombination function of Rad51 because, unlike RecA,
Rad51 does not bind ssDNA more efficiently than
dsDNA (Shinohara et al. 1992; Benson et al. 1994; Sung
and Robberson 1995; Baumann et al. 1996).

In vitro observations mirror the assembly function of
Rad52, Rad55, and Rad57 in vivo. RPA has been shown
to stimulate both yeast and human Rad51 strand ex-
change (Sung 1994; Baumann et al. 1996; Baumann and
West 1997) at least in part by removing ssDNA second-
ary structure (for review, see Kowalczykowski et al.
1994). However, RPA inhibits the reaction when added
before Rad51 (Sugiyama et al. 1997; Sung 1997b). The
Rad55/Rad57 heterodimer (Sung 1997b) and Rad52 pro-
tein (Sung 1997a; New et al. 1998; Shinohara and Ogawa
1998) stimulate Rad51-mediated strand exchange in
vitro by overcoming RPA-mediated inhibition. This
stimulation of strand exchange proteins is thought to
result at least in part from the ability of the accessory
factors to allow initiation of assembly of Rad51 on RPA-
coated ssDNA. Consistent with the idea that stimula-
tion occurs by nucleation of cooperative Rad51 assembly
is the low cellular abundance of Rad52 and the Rad55/
Rad57 heterodimer compared to Rad51 (Sung 1997a,b).

The results of many experiments, including those
mentioned above and studies of functionally related pro-
teins encoded by E. coli and phage T4 (Kowalczykowski
et al. 1994; Salinas and Kodadek 1995 and references
therein), have provided the basis for a model of Rad51
assembly as shown in Figure 7. Not included in the
model is assembly of the meiosis-specific RecA homolog
Dmc1, a process partially dependent on Rad51 (Bishop et
al. 1992; Shinohara et al. 1997), because less is known

about the nature of the interaction between Rad51 and
Dmc1. Our results provide in vivo evidence supporting
key features of the model. In addition, the version of the
model shown reflects our observation that Rad52,
Rad55, and Rad57 are not redundant with respect to their
influence on Rad51 assembly during meiosis; all three
single mutants fail to form Rad51 complexes in vivo.
This model predicts that an appropriate combination of
Rad52 and the Rad55/Rad57 heterodimer in vitro should
yield more efficient stimulation of Rad51 strand ex-
change than either protein alone.

RPA and Rad52 foci are present during meiotic
S phase

Meiotic and mitotic time course analysis indicates that
there are two types of RPA foci. Several observations
make it likely that early RPA protein complexes are en-
gaged in replication including the detection of SPO11-
independent RPA foci at early times in meiosis and dur-
ing mitotic S phase, the known role of RPA in DNA
replication, and previous experiments with metazoans
showing that RPA localizes to subnuclear sites of DNA
synthesis during mitosis (for review, see Newport and
Yan 1996; Wold 1997). Thus, we think it is likely that
early SPO11-independent RPA foci are functionally dis-
tinct from later SPO11-dependent foci in that they are
engaged in replication. Although we have not been able
to resolve temporally two rounds of RPA focus appear-
ance and disappearance in wild-type nuclei, this result is
expected if the different nuclei or even different chromo-
somes within each nucleus make the transition from

Figure 7. Model for the assembly of RPA, Rad52, and Rad51.
Several features of the model are borrowed from previous work
(as indicated in the text). (A) Resection of DSB produces 38

single-stranded tails. (B) RPA assembles onto resected DSBs re-
moving secondary structures. (C) Rad52 and the Rad55/57 het-
erodimer bind the ssDNA–RPA filament generating a nucle-
ation site for Rad51 filament assembly. A novel feature of this
model is that both Rad52 and Rad55/Rad57 are required for
generating the nucleation site. (D) Rad51 filaments are as-
sembled in a cooperative manner displacing RPA from binding
sites on ssDNA.
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replication to recombination in an asynchronous man-
ner. Consistent with this possibility, the commitment to
recombination occurs at different times on different
chromosomes (Esposito and Klapholz 1981). It is also
possible that completion of replication and initiation of
recombination occur in distinct stages and that early
RPA complexes do not disassemble when wild-type cells
make the transition from premeiotic S phase to later
recombination-associated phases. Replication-associated
RPA complexes could evolve into recombination com-
plexes at some point after the bulk of DNA synthesis is
complete, but if this scenario is true then the persistence
of RPA complexes, rather than their reassembly, depends
on SPO11.

