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The gold(I)/silver(I)-cocatalyzed cascade intermolecular N-Michael addition/intramolecular hydroalkylation reaction offers a

simple and efficient method for the synthesis of pyrrolidine derivatives in moderate to excellent product yields and with moderate

to good diastereoselectivities. The reaction conditions and the substrate scope of this reaction are examined, and a possible mecha-

nism involving AgClO4 catalyzed intermolecular N-Michael addition and the subsequent gold(I)-catalyzed hydroalkylation is

proposed.

Introduction

Gold complexes are presently receiving a surge of interest in the
field of metal-catalyzed organic reactions. They have been
shown to be versatile and efficient catalysts for the promotion

of a large number of organic transformations, most of which are

based on the propensity of gold ion to act as a soft and
carbophilic Lewis acid to activate unsaturated C—C bonds
towards nucleophilic attack [1-10] (for selected reviews on

gold-catalyzed reactions see [1-9]). Based on this mode of acti-
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vation, several methods for the gold-catalyzed inter- and
intramolecular addition of oxygen- [11-15], nitrogen- [10,16-
18] (for recent reviews on gold-catalyzed hydroamination see
[16-18]), or carbon-nucleophiles [19-24] to unactivated alkenes
[21-25] have been developed. On the other hand, in recent
years, considerable efforts have been devoted to the develop-
ment of dual-metal-catalyzed reactions as new strategies for the
synthesis of organic compounds with intriguing diversity and
selectivity [26-29] (for reviews on cooperative catalysis see
[26,27] and for a general review on cocatalysis see [28]). This
type of reaction could have the advantages of the combined
characteristic features of two metals, often displaying unique re-
activity, have a shortened synthetic route and generate less
chemical waste. All of these features are of significant
economic and environmental benefit. In this context, extensive
studies have been conducted on the design and utilization of
dual-metal catalyst systems in organic synthesis [26-40] (for
recent examples of Au/Pd-cocatalysis see [30-33]; for Au/Mo-
cocatalysis see [31,35]; for Au/Ag-cocatalysis see [36-38]; for
Au/Yb-cocatalysis see [39] and for Au/Rh-cocatalysis see [40]).
However, the use of homogeneous gold catalysts in coopera-
tion with other metal catalysts has been reported only in a few
cases [30-40]. In this work, we describe a highly efficient
gold(I)/silver(I)-cocatalyzed cascade intermolecular N-Michael
addition/intramolecular hydroalkylation process. A variety of
pyrrolidine compounds were conveniently prepared in moderate
to excellent yields and with moderate to good diastereoselectiv-
ities from the simple starting materials.

More recently, we have reported that gold(I) complexes can
efficiently catalyze direct intramolecular hydroalkylation of
unactivated alkenes with a-ketones, via the exo-trig cyclization,
to build a variety of new five- and six-membered rings [24].
However, all of the substrates examined in this gold(I)-
catalyzed reaction were prepared and isolated prior to use, and
this is not desirable as the synthesis of these substrates could be
tedious and time-consuming. The increasing demand for envi-
ronmentally benign and economical synthetic processes calls
for the development of cascade reactions for the efficient
construction of cyclic compounds from simple starting ma-
terials [41]. We initially envisioned that the gold(I)-catalyzed
cascade process could be established starting from the intermo-
lecular N-Michael reaction of a,B-unsaturated ketone 1 and
substituted allylamine 2 to furnish an a-ketone intermediate I
[42-44] (for gold-catalyzed intramolecular N-Michael reaction
see [42,43]), which further undergoes a subsequent gold(I)-
catalyzed hydroalkylation to give pyrrolidine compounds 3
(Scheme 1); these compounds are versatile synthetic building
blocks for organic synthesis and are important structural
elements of many therapeutic drug molecules. Disappointingly,

no conversion was observed when (z-Bu);(o-diphenyl)PAuOTf
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only was used as the catalyst. Since dual-metal-catalysis is of
interest from the perspective of unique reactivity [26-40], we
explored a new cascade reaction involving intermolecular
N-Michael addition catalyzed by an appropriate transition metal
salt and subsequent intramolecular hydroalkylation catalyzed by
a gold complex (Scheme 1).
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Scheme 1: Cascade intermolecular N-Michael addition/intramolecular
hydroalkylation of unactivated alkenes with a-ketones catalyzed by a
dual-metal catalytic system comprising a transition metal salt and a
gold(l) complex.

