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Abstract
Successful immunity depends upon the activity of multiple cell types. Therefore, commitment of
pluripotent precursor cells to specific lineages, such as T or B cells, is obviously fundamental.
However, it is also becoming clear that continued differentiation and specialization of lymphoid
cells is equally important for immune system integrity. Several members of the BTB-ZF family
have emerged as critical factors that control development of specific lineages and also of specific
effector subsets within these lineages. For example, BTB-ZF genes have been shown to control T
cell versus B cell commitment and CD4 versus CD8 lineage commitment. Others, such as PLZF
for NKT cells and Bcl6 for T follicular helpers cells, are necessary for the acquisition of effector
functions. Here we summarize current findings concerning the BTB-ZF family members with
reported role in the immune system.

BTB-ZF Proteins Are Transcriptional Repressors that Recruit Co-
Repressors and Chromatin Remodeling Factors to Target Genes

BTB-ZF [Broad complex, Tramtrack, Bric a`brac and Zinc Finger] proteins are an
evolutionary conserved family of transcriptional regulators. Members of this group, of
which there are >45 in human and mice, are characterized as having one or more C-terminal
C2H2 Krüppel-type zinc finger DNA binding domains in combination with an N-terminal
BTB domain that mediates protein-protein interactions. Transcriptional regulation, most
often repression, is achieved by sequence-specific binding by the ZF domain to regulatory
regions in target genes, coupled with the recruitment of co-factors involved in chromatin
remodeling and transcriptional silencing/activation.

Co-factor complex formation is largely mediated by the BTB domain, which has been
shown to directly interact with corepressors and histone modification enzymes, including
SMRT, ETO, N-Cor, B-Cor, CtBP, Sin3A, DRAL/FHL2, and HDAC-1, -2, -4, -5, and -7
(1-11). Though most of these interactions were described in non-hematopoietic cells or
transformed cell lines, BTB-ZF proteins likely regulate gene expression in primary
lymphocytes via a similar mechanism. For example, the BTB-ZF protein, PLZP, has been
shown to associate with HDAC-2 in Th2-skewed CD4+ and CD8+ T-cells, and these two
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proteins colocalize at regulatory elements in the IL-13 gene where they likely act in concert
to modulate transcription (12).

In addition to co-repressor recruitment, the BTB domain and, in some cases, the ZF domain,
also facilitate hetero- and homo-dimerization among the different gene family members. For
example, the BTB-ZF protein, Bcl6, can exist as a homodimer (13) but may also form
heterodimers with other BTB-ZF proteins, including NAC-1, PLZF, LRF, BAZF, and Miz-1
(14-18). Similarly, overexpression and co-transfection systems have demonstrated an
interaction between PLZF and PLZP, though PLZF can also exist as a homodimer (1, 19,
20). Like the co-factor studies, nearly all of this work has been done in non-hematopoietic
cells or cell lines; nevertheless, the finding that Miz-1 and Bcl-6 physically interact in
primary germinal center B-cells (18) suggests that heterodimerization may be physiological
relevant to BTB-ZF protein function in primary cells of the immune system and further
studies are needed to shed light on this topic.

BTB-ZF Proteins Control Lineage Commitment, Development, and Function
in Lymphocytes

As powerful regulators of gene expression, BTB-ZF proteins are critical players in a wide
variety of biological processes, including developmental events such as gastrulation and
limb formation, control of DNA damage and cell cycle progression in normal and oncogenic
tissues, maintenance of the stem cell pool, and gamete formation (21). Moreover, recent
studies have highlighted a fundamental and non-redundant role for many BTB-ZF factors in
the development and function of cells in the immune system. This review will summarize
current findings on the eight family members with known roles in orchestrating lymphocyte
development: Bcl-6, PLZF, ThPOK, PLZP, MAZR, BAZF, LRF, and MIZ-1 (Figure 1).