Like RPA foci, Rad52 foci are detected during meiotic
S phase and these foci are SPO11 independent. It is pos-
sible that SPO11-independent Rad52 foci, like early RPA
foci, represent a form of the protein that plays a func-
tional role during premeiotic S phase. Consistent with a
role for Rad52 during premeiotic S phase are observa-
tions linking Rad52 function to mitotic replication
(Prakash 1981; Malkova et al. 1996; Zou and Rothstein
1997). However, a large fraction of nuclei containing
Rad52 foci were found at times after the bulk of S phase
was complete in the spo11 mutant (i.e., in nuclei where
no DNA intermediates of replication or recombination
were expected to be present). Thus, although brightly
staining SPO11-dependent Rad52 foci are likely to be
functioning recombination complexes, we cannot elimi-
nate the possibility that SPO11-independent or mitotic
Rad52 foci are nonfunctional aggregates that form in
vivo or as an artifact of the spreading procedure.

Recombination complexes do not appear to have
a consistent stoichiometry

Although significant colocalization is seen between
Rad51, Rad52, and RPA the relative distributions of
Rad51 and Rad52 suggest that recombination complexes
vary in composition. The relative contribution of the
two fluorescent probes to the signal at double-staining
foci varies in wild-type nuclei for Rad51 and Rad52. If a
double-staining focus represents a single protein com-
plex, variation in double-staining signals from one focus
to the next is likely to indicate that complexes do not
have a set stoichiometry. In addition, single-staining foci
are detected. Of particular note are the Rad51 single-
staining foci detected under conditions where detection
of Rad51 foci is entirely dependent on Rad52 function.
The complexity of the staining pattern can be explained
in three ways. First, more than one distinct recombina-
tion pathway may operate in the wild-type cell (Dresser
et al. 1997). Second, the composition of complexes could
evolve from one type to another (Plug et al. 1998 and
references therein), that is, Rad52 might dissociate (or
become inaccessible to the antibody) after promoting
Rad51 assembly. Third, the assembly pathways might be
substantially insensitive to the differences in composi-
tion revealed by the double-staining method. For ex-
ample, Rad51 assembly might be promoted by assem-

blies of Rad52 that vary dramatically in size or epitope
accessibility with some of the assemblies escaping de-
tection. Although our results do not allow us to elimi-
nate completely any of these explanations, the second
explanation does not easily account for the mixture of
focus types observed when disappearance of Rad51 and
Rad52 foci is blocked by a dmc1 mutation. An alterna-
tive explanation for the increase in Rad51–Rad52 double-
staining foci caused by a dmc1 mutation is that there are
different relative amounts of the two proteins at each
focus. Stalling progression of recombination with a
dmc1 mutation results in an accumulation of both types
of molecules, which in turn results in detection of both
pecies at a larger number of sites.

The results of this study and previous studies indicate
that DSBs promote the assembly of recombination com-
plexes containing RPA, Rad52, Rad51, and Dmc1, which
in turn promote the formation of homologous joint mol-
ecules. Immunostaining patterns suggest that these re-
combination complexes vary significantly in composi-
tion and this variation could reflect functional differ-
ences between complexes. Most important, the results
provide the first in vivo evidence supporting a model in
which the accessory factors Rad52, Rad55, and Rad57
promote strand exchange by promoting assembly of
Rad51 into functional oligomeric complexes.

