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Abstract

Autophagy is an evolutionarily conserved catabolic process that allows recycling of cytoplasmic organelles, such as
mitochondria, to offer a bioenergetically efficient pathway for cell survival. Considerable progress has been made in
characterizing mitochondrial autophagy. However, the dedicated ubiquitin E3 ligases targeting mitochondria for autophagy
have not been revealed. Here we show that human RNF185 is a mitochondrial ubiquitin E3 ligase that regulates selective
mitochondrial autophagy in cultured cells. The two C-terminal transmembrane domains of human RNF185 mediate its
localization to mitochondrial outer membrane. RNF185 stimulates LC3II accumulation and the formation of
autophagolysosomes in human cell lines. We further identified the Bcl-2 family protein BNIP1 as one of the substrates
for RNF185. Human BNIP1 colocalizes with RNF185 at mitochondria and is polyubiquitinated by RNF185 through K63-based
ubiquitin linkage in vivo. The polyubiquitinated BNIP1 is capable of recruiting autophagy receptor p62, which
simultaneously binds both ubiquitin and LC3 to link ubiquitination and autophagy. Our study might reveal a novel
RNF185-mediated mechanism for modulating mitochondrial homeostasis through autophagy.

Citation: Tang F, Wang B, Li N, Wu Y, Jia J, et al. (2011) RNF185, a Novel Mitochondrial Ubiquitin E3 Ligase, Regulates Autophagy through Interaction with
BNIP1. PLoS ONE 6(9): e24367. doi:10.1371/journal.pone.0024367

Editor: Ben C.B. Ko, Chinese University of Hong Kong, Hong Kong

Received June 8, 2011; Accepted August 8, 2011; Published September 9, 2011

Copyright: � 2011 Tang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from Ministry of Science and Technololgy of China (2006CB504304) and Ministry of Health of China (008ZX10002-
008). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jtang@ibp.ac.cn

Introduction

The ubiquitin proteasome system (UPS) is well known to be

involved in diverse cellular processes, including development,

proliferation, transcription, signal transduction, apoptosis, and

DNA repair[1,2,3,4]. Ubiquitin E3 ligases play central regulatory

roles of UPS in that they provide substrate specificity and catalyze

the ligation of ubiquitin to the substrate. Our understanding of E3

ligases has been improved dramatically with the discovery of the

RING (Really Interesting New Gene) domain as a module for E3

ligases. The RING domain comprises eight cysteine and histidine

residues together (such as C3HC4) that bind two atoms of zinc to

form one unique cross-braced minidomain, yielding a rigid,

globular platform for protein-protein interactions. RING domain

proteins are comprising .95% of all predicted human E3

ligases[5], implying a very broad involvement of RING-dependent

ubiquitination in vivo[6,7].

Ubiquitination plays the important regulatory role mainly

targeting substrates for degradation by the 26S proteasome.

However, the proteasome is limited in its capacity for degrading

individual proteins. Removal of aggregated proteins, larger

macromolecular complexes and whole organelles is mediated by

autophagy, a catabolic process in which cytosolic cellular

components are delivered to the lysosome for degradation.

Ubiquitination has been proposed as a signal for selective

autophagy[8], and the autophagy receptor proteins, such as p62

and NBR1, interact with both ubiquitin and autophagosome-

specific Atg8-family proteins LC3 (microtubule-associated protein

light chain 3)/GABARAP, to promote autophagy[9].

The role of autophagy in the control of mitochondrial

degradation is now generally recognized[10,11,12,13]. The

autophagic uptake of mitochondria and their subsequent degra-

dation in lysosome accentuates the importance of mitochondrial

degradation by autophagy for cellular homeostasis. However, how

mitochondria are selected for degradation by autophagy remains

largely unknown. The removal of mitochondria can be specific,

and the signals that specify mitochondria as targets of the

autophagical process have recently begun to be elucidated both

in yeast and mammalian cells [14,15,16,17]. In mammalian cells,

the activation of mitochondrial permeability transition and loss of

mitochondrial membrane potential appear to be common features

of mitochondrial autophagy[18]. The reactive oxygen species

(ROS) of mitochondrial origin are also proposed as signaling

molecules for mitochondrial autophagy regulation[19,20]. Bif-1 is

involved in the regulation of mitochondria autophagy by

stimulating Bax and interacting with Beclin 1 through UV-

RAG[21,22]. The fission/fussion machinery of mitochondria has

also been associated with autophagy[11,23], although direct

involvement has not been demonstrated.

Despite the considerable progress in characterizing mitochon-

drial autophagy, relatively little is known about the genes that

regulate selective autophagy of mitochondria through ubiquitina-
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tion. Meanwhile, the study of ubiquitination system in mitochon-

drial biology is still at an early stage as only a few mitochondria

related E3 ligases are known. Here, we describe the identification

of a novel RING domain protein RNF185 as a mitochondrial

outer membrane (MOM) ubiquitin E3 ligase involved in the

regulation of selective autophagy.