Bcl6
The BTB-ZF protein Bcl6 was first identified as an oncogene in diffuse large B cell
lymphoma (DLBCL), the most common form of Non-Hodgkin's Lymphoma. The
transformative properties of Bcl6 stem largely from its ability to repress transcription of
tumor suppressor and cell cycle arrest genes, including p53, ATR, CHEK1 and CDKN1A/
p21 (18, 22-26). Bcl6 is normally expressed at high levels in germinal center (GC) B-cells.
Early studies showed that mice lacking Bcl6 were unable to form germinal centers following
immunization with T-cell-dependent antigens. Moreover, antigen-specific B-cells in these
mice were impaired for affinity maturation and class switch recombination (CSR) to IgG
subtypes (27, 28). Reconstitution of Rag1-KO mice with Bcl6-deficient bone marrow
showed that Bcl-6 was required in the hematopoietic compartment for germinal center
formation and somatic hypermutation (SHM), but not for primary IgG responses (29, 30).
Bcl6 also represses expression of Blimp-1, a transcription factor that promotes plasma cell
differentiation (31, 32). Given that Blimp1 represses Bcl6, the reciprocal antagonism of
these two genes has been proposed to serve as a bimodal “switch”, by which B-cell fate, as
either a germinal center B-cell or an antibody-secreting plasma cell, is established and
maintained (33). Beyond promoting germinal center, and suppressing plasma cell gene
programs, Bcl6 inhibits cell cycle arrest and apoptosis in GC B-cells, allowing DNA
damage, a natural byproduct of CSR and SHM, to occur in the absence of cell cycle
checkpoint activation. To this end, it represses many of the same genes dysregulated during
Bcl6-mediated transformation, including p53, ATR, CHEK1 and CDKN1A/p21 (18, 24-26).

In addition to peripheral lineage commitment, Bcl-6 is important for B-cell development in
the bone marrow (34). High Bcl-6 expression is induced by pre-BCR signaling during the
pro- to pre-B-cell transition. Bcl-6 in turn suppresses DNA damage response genes,

Beaulieu and Sant'Angelo Page 2

J Immunol. Author manuscript; available in PMC 2012 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



including CDKN1A/p21, CDKN1B/p27, and CDKN2A/Arf, during Ig light chain
rearrangement, which would otherwise activate apoptosis and cellular senescence in
response to RAG-induced DNA lesions. Consequently, Bcl6-deficient mice have an
immature B cell pool that is reduced in both size and clonal diversity (34).

Hints at a role for Bcl6 in T-cell function originated from early studies in which Bcl6-
deficient mice were found to develop spontaneous Th2 inflammation, characterized by
enhanced IgE production and severe eosinophilia (27, 28). Upon stimulation in vitro, T-cells
from Bcl6-deficient mice produce elevated levels of IL-4, IL-5, and IL-13, a phenotype that
has been linked to direct binding by Bcl-6 in regulatory regions of genes for IL-5, Ig epsilon,
and IL-4 (27, 35, 36).

More recently Bcl6 was shown to be necessary and sufficient for the development of CD4+

T follicular helper (Tfh) cells, which provide critical help to germinal center B-cells
undergoing SHM and CSR (37-39). Constitutive Bcl-6 expression in CD4+ T-cells in vivo
drives nearly complete commitment to the Tfh lineage and these helper cells are highly
effective inducers of germinal center formation and antibody production by B-cells.
Conversely, Bcl-6 deficiency abrogates Tfh differentiation and CD4+ T-cells from these
mice fail to mediate germinal center formation (38, 39). At a mechanistic level, Bcl-6 is
induced in CD4+ T-cells by IL-6 and IL-21, though neither cytokine is independently
required for Tfh differentiation (40). Bcl6 drives expression of molecules involved in Tfh
homing and function, including CXCR5, CXCR4, IL-21R, IL-6R, PD-1, and IL-21, and is
required to maintain Tfh identity by suppressing the expression of factors associated with
other helper T-cell lineages, including IFNγ, IL-17, T-bet, IL-4, GATA-3, and Blimp-1
(37-39). As in B-cells, Blimp-1 and Bcl-6 counter-repress each other and play antagonistic
roles in CD4+ T-cell differentiation, with Blimp-1 suppressing and Bcl-6 promoting Tfh
lineage commitment (39).

Bcl-6 is also expressed at high levels in memory CD8+ T-cells. In mice lacking Bcl6, CD8+
T-cells proliferate poorly and fail to develop into central memory cells, highlighting a
critical role for Bcl6 in memory T-cell formation. Overexpression of Bcl-6 leads to
increased numbers of central memory CD8+ T cells following immunization and enhances
CD8+ T-cell proliferation after secondary stimulation (41). Similarly, Bcl6-deficient CD4+

T-cells exhibit increased apoptosis at the effector cell stage and fail to persist as long-lived
memory cells (42). Beyond its role in traditional T-cell subsets, Bcl6 is also important for
the function of human CD8+ T suppressor cells, which may play a role in immunological
tolerance in transplantation settings (43).