Materials and methods

Yeast strains

All yeast strains for meiotic cytology are isogenic SK-1 deriva-
tives. All strains used share the following markers: MATa/
MATa, lys2/lys2, ho::LYS2/ho::LYS2, ura3/ura3, leu2::hisG/
leu2::hisG. Additional relevant markers and strains are wild
type, NKY1314, and NKY1551; dmc1D::LEU2/dmc1D::LEU2,
ASY103; rad50D::hisG/rad50D::hisG, NKY1352; rad50KI81::
URA3/rad50KI81::URA3, NKY1392; rad51D::hisG–URA3–
hisG/rad51D::hisG–URA3–hisG, ASY102; rad51D::hisG–
URA3–hisG dmc1D::LEU2/rad51D::hisG–URA3–hisG dmc1D::
LEU2, ASY106; rad54D::hisG–URA3–hisG/rad54D::hisG–
URA3–hisG, MSY241; rad54D::hisG/rad54D::hisG, DKB1322;
rad55D::hisG–URA3–hisG/rad55D::hisG–URA3–hisG, D012;
rad57D::hisG–URA3–hisG/rad57D::hisG–URA3–hisG, D0018
or D006; spo11::hisG–URA3–hisG/spo11::hisG–URA3–hisG,
NKY676 or DKB490; mer2D::hisG/mer2D::hisG, TNT464;
mre11D::hisG/mre11D::hisG, OSY17. All rad52D strains are de-
rived from crosses with NKY2502, a gift of A. Schwacha and N.
Kleckner (Harvard University, Cambridge, MA). NKY2502 has
all but first six amino acids of the RAD52 coding region deleted.
Diploid strains that carry homozygous rad52D mutations have
a tendency to lose the ability to undergo meiosis when grown
vegetatively. Therefore, fresh diploids were generated by mating
colony-purified haploid parents for each experiment (DKB988,
MATa, lys2, ho::LYS2, ura3, leu2::hisG, his4X, trp1::hisG,
rad52D::URA3 with DKB994, MATa, lys2, ho::LYS2, ura3,
leu2::hisG, his4B, ade2::LK, rad52D::URA3). RM157 (MATa,
ade2-101, can1-100, his3-11,15; leu2-3,112; trp1-1, ura3-1; W303
strain background) was used for mitotic cell cycle analysis.

Cell culture and irradiation

Conditions for sporulation of yeast cultures were described pre-
viously (Alani et al. 1990; Bishop 1994). For mitotic synchrony
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experiments, a log phase culture of RM157 at a concentration of
2 × 106 to 4 × 106 cells/ml was arrested with 7.5 µg/ml a-factor
(Sigma, St. Louis, MO) for 2 hr. Cells were then washed twice
and returned to YPD. At various times, 15-ml samples taken for
cytology and for FACS analysis. A GammaCell 60Co source
(Atomic Energy of Canada Ltd., Kanata, Ontario) was used for
irradiation. Cells were transferred to 50-ml polyurethane tubes
and irradiated on ice.

FACS analysis

Cells were prepared for FACS analysis by a published protocol
(Longhese et al. 1994) after fixation in 70% ethanol. Proteinase
K (Boehringer Mannheim, Indianapolis, IN) was used in place of
pepsin at 2 mg/ml at pH 7.5. Becton Dickenson Immuno Cy-
tometry Systems (San Jose, CA) was used to analyze DNA con-
tent.

Protein analysis

In some cases, aliquots of resuspended spheroplasted cells were
taken for parallel preparation of whole-cell protein extracts by
adding 0.5 ml of spheroplasted cells to 0.5 ml of boiling 2×
loading buffer with protease inhibitors [8% SDS, 100 mM Tris
pH 7.5, 20 mM EDTA, 10 mM b-mercaptoethanol, 0.2 µg/ml
leupeptin, 4 µg/ml aprotinin, 10 µg/ml antipain, 0.10 mM

PMSF, and 1% bromophenol blue] and boiled for 1 additional
min. Western analysis was performed by a standard method
described in Shinohara et al. (1992) using Immobilon-P (Milli-
pore, Bedford, MA), alkaline phosphatase-conjugated secondary
antibodies (Bio-Rad, Hercules, CA), and enhanced chemilumi-
nescense detection reagents (NEN Life Sciences Products, Bos-
ton, MA). A dilution series was run in parallel to demonstrate
that the detection method produced a linear response at the
relevant concentrations of protein.