Results

RNF185 localizes at mitochondria
RNF185 is an evolutionarily conserved gene among vertebrates

(Fig. S1). Based on SMART prediction (http://smart.embl-heidel-

berg.de/), human RNF185 is a 21 kDa protein with a C3HC4

RING domain and two transmembrane (TM) domains, named TM1

and TM2 respectively (Fig. 1A and Fig.S1). In order to define the

effect of the RING domain and two TM domains of RNF185 on its

subcellular localization, we generated four RNF185 mutants that

were fused to GFP (green fluorescent protein) (Fig. 1A). We first

transfected the N-terminally GFP-tagged RNF185 (GFP-RNF185-

WT) in HeLa cells and stained the cells with organelle-specific

fluorescent red dye. The GFP-RNF185 had a clear overlap with

MitoTracker Red in the cytoplasmic region (Fig. 1B). While both wild

type RNF185 (RNF185-WT) and RING domain mutated RNF185

(RNF185-RM, detailed information on RING mutation is presented

in Fig. S2) colocalized well with Mitotracker Red, RNF185 mutant

with TM domains deleted (RNF185-TM) was completely misloca-

lized and distributed evenly in cell nuclei and cytosol. Both the

mutation of TM1 (RNF185-TM1, detailed information on TM1

mutation is presented in Fig. S2) and the deletion of TM2 (RNF185-

TM2) led to partial mislocalization of RNF185. However, TM2

seemed to be more important for RNF185’s correct localization,

because more mislocalized GFP-RNF185-TM2 proteins were

observed compared with GFP-RNF185-TM1 proteins. Our results

revealed that the TM domains play an important role in determining

subcellular localization for RNF185.

With the mitochondrial targeting sequence fused to the 59 end of the

DsRed2 vector, the mammalian expression vector pDsRed2-Mito is

designed for brighter, more persistent and easier labeling of

mitochondria[24,25,26]. Confocal microscopy showed that DsRed2-

Mito and GFP-RNF185 colocalized well in HeLa cells (Fig. 1C). To

determine the cellular distribution of endogenous RNF185, we used

affinity purified anti-RNF185 polyclonal antibody in conjunction with

MitoTracker Red, which is associated with mitochondrion even after

cell fixation and permeabilization. We clearly demonstrated that

endogenous RNF185 labeled with Alexa Fluor 488 completely

overlapped with MitoTracker Red (Fig. 1D and more images in Fig.

S3). Moreover, we also used differential centrifugation to substantiate

the mitochondrial localization of RNF185. Consistent with previous

observations, endogenous RNF185 was the most abundant in the

fraction enriched for mitochondria (Fig. 2A). Thus, both cellular and

biochemical analyses demonstrate that RNF185 is a mitochondrial

protein.

RNF185 is a MOM protein with RING domain exposed to
the cytosol

Mitochondrion is composed of an outer membrane, an

intermembrane space, an inner membrane, and the cristae and

matrix, with each compartment carrying out specialized functions.

To specify the transmembrane location of RNF185, we further

performed a proteinase K susceptibility experiment with purified

mitochondria. Intact mitochondria were incubated with or

without proteinase K and analyzed by western blot to detect

RNF185, the mitochondrial outer membrane protein Mfn1, the

intermembrane space protein OPA1 and the mitochondrial inner

membrane protein Tim23 (Fig. 2B). Endogenous RNF185 was

susceptible to proteinase K digestion, and similar result was

obtained for Mfn1, while OPA1 and Tim23 remained resistant to

proteinase K digestion because of the protection of mitochondrial

membranes. To further characterize the topology of RNF185 on

mitochondria, we made a construct with a Flag tag and a Myc tag

expressed at the N-terminus and C-terminus of RNF185 protein

respectively. Mitochondrial fractions isolated from those Flag-

RNF185-Myc-expressing cells were subjected to proteinase K

digestion at various time points (Fig. 2C). Both the Flag and Myc

tags were readily susceptible to proteinase K digestion, and their

signals weakened gradually and disappeared within 20 min of

treatment. A similar pattern was observed for the MOM protein

Tom20. In contrast, cytochrome c and intermembrane space

protein Tim23 remained intact. Taken together, our experimental

evidence suggests a model for RNF185’s subcellular localization

on mitochondria (Fig. 2D). Flag-RNF185-Myc is a MOM protein

that crosses the membrane twice, exposing its RING domain and

short C- terminus to the cytosol.

RNF185 regulates autophagy
HeLa cells with ectopic expression of RNF185 displayed abnormal

morphology with globular, shrinking and punctate cell shape

(Fig. 3A), which is usually found in dying cells[27]. However, the

flow cytometric assay with Annexin V and 7-AAD did not show

apoptosis in these cells (Fig. S4A). Moreover, over-expression of

RNF185 caused cell cycle arrest and inhibited cell viability (Materials

and Methods S1, Fig. S5). A tight relationship between autophagy

and cell cycle regulation is revealed by the recently emerging

data[28,29]. To examine whether G1 arrest and abnormal cell shape

induced by over-expression of RNF185 are related to autophagy, we

performed LC3I to LC3II conversion assay, a typical and simple

method to detect signs of autophagy[30]. As shown in Fig. 3B,

increased levels of LC3II were observed in cells expressing RNF185

and cells treated with rapamycin or incubated in Hank’s Buffered Salt

Solution (HBSS). Besides, knocking down RNF185 by siR-341 and

siR-440 decreased the base level of LC3II (Fig. 3C). These consistent

results suggest that RNF185 is associated with autophagy regulation.