PLZF
Like Bcl6, the BTB-ZF protein Promyelocytic Leukemia Zinc Finger (PLZF) was first
identified in the context of hematopoietic cancer. In acute promyelocytic leukemia (APL),
chromosomal translocation fuses the genes for PLZF and the nuclear retonic acid receptor
alpha (RARα), ultimately leading to oncogenic transformation (44). In keeping with a
putative function as a tumor suppressor gene in APL, PLZF has been associated with
cellular quiescence and growth suppression in non-transformed cells of hematopoietic and
non-hematopoietic origin (45-51).

Recent studies on PLZF have elucidated its function as a critical regulator of innate T-cell
lineages. PLZF is highly expressed in immature CD1d-restricted invariant NKT (iNKT)
cells. In PLZF-deficient mice, iNKT cells fail to undergo thymic expansion and are
substantially reduced in the thymus, liver, and spleen. The iNKT that do develop in these
mice behave more like conventional naïve T-cells: these cells preferentially traffic to the
lymph nodes and fail to express characteristic activation markers, e.g. CD44 and CD69.
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Moreover, PLZF-deficient iNKT cells show a marked reduction in cytokine secretion upon
primary stimulation - most notable is their inability to simultaneously produce both IL-4 and
IFNγ - and instead require secondary activation to fully elaborate effector responses (52,
53). In contrast, ectopic PLZF expression in T cells results in the spontaneous acquisition of
memory/effector phenotypes and functions. PLZF-transgenic T-cells exhibit an activated
phenotype (e.g. CD44hi and CD62Llo), migrate to non-lymphoid tissues, and show enhanced
cytokine production upon primary activation even in the absence of costimulation (52, 54,
55).

In addition to iNKT cells, PLZF expression was recently shown in a subset of mature γδ T-
cells expressing the Vγ1.1+Vδ6.3+ TCR (56, 57). Vγ1.1+Vδ6.3+ T-cells share many features
with αβ TCR-expressing iNKT cells, including constitutive expression of activation
markers, rapid and simultaneous production of IFNγ and IL-4, requiring the SLAM-
associated Adaptor Protein, SAP, for their development. Although PLZF-deficient mice
harbored normal numbers of these cells, their function is dramatically impaired in the
absence of PLZF. Indeed, in contrast to WT cells, PLZF-deficient Vγ1.1+Vδ6.3+ T-cells
produce almost undetectable levels of IFNγ and IL-4 in response to TCR stimulation (57,
58). Interestingly, transgenic mice expressing the Vγ1.1+Vδ6.4+ TCR have large numbers of
PLZF+ T-cells and develop spontaneous dermatitis, perhaps underscoring a pro-
inflammatory and sometimes pathogenic role for these cells (56).

Several mouse strains have been described with increased numbers of innate CD8+ T-cells,
including mice lacking the Tec kinase Itk (59), the coactivator CBP (60), and the
transcription factor KLF2 (61). Recently, this CD8+ T-cell expansion was shown to be a cell
extrinsic consequence of elevated IL-4 produced by an expanded PLZF+ T cell population in
these mice (61).

In addition to αβ and γδ NKT cell subsets, PLZF is expressed in human MR1-specific MAIT
cells and in fetal MHC class II-restricted T cells that develop as a result of positive selection
on other T-cells (52, 62). PLZF may also impact NK cell function either directly or
indirectly; PLZF-deficiency impairs protection against MCMV infection and this
susceptibility was associated with reduced interferon-induced NK cell cytotoxicity (63).
Given the innate lymphocyte features of all of these cells, future studies will be useful for
understanding the role of PLZF in their development and/or function.

ThPOK
ZBTB7b, also known as ThPOK or cKrox, encodes a three zinc finger BTB domain protein
originally identified as a regulator of development and function in cells from connective
tissues. Within the hematopoietic compartment, ThPOK is upregulated in CD4+, but not
CD8+, T-cells upon differentiation from double- to single-positive thymocytes, and its
expression is stably maintained in CD4+ T-cells (64, 65). A spontaneous mutation in one of
its zinc finger domains resulted in the loss of helper T cells in HD (helper deficient) mice
(65). MHC class II-restricted T-cells from HD mice, as well as T-cells with submaximal
ThPok expression, exhibit features of transdifferentation to the CD8+ T-cell lineage,
highlighting a critical role for ThPOK in driving the CD4 vs CD8 lineage fate in naïve T-
cells (65, 66). Indeed, constitutive ThPOK expression in developing thymocytes induces
redirection to the CD4+ lineage, even among MHC class I-restricted cells, with many of the
features of helper T-cells (65).