Preparation and immunostaining of spread nucleoids, scoring
of divisions, and immunofluorescence microscopy

Meiotic and mitotic cells were spheroplasted and spread as de-
scribed previously (Klein et al. 1992; Bishop 1994). Methods for
immunostaining and microscopy were described previously
(Bishop 1994; Shinohara et al. 1997) with antibody concentra-
tions described below.

Meiotic cultures were examined to determine the fraction of
cells that had carried out the first and second divisions of meio-
sis (MI and MII). Aliquots (0.5 ml) were fixed by addition of 0.5
ml of 95% ethanol. Ethanol-fixed cells were stained with 0.1
µg/ml DAPI. Cells were considered to have completed MI if
they contained two to four DAPI staining bodies (nuclei) and
MII if they contained three to four staining bodies.

Preparation of IgG and direct conjugate antibodies

Rabbit anti-sera raised against Rad52 and Rad51 were purified
on protein A columns using a standard protocol (Harlow and
Lane 1988). For use in some experiments, anti-RPA was affinity
purified on a 1-ml NHS-activated Sepharose column (Pharma-
cia, Upsala, Sweden) conjugated with 1 mg of purified RPA.
Antibodies were conjugated directly to fluorescein and Texas
Red-X using the amide reactive compounds fluorescein-5-
isothiocyanate and Texas Red–sulfonyl chloride following the
instructions provided by the manufacturer (Molecular Probes,
Eugene, OR). Rabbit polyclonal IgG was used for detection of
Rad52 and Rad51 proteins unless otherwise noted in figure leg-
ends. Antibodies were diluted 1:200 for anti-Rad52 and 1:1000

for anti-Rad51 from 2 mg/ml stocks. Directly conjugated anti-
Rad52-Texas Red-X and anti-Rad51-fluorescein were used at
concentrations of 2 and 6 µg/ml, respectively. Specificity of
antibody probes was demonstrated by staining spread nuclei
from rad52D and rad51D mutant strains. Nonspecific nucleolar
staining with anti-Rad52 IgG was eliminated by preabsorption
with protein extract from meiotic rad52D cells. Evidence for
specificity of the anti-RPA antibody, a gift from A. Sugino
(Osaka University, Toyonaka, Osaka, Japan), was obtained by
titration of staining by addition of purified RPA protein to anti-
serum. A 1:100 dilution of anti-RPA antibody was incubated
overnight at 4°C with 35 ng/ml of purified RPA, a gift of R.
Kolodner (UCSD, La Jolla). This solution was then diluted a
further 1:10 for staining wild-type meiotic spreads (a final dilu-
tion of 1:1000 for the antibody). No staining was visible in
blocked antibody slides, whereas controls were positive for RPA
foci. All experiments were carried out both with and without
previous affinity purification of antibody with equivalent re-
sults.

Indirect immunostaining with rabbit anti-Rad52 was the
most sensitive method available to us and was used in single-
staining experiments. This antibody or two direct conjugates
were also used for Rad51–Rad52 double-staining experiments.
We were not able to use this method for Rad52–RPA double-
staining experiments because our anti-RPA antibody was also
raised in a rabbit. Instead, direct immunostaining with fluoro-
chrome-conjugated anti-Rad52 rabbit antibody or indirect im-
munostaining with rat anti-Rad52 antibody was used. This
method was successful at detection of Rad52 foci in dmc1 nu-
clei where foci stain particularly brightly but not in wild-type
nuclei.