The development of autophagy is frequently assessed by the

number and intensity of GFP-LC3 vesicles[31]. To verify whether

LC3 is redistributed after over-expression of RNF185, we checked

HeLa cells co-transfected with GFP tagged LC3 and RFP (red

fluorescent protein) tagged RNF185. The characteristic redistri-

bution of GFP-LC3 was observed, from a diffused cytoplasmic

staining in control cells to punctate vesicular structures following

over-expressing of RNF185 (Fig. 3D). We also tested the function

of RNF185’s two mutated forms for induction of autophagy by

GFP-LC3 distribution assay (Fig. S6). The percentages of RPF

positive cells with obviously punctate GFP-LC3 were greatly

increased when wild type RNF185 (RNF185-WT) was expressed,

but not for empty vector (RFP Vector), RING domain mutated

RNF185 (RNF185-RM) or TM domains deleted RNF185

(RNF185-TM) (Fig. 3E). These results suggested that the induction

of punctate GFP-LC3 by over-expressed RNF185 is dependent on

its intact RING domain and TM domains.

To promote the degradation of their luminal content,

autophagosomes fuse with lysosomes, thus forming the so-called

autophagolysosomes[32]. We also detected the accumulation of

possible autophagolysosomes using the lysosome membrane

marker CD63 (also known as LAMP3, lysosome-associated

membrane protein 3) [33]. As shown in Fig. 4A, after over-

expression of RNF185, GFP-LC3 accumulated dramatically and

overlapped well with RFP tagged CD63. In addition, an increased

accumulation of lysosome was observed in HeLa cells that were
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treated with rapamycin or transfected with expression construct

for RNF185 (Fig. 4B and Fig. 4C). A common intracellular stress

that effectively leads to induction of autophagy is the formation of

ROS. But our results indicated that HeLa cells over-expressed

RNF185 had a relative lower level of ROS measured by DCFH-

DA staining (Fig. 4D). Mitochondria are the major sources

generating ROS, which suggests that the reduced ROS may be

caused by the loss of mitochondria mass. Indeed, we observed a

dramatic loss of MitoTracker Red staining for the cells with very

high level of RNF185 (Fig.4E), implying that the abundance of

ectopic expressed RNF185 correlated with the degradation of

mitochondria by autophagy.

RNF185 interacts with BNIP1 and ATG5
In order to reveal the underlying molecular mechanism for

RNF185 induced autophagy, we set out to identify its potential

partners. Given the MOM localization of RNF185, we searched for

Bcl-2 (B-cell lymphoma 2) family members as they are mitochondria

associated proteins and have emerged as regulators of autophagy

[34,35,36]. Since ATG5 (autophagy related gene 5) is inducibly

expressed at mitochondria during autophagy[37,38], we included

ATG5 in our co-transfections consisting of 2HA tagged Bcl-2 family

proteins with TM domains (listed in Table S1) and 3Flag tagged

RNF185. The results of co-immunoprecipitation clearly demon-

strated that BNIP1 (Bcl-2 Nineteen kilodalton Interacting Protein 1)

and ATG5 could be pulled down by RNF185 (Fig. 5A). Likewise,

RNF185 could also be pulled down by either BNIP1 or ATG5.

However, the binding of RNF185 to BNIP1 is apparently stronger

than its binding to ATG5 (Fig. 5B). Moreover, exogenously

expressed RNF185 was found to associate with endogenous BNIP1

(Fig. 5C). Further investigation indicated that the binding of

RNF185 to BNIP1 was dependent on their TM domains(Fig. 5D

and Fig. 5E) and the RING domain was not required for RNF185’s

association with BNIP1 (Fig. 5D). RNF185 seemed to bind the

coiled-coil (CC) domain of BNIP1 as 3Flag tagged RNF185 could

not pull down dCC mutant of BNIP1 (Fig. 5E).

The mitochondrial colocalization of BNIP1 and RNF185
Human BNIP1 is a 228-amino acid protein and contains a

putative C-terminal TM domain and a BH3 (Bcl-2 homology

Figure 1. Mitochondrial localization of exogenously expressed and endogenous RNF185. (A) schematic presentation of GFP tagged full-
length RNF185 and its mutants. RNF185-WT, wild type RNF185; RNF185-RM, RING domain mutated; RNF185-TM, two TM domains deleted; RNF185-
TM1, the first TM domain mutated; RNF185-TM2, the second TM domain deleted. (B) RNF185’s predicted TM domains mediated its localization to
mitochondria. GFP tagged wild type or mutated RNF185 was transfected into HeLa cells and MitoTracker Red was used to stain mitochondria at 24 h
post transfection. (C) GFP-RNF185 colocalized with DsRed2-Mito. Plasmid encoding GFP tagged wild type RNF185 (GFP-RNF185) and pDsRed2-Mito
were co-transfected into HeLa cells and confocal microscopic analysis was taken at 24 h post transfection. (D) Endogenous RNF185 localized at
mitochondria. HeLa cells were subjected to immunocytochemistry-based confocal microscopic analysis with Rabbit IgG or affinity chromatography
purified polyclonal antibody (pAb) raised against RNF185. Alexa fluor 488-conjugated goat anti Rabbit IgG(H+L) (Green) served as the secondary
antibody. Mitochondria were stained with MitoTracker Red (Red) and DNA was stained with Hoechst 33258 (Blue). White bar, 10 mm.
doi:10.1371/journal.pone.0024367.g001
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domain 3) domain (Fig. 5E). Although it has been suggested to

localize on the nuclear envelope and/or endoplasmic reticulum

(ER)[39,40,41], its interaction with RNF185 implied its potential

localization at mitochondria. We carried out several experiments to

confirm this hypothesis. First, we showed that GFP-BNIP1 and

RFP-RNF185 substantially overlapped (Fig. 6A). Second, overlaps

between MitoTracker Red and GFP-BNIP1 (Fig. 6B) and between

DsRed2-Mito and GFP-BNIP1 (Fig. 6C) were also very strong. It

was reported that some pro-apoptotic Bcl-2 family proteins,

including BNIP1, translocate to the mitochondria from ER or

nuclear membrane to activate downstream signals of apoptosis[41].