In a temporal and developmental sense, ThPOK functions downstream of Gata-3, an early
CD4 lineage transcription factor, and ThPOK upregulation in conventional thymocytes
appears to depend on effective TCR signaling at the CD4+CD8lo stage (67-69). MHC class
II-signaled CD4+CD8- thymocytes with impaired signaling through the TCR-associated
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kinases, Zap70 or Itk, fail to upregulate ThPOK and instead express cytotoxic T-cell
markers, including the transcription factor Runx3 and its targets, Eomesodermin and
Perforin (70-72). Analogous to the antagonistic relationship of Blimp-1 and Bcl6 in B-cell
differentiation, ThPOK and the CD8+ T-cell determinant, Runx3, counter-repress expression
of each other. Thus, Runx-deficient MHC class-I restricted thymocytes, which lack
functionality in both Runx3 and Runx1 or are genetically deficient for the obligatory Runx
binding protein, Cbfβ, retain ThPOK expression and exhibit features of the helper T-cell
lineage, showing that Runx-mediated silencing of ThPOK is required to maintain CD8+

lineage commitment (73). Surprisingly, in animals lacking both Cbfβ and ThPOK, MHC
class II-restricted thymocytes maintain helper T cell characteristics, suggesting that in
settings where commitment to the CD8+ T-cell lineage is intrinsically limited (i.e. as a result
of Runx deficiency), ThPOK is more of importance for the maintenance, rather than the
induction, of the CD4+ T-cell fate (74). Nevertheless, in mice capable of CD8+ vs. CD4+

fate decisions, ThPOK plays a critical and active role in repressing CD8+ T-cell lineage
commitment.

Recent studies have uncovered critical roles for ThPOK in the development and function of
other T-cells subsets. In mature CD8+ T-cells, ThPOK expression is upregulated as a result
of TCR activation and is required for effective expansion during the primary and secondary
responses to acute viral infection (75). In mice lacking functional ThPOK, memory CD8+ T-
cells are impaired for IL-2 secretion and granzyme B expression following antigen
rechallenge (75). In innate T-cell lineages, ThPOK controls the development and functional
maturation of PLZF+ NKT cells of both the γδ and αβ TCR lineages (57, 76-78). ThPOK is
highly expressed in Vγ1.1+Vδ6.3+ γδ T-cells and CD4+ iNKTs. Although ThPOK-
deficiency does not significantly alter the frequency of either population in mice, both
subsets show dramatically impaired CD4 co-receptor expression, much like conventional T-
cells (57, 76, 78). In addition, a separate study reported a reduction in the total pool of
mature CD24- γδ T-cells, particularly those expressing NK1.1, in ThPOK-deficient mice,
suggestive of a broader role for ThPOK in the development of some, though not all, γδ T-
cell subsets (77). More striking, however, is the role of ThPOK in the effector function of
iNKT and Vγ1.1+Vδ6.3+ γδ T-cells. ThPOK-deficient iNKTs show impaired expression of
markers associated with NKT function, including granzyme B, CD69, and, in one study,
NK1.1, and produce less IL-4, IFNγ and TNFα, in response to αGal-Cer stimulation (76,
78). As in conventional T-cells, ThPOK expression in iNKTs depends on Gata-3 (76).
Similarly, Vγ1.1+Vδ6.3+ γδ T-cells produce less IL-4, but more IFNγ, in response to
stimulation and this impairment correlated with reduced PLZF expression (57).

PLZP
The BTB protein PLZF-Like Zinc Finger Protein (PLZP), also known as FAZF, TZFP, and
ROG, shares many features with PLZF, including a high level of sequence similarity,
recognition of the same target DNA sequences, and declining expression in hematopoietic
progenitors cells as a function of lineage-specific differentiation (19, 79, 80). Among
lymphocytes, PLZP is upregulated in primary CD4+ and CD8+ T-cells following TCR
activation in vitro (12, 80, 81). T-cells from PLZP-deficient mice produce more IL-2 and are
hyper-proliferative in response to TCR stimulation as compared to WT cells, suggesting an
anti-proliferative role for PLZP in activated T-cells (80, 82).