Conjugated secondary antibodies were obtained from Mo-
lecular Probes with the exception of fluorescein-conjugated goat
anti-rat (ICN Pharmaceuticals, Costa Mesa, CA) and Texas Red-
conjugated goat anti-rat (Vector, Burlingame, CA). Fluorescein-
conjugated anti-rabbit was used at 1 µg/ml. Texas Red-conju-
gated anti-rabbit was used at 2 µg/ml. Fluorescein-conjugated
anti-rat for Rad52 detection was used at 5 µg/ml. Texas Red
anti-guinea pig for Rad51 detection was used at 5 µg/ml.

Focus scoring and statistical analyses

In double-staining experiments, monochrome images from each
filter set were combined to produce a color composite image as
described previously (Bishop 1994), except IP Lab Spectrum
from Scanalytics (Fairfax, VA) was used. Colocalization was
scored by examination of the composite images. A second
method of scoring colocalization was also used in some experi-
ments. In these cases the foci in the single pass images were
marked by drawing artificial circles on top of the center of the
foci using an overlay. These circles were of constant diameter
which was similar to the foci in the nucleus. One set of artificial
circles from the Texas Red filter set image was superimposed on
an overlay prepared in a similar fashion from the fluorescein
image. Greater than 50% overlap between the circles was con-
sidered colocalization. This analysis was done to facilitate the
comparison of wild-type colocalization to the two methods for
estimating fortuitous colocalization described below.

Two methods were used to estimate the frequency of fortu-
itous colocalization of staining foci in double-staining experi-
ments. In both methods only the portion of the each nucleus
defined by the largest circle that could be drawn within a uni-
form DAPI staining region was evaluated. The first method to
generate random foci used the program Dotstat (Gotta et al.
1996). Dotstat generates two random sets of foci on a two-di-
mensional circular surface and then determines the frequency
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of colocalization of the two types of foci. The program uses the
following parameters: number of foci of type 1, number of foci
of type 2, diameter of surface, and diameter of foci. Input for all
of these parameters is obtained from the experimental images.
The diameter of the foci used was the diameter of the artificial
circles used for scoring colocalization in the same samples. In-
put from 10 nuclei were used, and 600,000 focus patterns were
generated and averaged.

A second method involved misorienting an overlay corre-
sponding to the signal from one of the two probes. Copies of the
overlay from the Texas Red image were misoriented in one of
six different ways and superimposed on the unaltered overlay
from the fluorescein image. New orientations used were: 90°
rotation, 180° rotation, 270° rotation, horizontal flip, vertical
flip, and a 270° rotation combined with a horizontal flip. Colo-
calization frequencies were scored for all six misoriented com-
posites. Data were collected using images from a total of 10
nuclei and the results were averaged.

Both of the methods for estimating fortuitous colocalization
ignore the possibility that the foci might only be capable of
residing in a subnuclear domain. It is possible, for example, that
focus assembly is limited to chromosome axes. We chose nuclei
with a uniform diffuse DAPI staining pattern for analysis to
minimize this possibility, but it cannot be excluded. If foci can
only form in a nuclear subdomain, our estimates of fortuitous
colocalization are low. Another shortcoming that applies only
to the Dotstat analysis is that it assumes the pattern generated
by spreading a three dimensional nucleus containing randomly
distributed foci on a surface will be the same as patterns gen-
erated by random placement of foci on a two-dimensional sur-
face.

Wilcoxon’s rank sum test was used to determine whether
spo11 effected the frequency of foci in the focus-containing nu-
clei (i.e., in nuclei with more than four foci/cell). This test was
used because the threshold used produces an asymmetric
sample distribution. Time points were compared that repre-
sented equivalent times with respect to completion of the bulk
of DNA synthesis. For example, in the experiment of Figure 3,
the 4-hr wild-type time point was compared to the 3-hr spo11
time point. Wilcoxon’s rank sum test was also used to compare
the frequency of Rad51–Rad52 double staining foci in wild-type
and dmc1 nuclei. P values for Rad52–Rad51 colocalization in
wild type versus dmc1 reflect comparisons within experiments
in which the same antibody detection method, slide prepara-
tion, and scoring method were used (see Table 1).
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