The effector BH3 domain in BNIP1 is responsible for its apoptotic

function, as BNIP1 mutant lacking BH3 domain could not induce

apoptotic cell death[42,43,44]. To exclude the possibility that

BNIP1 translocates to the mitochondria only after cell undergoes

apoptosis, we generated expression construct for mutated BNIP1

with BH3 domain deletion (BNIP1-dBH3). As shown in Fig. 6B and

Fig. 6C, GFP-BNIP1-dBH3 colocalized well with both MitoTracker

Red and DsRed2-Mito, indicating the intrinsic function of TM

domain in BNIP1 for targeting the mitochondria. Noticeably,

endogenous BNIP1 was also demonstrated to overlap well with

MitoTracker Red (Fig. 6D), which further supports our conclusion

of mitochondrial localization for BNIP1.

RNF185 functions as a ubiquitin E3 ligase, enabling
BNIP1-p62 interaction

The selfubiquitination of E3 ligase is demonstrable in vivo and

can be used as a method to assay the ubiquitin E3 ligase activity of

Figure 2. RNF185 localizes at mitochondrial outer membrane with the RING domain exposed to the cytosol. (A) 293 cells were
subfractionated by differential centrifugation to get mitochondrial fraction (Heavy Membrane, HM) and cytosolic/Light Membrane(LM) fractions.
Equal protein amounts (40 mg) of the whole cell extract (cell), cytosolic and LM fraction (cytosol), and HM fraction (Mitochondira) were blotted with
anti-RNF185 pAb to detect endogenous RNF185. The mitochondrial protein VDAC and cytosolic protein b-actin served as positive and negative
controls respectively for determining mitochondria localized proteins. (B) Mitochondria fraction was treated with or without 20mg/ml proteinase K for
20 min on ice, and samples were collected for western blot analysis to detect endogenous RNF185. Mfn1, OPA1 and Tim23 were used as markers for
MOM, MIM and intermembrane space proteins respectively. (C) Intact mitochondria isolated from 293 cells expressing Flag-RNF185-Myc were treated
with 20 mg/ml proteinase K for the indicated time points, and were subjected to western blot analysis with the indicated antibodies. Tom20,
cytochrome c and Tim23 were used as markers for MOM, MIM and intermembrane space proteins respectively. (D)Topological structure model for
Flag-RNF185-Myc at mitochondrial outer membrane. MOM, mitochondrial outer membrane; MIM, mitochondrial inner membrane.
doi:10.1371/journal.pone.0024367.g002
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RING proteins[45,46,47]. First we found that 3Flag tagged

RNF185 was intensively polyubiquitinated with endogenous

ubiquitin (Fig. 7A) or exogenous ubiquitin (Fig. 7B). The

polyubiquitination of RNF185-RM was significantly decreased

compared with wild type RNF185, suggesting that the E3 activity

of RNF185 is RING domain dependent. Interestingly, the

RNF185-TM mutant almost completely lost the activity of self-

polyubiquitination, implying that the mitochondrial localization is

also critical for RNF185’s function as a ubiquitin E3 ligase. To

assess whether RNF185 targets BNIP1 ubiquitination in vivo, Myc

tagged ubiquitin was cotransfected with 2HA tagged RNF185 and

3Flag tagged BNIP1. Ectopically expressed RNF185 caused

extensive polyubiquitination of BNIP1 (Fig. 7C). A low level of

ubiquitination of BNIP1 was observed in the group without

RNF185 transfection, presumably due to endogenous ubiquitin E3

ligases. Using ubiquitin mutants, we observed that BNIP1 was

polyubiquitinated to a much lesser degree when the K63 of Myc-

ubiquitin was mutated to R63 (Fig. 7D). Therefore, BNIP1 was

modified by K63-based polyubiquitin linkage, and this modifica-

tion was consistent with the self-polyubiquitination pattern of

RNF185 (data not shown).