Results and Discussion

The optimization of the reaction conditions was performed
using the reaction of phenyl vinyl ketone (1a) with N-tosylallyl-
amine (2a) in the presence of 5 mol % of (¢#-Bu)y(o-
diphenyl)PAuOTf. However, no desired product 3a was
observed (Table 1, entry 1). When using a combination of
5 mol % of (#-Bu);(o-diphenyl)PAuCl and AgOTT as catalyst,
the corresponding product 3a was obtained in 25% yield
(Table 1, entry 2) (a small amount of silver salt may have
remained in the reaction system when the mol ratio of silver salt
to gold complex was 1:1, see [45]). Upon further increase of the
AgOTf loading to 10 mol %, the corresponding product 3a was
formed in 58% yield with a diasterecomeric ratio of 5.4:1
(Table 1, entry 3) [46]. Using a combination of 5 mol % of
(-Bu),(o-diphenyl)PAuCl and 15 mol % of AgOTf as a dual-
metal catalyst system lead to the formation of pyrrolidine
derivative 3a as a 5.3:1 mixture of two diastereomers in 67%
yield (Table 1, entry 4). The yield increased from 58% to 67%
as the mol ratio of 2a to 1a was increased from 1.2/1 to 1.5/1
(Table 1, entries 4 and 5). However, the yield did not increase
remarkably when the mol ratio of 2a to 1a was raised from 1.5/
1 to 2.5/1 (Table 1, entries 4-7). As depicted in Table 1, varying
the method of the addition of phenyl vinyl ketone (1a) to the
reaction mixture did not have a noticeable effect on the yield of
3a (Table 1, entries 8—11).
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Table 1: The optimization of the reaction conditions.
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O
) Ph
o (t-Bu)2(o-biphenyl)PAuCI (5 mol %)
J\/ AgOTf (x mol %)
Ph 7 4+ TsHN N toluene, 90 °C, 20 h N
Ts
1a 2a 3a
entryd x (mol %) mol ratio (2a/1a) trans/cisP yield (%)P
1¢ 5 1.5/1 - —d
2 5 1.5/1 1.4:1 25
3 10 1.5/1 5.4:1 58
4 15 1.5/1 5.3:1 67
5 15 1.2/1 5.7:1 58
6 15 2.0/1 5.9:1 66
7 15 2.5/1 5.5:1 64
8 15 11.5 5.5:1 64
9® 15 11.5 5.2:1 60
10f 15 11.5 5.5:1 65
119 15 11.5 5.5:1 64

aReactions were carried out in toluene (0.5 mL) at 0.25 mmol scale based on 1a or 2a, 1a was added in one portion. PYield and selectivity were deter-
mined by "H NMR spectroscopy (internal standard: trimethyl(phenyl)silane). °5 mol % of (t-Bu)(o-diphenyl)PAUOTf was used as catalyst. 9no desired
product 3a was detected. ®1a (dissolved in 0.3 mL of toluene) was added dropwise over 6 h. f1a was added in two portions every 3 h. 91a was added

in three portions every 2 h.

To identify further the optimal reaction conditions for the
gold(I)/silver(I)-cocatalyzed cascade reaction, a number of
dual-metal catalyst systems, composed of 15 mol % of silver
salt with 5 mol % of gold(I) complex in different organic
solvents, were tested in the reaction of phenyl vinyl ketone (1a)
with 1.5 equiv of N-tosylallylamine (2a) (Table 2). AgClO4 was
found to be the best silver salt for this reaction (Table 2, entries
1-5). A panel of Au(I) complexes with different ancillary
ligands was also screened for activity and diastereo-induction in
this cascade reaction (Table 2, entries 5-9). Among the

Table 2: Screening catalysts and solvents.

complexes examined, (z-Bu),(o-biphenyl)PAuCl gave the best
result (Table 2, entry 5). Further screening of solvents revealed
that toluene gave the best result, while the other solvents,
dioxane, nitromethane, 1,2-dichloroethane, tetrahydrofuran,
benzene, and acetonitrile, gave low product yields and low dia-
stereoselectivity (Table 2, entries 5 and 10-15). After optimiza-
tion of the reaction conditions, the protocol with the combina-
tion of 5 mol % of (#-Bu);(o-biphenyl)PAuCl and 15 mol % of
AgClOy4 as a dual-metal catalyst system at 90 °C in toluene for
20 h gave the product 3a in 76% yield.