In addition to controlling proliferation, several studies have highlighted a role for PLZP in
controlling lymphocyte cytokine responses. When overexpressed in T-cells lines, PLZP was
shown to directly interact with the Th2-promoting transcription factor, GATA-3, and could
antagonize GATA-3 binding to target genes, such as IL-5 (81). Similarly, PLZP repressed
GATA-3-induced IL-4 production when both transcription factors were co-transfected into
primary CD4+ T-cells (12). Moreover, overexpression in either Th1- or Th2-skewed T-cells
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impaired cytokine production on a more global level, leading to reduced IL-4, IL-5, IL-10,
IFNγ, and IL-17 (12, 81). In Tc2-skewed CD8+ T-cells, endogenous PLZP was shown to
directly bind a regulatory region in the IL-13 gene, hinting at a similar role for PLZP in
cytokine production by CD8+ T-cells (12).

Consistent with the overexpression studies, CD4+ T-cells from PLZP-deficient mice express
higher levels of IL-4, IL-5, and IL-13 when stimulated in vitro under Th2-promoting culture
conditions, and PLZP-deficient CD8+ T-cells produced more IFNγ upon stimulation under
neutral conditions (80). Nevertheless, PLZP-deficient CD4+ T-cells are fully capable of
differentiating into Th1 or Th2 cells in vitro and PLZP-deficient mice mount normal Th1
and Th2 responses to MOG-induced EAE and KLH immunization, respectively (82). In
contrast, allergic responses in airway hypersensitivity models are enhanced in PLZP-
deficient mice, reflecting increased Th2 differentiation and Th2-driven inflammation in the
affected airways (83). Similarly, these mice exhibit heightened Th2 inflammation in the
context of a hapten-induced model of contact hypersensitivity, leading to exacerbated edema
and mast cell degranulation at reaction sites and increased levels of IgE and hapten-specific
IgG antibodies in the circulation (84). These defects are directly linked to a cell intrinsic
requirement for PLZP in T-cells, as transfer of PLZP-deficient or PLZP-overexpressing T-
cells exacerbated or ameliorated, respectively, disease progression in wild-type animals.
Thus, additional studies will be needed to clarify the exact role of PLZP in lymphocyte
function in vivo.

Beyond regulating cytokine production in T-cells, PLZP may also play a role in lineage
commitment during T-cell development. In one study, overexpression of PLZP in
developing double-positive thymocytes, in the context of a fetal thymic organ culture model,
led to a preferential accumulation of single positive CD8+ T-cells. Similar to its function in
mature T-cells, this accumulation was linked to the ability of PLZP to inhibit GATA-3
function (85).

BAZF
BAZF, also known as Bcl6b, is a five zinc finger BTB protein with high similarity to Bcl6.
In addition to sharing significant sequence homology, both can recognize the same target
DNA sequences (17). Within in the lymphocyte compartment, BAZF mRNA is detectable in
CD4+ and CD8+ naïve T-cells (86). Interestingly, both Bcl6- and BAZF-deficient animals
exhibit aberrant hematopoietic progenitor cell proliferation, a defect that was linked to a
cell-intrinsic requirement for BAZF in CD8+ T-cells (87). In addition to naïve T-cells,
BAZF is expressed at high levels in some antigen-specific, memory CD8+ T-cells and,
although BAZF-deficient mice show normal CD8+ T-cell activation in response to primary
viral infection, recall responses by memory CD8+ T-cells are greatly impaired in vitro and in
vivo (88).

In contrast to its role in memory CD8+ T-cells, naïve CD4+ T cells require BAZF expression
for maximal TCR-induced proliferation in vitro, whereas memory CD4+ T-cells do not (86).
Moreover, while naïve CD4+ T-cells from mice that ectopically express BAZF are hyper-
proliferative in response to TCR stimulation, memory CD4+ T-cells from these mice behave
normally.

MAZR
Compared to the BTB-ZF proteins detailed above, relatively little is known about the role of
MAZR in lymphocyte and development. MAZR is expressed in thymocytes and B-cells and,
in the latter, activated c-Myc in overexpression studies (89). In double negative thymocytes,
MAZR has been postulated to function as a transcriptional repressor of the CD8 locus and
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its downregulation is required, in part, for CD8 expression at the transition to the double
positive stage (90). In double positive thymocytes, ectopically expressed MAZR could bind
enhancer elements in the CD8 gene and suppress CD8 expression (90). Recent studies,
however, show that MAZR-deficiency is insufficient to allow CD8 expression in double
negative thymocytes. Instead, development of single positive CD8+ T-cells was impaired in
these animals and MHC class I-restricted thymocytes were redirected into the CD4+ lineage,
leading to an increased CD4+ to CD8+ T-cell ratio among mature thymocytes and peripheral
T-cells. This phenotype was linked to MAZR-mediated repression of the Th-POK gene in
double positive thymocytes (91).