The clearance of protein inclusions by autophagy was promoted

by autophagy receptor p62, which preferentially partners with

K63-linked polyubiquitin [48,49,50,51]. The association of

RNF185 with autophagy regulation and the polyubiquitination

of BNIP1 through K63-linkage led us to assess the involvement of

p62 in this pathway. Endogenous p62 was detected by western blot

after the cotransfection of 3Flag tagged BNIP1, 2HA tagged

RNF185 and Myc tagged ubiquitin or vector controls. As shown in

Fig. 7E, p62 is co-immunoprecipitated with BNIP1. When both

2HA-RNF185 and Myc-Ub were over-expressed, BNIP1 could

recruit much more p62, although endogenous RNF185 and

Figure 3. RNF185 regulates autophagy. (A) Morphology for HeLa cells that were transiently transfected with GFP tagged RNF185 (GFP-RNF185)
or GFP vector alone. Fluorescent microscopic analysis was taken at 24 h and 48 h post transfection. (B) Over-expression of RNF185 led to changes in
LC3I to LC3II ratio. At 24 h post transfection of empty vector (pCI-neo) and RNF185-expressing vector (pCI-R185), 293T cells were collected for
western blot with the indicated antobodies. For positive controls, 293T cells were treated with 10 mM rapamycin for 24 h or maintained in Hank’s
Buffered Salt Solution (HBSS) for 4 h to induce autophagy. As the vehicle for rapamycin, DMSO served as negative control. (C) Knocking down of
RNF185 decreased the base level of LC3II. At 36h post transfection of siRNA oligos (siR-341 and siR-440), 293T cells were collected to detect LC3 level
by western blot. Bands were detected with a longer exposure time to display the difference on LC3II level. (D) Over-expression of RNF185 induced
the formation of autophagosome, as detected by the distribution of GFP-LC3 from ubiquitous localization to punctate form. Confocal microscopic
analyses were taken at 24 h post co-transfection of the indicated constructs. (E) Quantitative analysis of GFP-LC3 vesicular distribution. Experiments
were done as in Fig. S6. Data represent mean6SD of 3 independent experiments in which 100–200 RFP+ cells per condition were analyzed.
***, P,0.001. White bar, 20 mm.
doi:10.1371/journal.pone.0024367.g003
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endogenous ubiquitin also contributed to the interaction between

p62 and polyubiquitinated BNIP1. In addition, we checked the

endogenous localization of BNIP1 and p62 in HeLa cells (Fig. 7F).

Alexa Fluor 488 conjugated endogenous BNIP1 and TRITIC

conjugated endogenous p62 overlapped well in the cytoplasm,

further providing the locational evidence for the recruitment of

p62 by BNIP1.

Discussion

Mitochondria are essential for a variety of cellular functions,

including ATP production, lipid biosynthesis, and calcium homeo-

stasis. Recent investigations indicate that certain aspects of

mitochondrial functions, including mitochondrial protein quality

control and membrane dynamics, are regulated by the ubiquitin-

conjugation system[52]. Both MARCH5(RNF153)[53,54] and

MULAN(RNF218)[5], two MOM ubiquitin E3 ligases clearly

described so far, were found to be involved in the regulation of

mitochondria dynamics. Unlike these MOM E3 ligase, RNF185

does not affect mitochondria fusion and fission (data not shown);

whereas RNF185 functions as a specific regulator for autophagy of

the mitochondria. The mechanism for the mitochondrial homeo-

stasis by autophagy remained largely unknown. In particular, no

MOM E3 ligase has been directly linked to the process. Our data

presented herein demonstrate that RNF185 is the MOM E3 ligase

responsible for regulation of mitochondrial autophagy. In support of

this function, the levels of mouse RNF185 transcript are higher in

the tissues and organs (kidney, skeletal muscle, liver and heart) that

have higher abundance of mitochondria (unpublished data).

The ubiquitin-conjugation system might be vital for the

maintenance of mitochondrial homeostasis and lead to cell demise

when dysfunctional[52]. Parkin, an E3 ubiquitin ligase that is

Figure 4. Autophagolysosomes formation and mitochondrial autophagy induced by RNF185 over-expression. (A) – (C) Over-
expression of RNF185 promoted the formation of autophagolysosomes. GFP-LC3 and RFP-CD63 colocalized well after the expression of RNF185 (pCI-
RNF185), as detected by confocal microscope at 24 h post transfection (A). Lysosome accumulation was assayed by LysoTracker Red staining. At 24 h
post transfection of empty vector or GFP-RNF185 expressing construct, GFP positive HeLa cells were gated to check the staining of LysoTracker Red
by analyzing histogram plot (B) and mean fluorescence intensity (MFI) (C). (D) HeLa cells were transiently transfected with RFP tagged RNF185 (RFP-
RNF185) or RFP vector alone, and 24 h later cells were collected for staining by fluorescent probe DCFH-DA to detect the ROS level. The column
graph depicts the mean fluorescence intensity of DCF-DA. (E) HeLa cells were transiently transfected with GFP tagged RNF185 (GFP-RNF185) or GFP
vector alone, and at 24 h post transfection cells were subjected to Mitotracker Red staining. GFP positive cells (GFP+, upper panel) and cells with
extremely high GFP intensity (GFP+++, lower panel) were gated to analyze the staining of MitoTracker Red. The column graphs depict the mean
fluorescence intensity of MitoTracker Red. Numbers in gates represent percentages of gated cells. n = 3 for each group above. **, P,0.01;
***, P,0.001. White bar, 20 mm.
doi:10.1371/journal.pone.0024367.g004
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mutated in monogenic forms of Parkinson’s disease, was recently

found to induce selective autophagy of damaged mitochondria.

Studies from different laboratories demonstrate that PINK1 is

selectively stabilized on impaired mitochondria to activate latent

Parkin for mitophagy[55,56,57,58,59]. Parkin and RNF185 seem

to function in different ways. First, distinct from RNF185 which is

a resident MOM E3 ligase, endogenous Parkin predominately

locates in the cytosol under normal physiological conditions and

translocates to mitochondria only after their depolarization.

Second, RNF185 can trigger autophagy in HeLa cells, which

have little or no endogenous Parkin expression[56,57]. These facts

suggest that RNF185 functions independently of Parkin for

mitophagy induction. Parkin induces the specific elimination of

damaged mitochondria, while RNF185 seems to play a constitu-

tive role in the modulation of mitochondria homeostasis.