0]
Ph
o gold catalyst (5 mol %)
J\/ silver salt (15 mol %)
P~ + TsHN solvent, 90 °C, 20 h N
Ts
1a 2a 3a
entry?@ gold catalyst/silver salt solvent trans/cis® yield (%)P

1 (t-Bu)o(o-biphenyl)PAUCI/AgOTF toluene 5.3:1 67
2 (t-Bu)o(o-biphenyl)PAuCI/AgSbFg toluene 2.2:1 35
3 (t-Bu),(o-biphenyl)PAUCI/AgPFg toluene 2.6:1 62
4 (t-Bu)o(o-biphenyl)PAuCl /AgBF 4 toluene - <5
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Table 2: Screening catalysts and solvents. (continued)

5 (t-Bu)z(0-biphenyl)PAuCI/AgCIO,
6 Ph3PAUCI/AgCIO,

7 Cy3PAUCI/AgCIO4

8 IPrAuCI/AgClO4°

9 LTAUCI/AgCIO49

10 (t-Bu)(0-biphenyl)PAUCI/AGCIO,
11 (t-Bu)o(o-biphenyl)PAUCI/AgCIO4
12¢ (t-Bu),(0-biphenyl)PAUCI/AgCIO,4
13¢ (t-Bu),(0-biphenyl)PAUCI/AgCIO,4
148 (t-Bu)z(o-biphenyl)PAUCI/AGCIO4
15¢ (t-Bu)(0-biphenyl)PAUCI/AGCIO,

Beilstein J. Org. Chem. 2011, 7, 1100-1107.

toluene 41:1 76
toluene - <5
toluene - <5
toluene 4.4:1 63
toluene 3.1:1 50
dioxane 4.0:1 63
CH3NO» 2.8:1 47

DCE 1.8:1 34

THF 1.8:1 76
benzene 3.2:1 60
CH3CN - <5

aReactions were carried out in toluene (0.5 mL) at 0.25 mmol scale, 1a (0.25 mmol) and 2a (0.375 mmol) were added in one portion. PYield and
selectivity were determined by 'H NMR spectroscopy (internal standard: trimethyl(phenyl)silane). ¢IPr= N,N'-bis(2,6-diisopropylphenyl)imidazol-2-
ylidene. 9L = (Cy),(2',4',6'-triisopropyl-o-biphenyl)P. eReactions were carried out under reflux.

With the optimal reaction conditions, we next explored the sub-
strate scope with the protocol for the Au(I)/Ag(I)-cocatalytic
system (Table 3). For example, treatment of substrate 1b, which
has an electron-donating para-methoxy group on the phenyl
ring, with 2a under the optimized reaction conditions gave the
expected product 3b in 92% yield, albeit with no diastereose-

lectivity (Table 3, entry 2). In addition to substrate 1b, o,f-
unsaturated ketone 1c¢, with electron-withdrawing substituent on
the phenyl ring, underwent this cascade reaction to afford the
corresponding product 3¢ in 58% yield with a diastereomeric
ratio of 1.7:1 (Table 3, entry 3). Reaction of alkyl a,B-unsatu-
rated ketone 1d in the presence of 5 mol % of (#-Bu);(o-

Table 3: Cascade synthesis of pyrrolidine catalyzed by a dual-metal catalytic system comprising of gold(l) and silver(l) catalysts.

0]
o P(t-Bu),(o-biphenyl)AuCl (5 mol %) R’
AgClO,4 (15 mol %)
= o+ =
R1ﬂ\/ RPN toluene, 90 °C, 20 h N
g2
entry?@ a,B-unsaturated ketone substituted allylamine major product drP yield (%)P
0]
o P Ph s
1 N TsHN > 41:1 76
Ph 2a
1a
(0]
=
/\/
2 TsHN 1.0:1 92
MeO 2a
1b
O
=
/\/
3 TsHN 1.7:1 58
02N 2a
1c
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Table 3: Cascade synthesis of pyrrolidine catalyzed by a dual-metal catalytic system comprising of gold(l) and silver(l) catalysts. (continued)

0
=
4 A TsHN >
1d 2a
Q /\/
5 A~ NsHN
1d 2b
Q /\/
6° \)J\/ RHN
1d 2c
o}
; TsHN >
2a
1e

5.5:1 92
5.3:1 76
5.2:1 91
3f
Ts
o v
1.8:1 52
39

@Reactions were carried out in toluene (0.5 mL) at 0.25 mmol scale. The a,B-unsaturated ketone (0.25 mmol) and the substituted allyl amine (0.375
mmol) were added in one portion. ®Yield and selectivity were determined by "H NMR spectroscopy (internal standard: trimethyl(phenyl)silane). °R =

2,4,6-triisopropylbenzenesulfonyl.

biphenyl)PAuCl and 15 mol % of AgClO4 also gave the desired
product 3d in 92% yield with a diastereomeric ratio of 5.5:1
(Table 3, entry 4). Other substituted allylamines were also
examined. A series of substituted allylamines with 4-nitroben-
zenesulfonyl group and 2,4,6-triisopropylbenzenesulfonyl group
were similarly treated with alkyl a,p-unsaturated ketone 1d, and
the corresponding products 3e and 3f were obtained in moderate
to excellent yields with similar diastereomeric ratios of around
5.2:1 (Table 3, entries 4-6). Notably, the gold(I)/silver(I)-cocat-
alyzed cascade reaction was also successfully applied to furnish
spirocyclic pyrrolidine derivative 3g in 52% yield starting from
the readily available precursor 2-methylene-3,4-dihydronaph-
thalen-1(2H)-one (1e) and N-tosylallylamine (2a) (Table 3,
entry 7).