LRF
Leukemia/lymphoma Related Factor (LRF), also known as OCZF, Zbtb7a, FBI-1 and
Pokemon, is a BTB-ZF transcriptional repressor and oncogene associated with malignancy
in lymphomas and solid epithelial tumors, including breast cancer, and non-small cell lung
carcinoma (92-94). LRF is expressed in a broad range of myeloid and lymphoid lineages,
including most subsets of developing and peripheral B-cells (95). Conditional deletion of the
LRF gene in HSCs in vivo led to a profound reduction in peripheral B-cells, consistent with
a cell intrinsic requirement for LRF for progression past the prepro-B cell stage during bone
marrow development (93, 95). Unexpectedly, these mice exhibited extrathymic T-cell
development in the bone marrow. Additional experiments revealed that LRF was required in
lymphoid progenitor cells in the bone marrow to suppress Notch-dependent T-cell lineage
commitment and allow B-cell development to progress. In the absence of LRF, Notch genes
are aberrantly upregulated in hematopoietic progenitors, abrogating B-cell development and
driving spontaneous T-cell development outside of the thymus (95). It remains to be
determined whether Notch is a direct target of LRF or whether aberrant Notch signaling in
these mice is an indirect consequence of impaired LRF-dependent signals.

MIZ-1
A critical role for Myc-interacting Zinc Finger Protein-1 (Miz-1) in lymphocyte
development has recently been appreciated. In the past year, two separate studies using
Miz1-defective mice revealed an essential function for Miz-1 in the development of both T-
and B-lymphocytes (96, 97). Animals lacking the BTB domain of Miz-1 exhibit a profound
reduction in the number of thymic early T-cell progenitor cells (ETPs). Moreover, T-cell
development in these animals is blocked at the double negative to double positive transition
causing a severe reduction in thymic cellularity, which was mirrored by specific reductions
in the number of αβ and γδ T-cells. Transfer of Miz1-deficient hematopoietic progenitors
into wild-type mice confirmed that the requirement for Miz-1 in T-cell development was cell
intrinsic. Consistently, pro-T cells from these mice failed to differentiate in vitro as a result
of increased apoptosis (96). In addition to the T-cell defect, Miz-1 deficiency leads to a
complete loss of follicular B-cells, underscoring a parallel role for Miz-1 in the development
of certain B-cell subsets (97). In both lymphocyte populations, Miz-1 was shown to be
required downstream of IL-7R signaling in lymphocyte progenitor populations to promote
STAT5 activation and expression of the anti-apoptotic protein, Bcl-2 (96, 97). In developing
T-cells, these effects were mediated in part by MIZ-1-dependent repression of the STAT
inhibitor, SOCS-1; consistent with this, binding of MIZ-1 to the SOCS-1 promoter could be
detected in primary double negative thymocytes. A similar relationship between SOCS-1
and Miz-1 was observed in developing B-cells, though loss of Miz-1 also abrogated
expression of two transcription factors, Tcf3 and Ebf1, critical for the survival and function
of early B-cell progenitors (97).
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Conclusions and Future Directions
New studies are required to further delineate the exact molecular mechanisms by which
BTB-ZF proteins regulate gene expression in lymphocytes. This will require a more
thorough investigation of the co-factors recruited by these proteins for the purpose of
regulating target gene transcription, as well as the identity of the gene targets themselves. In
addition, relatively little is known about the upstream signals that regulate the spatial/
temporal function of these transcription factors in distinct lymphocyte lineages. In this vein,
several studies have highlighted post-translational modification of BTB-ZF proteins as an
important regulatory signal controlling their expression and function. For example,
acetylation and sumoylation of PLZF may promote DNA binding and transcriptional
repression (98-100), and acetylation of ThPok blocks ubiquitin-mediated degradation,
thereby stabilizing its expression in CD4+ T-cells (101). In contrast, phosphorylation of
PLZF and Bcl6, by CDK2 and ATM, respectively, has been shown to trigger ubiquitylation
and degradation via proteasome-dependent pathways (102, 103).

From development to effector function, recent studies have highlighted a central and
indispensible role for BTB-ZF transcriptions factors in controlling nearly every aspect of
lymphocyte biology. Moreover, the fact that fewer than ten of the more than 45 factors in
this protein family have been evaluated in this context suggests that future work is likely to
uncover additional BTB-ZF proteins with roles in lymphocyte function, fate, and phenotype.
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Fig. 1.
The key structural features of the eight BTB-ZF transcription factors discussed in this
review are highlighted and the reported functions of each transcription factor are listed.
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