However, the autophagy adaptor molecule p62 is involved in

both RNF185- and Parkin-mediated clearance of mitochondria by

autophagy[56]. It is reported that after translocation to mitochon-

dria, Parkin activates the ubiquitin-proteasome system for

widespread degradation of MOM proteins, which is critical for

mitophagy[60]. Whether RNF185 can cause the broad ubiquiti-

nation of known MOM proteins and how RNF185 functionally

relates to Parkin under stress conditions such as mitochondria

depolarization, need to be further investigated.

The marked correlation between cell cycle and autophagy has

been investigated recently, and the results showed that autophagy

is stereotypically induced in the G1 and S phases of the cell cycle

[28]. Our findings on G1 arrest (Fig. S5) and autophagy induction

(Fig. 3 and Fig. S6) by RNF185 over-expression provide new

evidence for the crosstalk between cell cycle regulation and

autophagic vacuolization. Cells normally switch between apoptosis

and autophagy in a mutually exclusive manner for the same

cellular settings[61], we indeed observed that RNF185 had the

capacity of inhibiting apoptosis to some extent (Fig. S4). In

mammals, increasing data demonstrated that Bcl-2 family proteins

play a dual role in the control of apoptosis and autophagy. Recent

investigation indicates that cellular anti-apoptotic proteins such as

Bcl-2, Bcl-xl, Bcl-w can inhibit autophagy[62,63,64], while pro-

apoptotic BH3-only proteins from the Bcl-2 family such as BNIP3,

Bad, Bik can induce autophagy[65,66,67,68], via their differential

Figure 5. RNF185 interacts with BNIP1 and ATG5. (A) RNF185 pulled down BNIP1 and ATG5. 293T cells were co-transfected with expression
constructs for 2HA tagged candidate gene and 3Flag tagged RNF185 or empty vector as control. At 24 h post transfection, cell lysates were
immunoprecipitated (IP) with anti-Flag conjugated beads and immunoblotted (IB) with anti-Flag and anti-HA antibodies. Bcl-w represented one of
the candidate genes that could not interact with RNF185. (B) BNIP1 or ATG5 co-immunoprecipitated with RNF185. 3Flag tagged BNIP1 or ATG5 or
empty vector and 2HA tagged RNF185 were co-transfected into 293T cells and followed by the same experimental procedures as in (A). HRP-
conjugated goat anti mouse/rabbit IgG Fc fragment antibodies were used as secondary antibodies for IB to avoid antibody light chain in (B) to (E). (C)
Exogenously expressed RNF185 associated with endogenous BNIP1. 293T cells were transfected with 3Flag tagged RNF185 or empty vector, and cell
lysates were subjected to IP and IB analysis with the indicated antibodies as in (A). (D) The binding of RNF185 to BNIP1 was dependent on its TM
domains. RM, RING domain mutated; TM, transmembrane domains deleted. (E) RNF185 interacted with the coiled-coil domain of BNIP1. dCC, coiled-
coil domain deleted; dBH3, BH3 domain deleted; dTM, transmembrane domain deleted. The arrows indicate non-specific bands. The bands appeared
in whole lysates but disappeared after IP are labeled by boxes with solid lines and dotted lines respectively. IP and IB were performed by the same
experimental procedures as in (A). b-tubulin was detected as the loading control for all the western blots.
doi:10.1371/journal.pone.0024367.g005
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Figure 6. BNIP1 colocalizes with RNF185 at mitochondria. (A) Colocalization of RNF185 and BNIP1. Confocal microscopic analysis was taken at
24 h post transfection of GFP tagged BNIP1 and RFP tagged RNF185 in HeLa cells. (B) – (D) BNIP1 localized at mitochondria. Both exogenously
expressed wild type BNIP1 (GFP-BNIP1-WT) and mutated BNIP1 with BH3 domain deletion (GFP-BNIP1-dBH3) colocalized well with mitochondria
markers Mitotracker Red (B) and DsRed2-Mito (C). Endogenous BNIP1 overlapped well with Mitotracker Red (D). White bar, 20 mm. All the
experimental procedures for confocal microscopic analysis were the same as in Figure 1.
doi:10.1371/journal.pone.0024367.g006
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interaction with Beclin 1. Here we identified BNIP1, another pro-

apoptotic BH3-only member of Bcl-2 family proteins, as a critical

player in autophagy induction. BNIP1 regulates autophagy mainly

through recruiting autophagy receptor p62 to mitochondria,

rather than competitively disrupting the interaction between

Beclin1 and Bcl-2/Bcl-w/Bcl-xl, which implies another possible

way of crosstalk between apoptosis and autophagy.

The term ‘‘mitophagy’’ was created to describe the selective

removal of mitochondria by autophagy, but the signals and

specificity in targeting mitochondria to the autophagy pathway

remained poorly understood. The mitochondria-localized proteins

BNIP3 and NIX have been implicated in the removal of

mitochondria during hypoxia-induced autophagic respons-

es[67,68]. Recently, a novel mitochondrial protein, Atg32, was

characterized as a selective autophagy receptor for autophagic

degradation of stressed mitochondria in yeast[69,70]. NIX was

proposed as a counterpart of Atg32 in higher organisms because it

binds LC3/GABARAP and mediates mitochondrial clearance in

murine reticulocytes[71,72]. However, the proteins reported

above do not account for several important events, such as

ubiquitination of mitochondrial proteins and interactions with

lysosomal components, which might mediate the full incorporation

of mitochondria into autophagosome. Our findings on the

function of mitochondrial ubiquitin E3 ligase RNF185 might

reveal a novel mechanism for modulating mitochondria homeo-

stasis through autophagy.