To gain insight into the mechanism of the gold(I)/silver(I)-
cocatalyzed cascade reaction, we first examined the reaction of
phenyl vinyl ketone (1a) with 1.5 equiv of N-tosylallylamine
(2a) in the presence of 5 mol % of (+-Bu),(o-biphenyl)PAuClOy4
at 90 °C in toluene for 20 h, however, no desired product 3a or
a-ketone intermediate 4 was observed by 'H NMR analysis of

the reaction mixture (Scheme 2, reaction 1). This finding

revealed that the gold(I) complex is ineffective in the catalysis
of the intermolecular N-Michael reaction. Upon subsequent
treatment of phenyl vinyl ketone (1a) with N-tosylallylamine
(2a) in the presence of 10 mol % of AgClOy4 at 90 °C for 3 h,
the a-ketone intermediate 4 was formed in 85% yield, however,
no product 3a was observed. Even after a longer reaction time
(20 h) under the same reaction conditions, 3a was also not
detected, and a-ketone intermediate 4 was isolated in lower
yield (66%) (Scheme 2, reaction 2), which may be due to the
retro-N-Michael reaction [47]. On the other hand, product 3a
and a-ketone intermediate 4 were not observed in the presence
of 10 mol % of AgCl under the same reaction conditions
(Scheme 2, reaction 3), revealing that the newly formed AgCl
from the reaction of (#-Bu);(o-biphenyl)PAuCl and AgClO,4 did
not affect the reaction. All the results demonstrated the dual
roles of the silver salt that serves firstly to abstract the coordi-
nated CI™ ligand, to give a reactive gold catalyst, and secondly
to act as an efficient catalyst for the intermolecular N-Michael
addition.

On the basis of these observations and our previous work on

gold(I)-catalyzed intramolecular hydroalkylation of unactivated
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- -bi 0,
Phk/ + TsHN/\/ (t-Bu)(o-biphenyl)PAuCIO 4 (5 mol /o)\\
toluene, 90 °C, 20 h

0 o)
Ph
Rt al
\ \

1a 2a
Ts Ts
3a 4
0 0
i ANF AgClOy4 (10 mol %) Ph 7
g 4 mol 7
Ph)v + TsHN "~ o , Ph J/ @)
oluene,
1a 2a 'T‘ 'T‘
Ts Ts
Time 3a 4
3 h n.d. 85%
20 h n.d. 66%
0 0
o) Ph
— AgCl (10 mol %) Ph =
Ph)v + TsHN" > A\ + ®)
toluene, 90 °C, 20 h N N
1a 2a | |
Ts Ts
3a 4
Scheme 2: Some control experiments.
alkenes with a-ketones [24], a reaction mechanism for the for- Conclusion

mation of pyrrolidine 3 from the reaction of a,B-unsaturated
ketone 1 with substituted allylamine 2 is proposed (Scheme 3),
which involves silver-catalyzed intermolecular N-Michael addi-
tion of substituted allylamine 2 to a,B-unsaturated ketone 1 to
generate the o-ketone intermediate I and subsequent gold(I)-
catalyzed intramolecular hydroalkylation of the a-ketone inter-
mediate I to form the cyclic compound 3 (Scheme 3).

0]
Q gold complex/ R’
1 silver salt (cat.)
R lﬁ\ L RN
R2 T
1 2 3 RS
(0]
R! =z
silver salt (cat.) [Au] (cat.)
RZ" "N
|3

| R

Scheme 3: The reaction pathway.

In summary, we have developed a simple and efficient gold(I)/
silver(I)-cocatalyzed cascade intermolecular N-Michael addi-
tion/intramolecular hydroalkylation reaction. The present
protocol with a dual-metal catalytic system provides a highly
efficient method for the synthesis of a variety of pyrrolidine
compounds in moderate to excellent product yields and with
moderate to good diastereoselectivities from a,B-unsaturated
ketones and substituted allylamines. Further studies to expand
the substrate scope are currently in progress.

Supporting Information
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