We proposed a model for RNF185 mediated selective

degradation of mitochondria by autophagy (Fig. 8). Both

RNF185 and BNIP1 localize at mitochondria, and BNIP1 is

modified with K63-based polyubiquitin linkage by RNF185. The

polyubiquitinated BNIP1 recruits autophagy receptor p62, which

binds both ubiquitins and LC3/GABARAP. The accumulation of

LC3/GABARAP proteins anchored in the double membrane of

the forming autophagosome promotes the degradation of

Figure 7. BNIP1 is polyubiquitinated by RNF185 and associates with autophagy receptor p62. (A) – (B) The self-ubiquitination of RNF185
was dependent on its RING domain and TM domains. Empty vector, or plasmid encoding Flag tagged wild type RNF185 or mutant forms of RNF185
was transfected individually (A) or cotransfected with Myc tagged ubiquitin (B) into 293T cells. Proteins were prepared 24 h after transfection and
subjected to IP, followed by IB analysis. Ub, ubiquitin. (C) – (D) RNF185 polyubiquitinated BNIP1 through K63-based ubiquitin linkage. BNIP1 was
polyubiquitinated by RNF185 (C). 3Flag tagged BNIP1 and 2HA tagged RNF185 were cotransfected with Myc tagged ubiquitin or its variants (K29R,
K48R, K63R) into 293T cells, and the polyubiquitination of BNIP1 was detected by IP and IB analysis (D). (E) BNIP1 associated with p62. 293T cells were
cotransfected with the expression constructs for Myc-Ub, 3Flag-BNIP1 and RNF185-2HA or empty vectors as controls. Cell lysates were subjected to IP
and IB analysis with the antibodies indicated in the figures. (F) Colocalization of endogenous BNIP1 and endogenous p62 in the cytosol. HeLa cells
were stained with anti-BNIP1 rabbit polyclonal antibody and anti-p62 mouse monoclonal antibody. Alexa Flour 488-conjugated goat anti-rabbit
IgG(H+L) antibody (Green) and TRITC-conjugated goat anti-mouse IgG antibody (Red) were used as secondary antibodies for detection of
endogenous BNIP1 and p62 respectively. White bar, 10 mm.
doi:10.1371/journal.pone.0024367.g007
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mitochondria in lysosomes. The over-expression of RNF185 was

associated with GFP-LC3 distribution and its overlap with RFP-

CD63, as well as the higher level of LysoTracker Red staining

(Fig. 4). All of these facts imply the formation of autophagolysosome.

It is identified recently that the outer membrane of mitochondria is a

new source of autophagosomal membranes during starvation, and

the mitochondrial outer membrane marker is present on membrane

of autophagosomes[73,74]. Importantly, Atg5, which is essential for

the recruitment of LC3 and the expansion of autophagosomes, also

localized with LC3 to mitochondria’s outer membranes[75]. Our

finding on the interaction between RNF185 and Atg5 (Fig. 5) also

suggests a possible involvement of RNF185 in the regulation of

autophagy by promoting the autophagosome biogenesis from

mitochondrial outer membrane. In addition, we also observed that

RFP-RNF185 had some overlaps with GFP-LC3 (Fig. 3D and Fig.

S6), and GFP-RNF185 partially colocalized with LysoTracker Red

and RFP-CD63 (data not shown). These findings further support

our conclusion that RNF185 is a positive regulator for the formation

of autophagolysosome.

The induction of autophagy, however, did not affect the

RNF185 mRNA transcript (data not shown) and protein (Fig. 3B)

levels. This probably implies that RNF185 employs a different

ubiquitination related pathway for selective autophagy regulation

rather than the classical mTOR (mammalian target of rapamycin)

pathway activated by rapamycin or deprivation of nutrient[76]. In

addition, the evolutionary conservation in vertebrates (Fig. S1) and

wide distribution in human cells and mouse tissues (data not

shown) imply RNF185 may play critical roles in the fundamental

biological processes, of which modulating mitochondria homeo-

stasis through autophagy is an essential one. Targeted degradation

of mitochondria by autophagy is an important catabolic process

that can be utilized for new therapeutic approaches in treatment of

cancer and mitochondria related diseases[77,78]. We propose that

RNF185 induced ubiquitination on mitochondrial membrane

protein BNIP1 provides a signal that leads to the autophagosome

formation. The therapeutic approaches targeting this signal will

hold promise of an exciting opportunity to modulate levels of

selective mitochondrial autophagy in different pathological

conditions.

Materials and Methods

Cell culture and transfection
HeLa, 293 and 293T cells were originally obtained from ATCC

(American Type Culture Collection). Cells were grown in

Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco) supple-

mented with 10% heat-inactivated fetal bovine serum (FSS500,

Hyclone), penicillin (100 U/ml) and streptomycin (100 mg/ml).

293 cells expressing Flag-RNF185-Myc were grown in complete

DMEM supplemented with G418 (200 mg/ml, Sigma). All cells

were maintained at 37uC in a humidified atmosphere with 5%

CO2. Cells were transfected with the indicated plasmids or siRNA

oligos using Lipofectamine 2000 (Invitrogen) according to the

manufacture’s protocol. The sequences for all the siRNA oligos

are as following: siR-NC, sense 59-UUCUCCGAACGUGUCAC-

GUTT-39, anti-sense 59-ACGUGACACGUUCGGAGAATT-

39;siR-341, sense 59-GGCCAGAGCCGGAGAAUAGTT-39, an-

ti-sense 59-CUAUUCUCCGGCUCUGGCCTT-39; siR-440,

sense 59-GCCACAGCAUUUAAUAUAATT-39, anti-sense 59-

UUAUAUUAAAUGCUGUGGCAA-39.

Antibodies and chemicals
The recombinant RNF185-132 protein (corresponding to

amino acids 1-132 of human RNF185, with transmembrane

Figure 8. A proposed model for RNF185 mediated autophagy regulation. Mitochondrial outer membrane E3 ubiquitin ligase RNF185
interacts with its substrate BNIP1, which also localizes at mitochondria. BNIP1 is polyubiquitinated by RNF185 through K63-based ubiquitin linkage,
and recruits autophagy receptor p62, which can interact with both LC3 and ubiquitins. The accumulation of p62 and LC3 promotes the formation of
autophagosome. Ub, ubiquitin; ATG12-ATG5-ATG16, the protein complex required for the expansion of the autophagosomal membrane.
doi:10.1371/journal.pone.0024367.g008
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domains deleted) purified from E.coli was used for rabbit

immunization. Highly specific polyclonal antibody (pAb) against

RNF185 was obtained by antigen affinity chromatography via

CNBr-activated Sepharose 4B (GE Healthcare) according to the

manufacturer’s instructions. Other primary antibodies used in this

study were: Flag, b-tubulin, b-actin (Sigma); Myc, Mfn1,

Ubiquitin, VDAC, GFP (Santa Cruz); OPA1, Tim23, Tom20,

Cytochrome c (BD Pharmingen); BNIP1 (ProteinTech Group);

p62 (BD Transduction Laboratories). Secondary antibodies used

were: Alexa Fluor 488 goat anti-rabbit IgG(H+L) (Invitrogen),

TRITC goat anti-mouse IgG(H+L) (Zymed Laboratories), horse-

radish peroxidase (HRP) conjugated goat anti-rabbit/mouse

IgG(H+L) (Sigma), HRP conjugated goat anti-mouse Fc fragment

(Thermo Scientific) and HRP conjugated goat anti-rabbit Fc

fragment (Jackson ImmunoResearch Laboratories). All other

chemicals and reagents were from Sigma-Aldrich, Inc.

Construction of plasmids
The full length cDNAs for human RNF185 (GenBank accession

No. NM_152267), CD63 (NM_001780), and ubiquitin (NM_

018955) were obtained from cDNA library of HeLa cells by RT-

PCR. Other cDNAs were from ProteinTech Group, Inc (Chicago,

IL, USA). The truncated RNF185–132 construct was subcloned into

a vector named pET41d (a pET41a variant with the GST coding

sequences deleted) between the EcoRI and SalI sites for protein

expression and purification. Vectors used to generate tagged wild

type or mutated RNF185/BNIP1 were p3XFlag-CMV10 (sigma)

and pCI-neo (Promega). RNF185 was subcloned into pcDNA4/

TO/myc-HisTMB (Invitrogen) via HindIII and EcoRV sites to get

RNF185-Myc expressing plasmid, which was double digested by

enzyme HindIII and EcoRI. And the digested fragment was ligated

into pFlag-CMV4 (Sigma) to get the plasmid expressing Flag-

RNF185-Myc. Myc tagged wild type and mutated ubiquitins (K29R,

K48R and K63R) were ligated to pCI-neo vector via EcoRI and

XbaI sites. All constructs were verified by sequencing.

Immunocytochemistry, confocal microscopy and flow
cytometry

HeLa cells grown on 35 mm glass bottom dishes were washed by

phosphate-buffered saline (PBS) for 3 times and fixed with 4%

paraformaldehyde in PBS for 15 min at room temperature (RT).

After washing with PBS, cells were permeabilized with 0.1% Triton

X-100 for 5 min on ice, washed again with PBS and blocked with

5% goat serum in PBS for 1 h at RT. Cells were then incubated

with first antibodies in a humidity chamber at 4uC overnight. The

next day cells were washed for 3 times by PBS before incubation

with secondary antibodies diluted in PBS for 20 min at RT and

washed again for 3 times. Living cells were incubated with 100 nM

MitoTracker Red (CMXRos, Invitrogen) or 50 nM LysoTracker

Red (Invitrogen) in DMEM for 30 min at 37uC to stain

mitochondria and lysosomes respectively. For quantification of

autophagy, HeLa cells were blindly classified as autophagy negative

cells (that present a predominant diffuse GFP-LC3) or autophagy

positive cells (cells with a punctate GFP-LC3 pattern) at 24 h post

transfection. Immunofluorescence data were obtained using

Olympus Fluoview 500 laser scanning confocal microscope and

analyzed by Image J software (National Institutes of Health, USA).

Cytometric analyses were performed using a flow cytometer (FACS

Calibur, Becton Dickinson) and FlowJo software (Tree Star).

Preparation of mitochondrial and cytosolic fractions
293 cells were harvested from 100 mm dishes and washed with

mitochondrial isolation buffer (10 mM HEPES-KOH, pH7.2,

containing 1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA,

0.21 M sucrose, 70 mM mannitol and protease inhibitors).

Approximate 1X107 cells resuspended in 1 ml mitochondrial

isolation buffer were kept on ice for 30–60 min with frequent

tapping. The cellular suspension was homogenized with a glass

Dounce homogenizer with 50 times up and down passes of the

pestle. The homogenate was centrifuged at 1000 g for 10 min at

4uC to remove the nuclei and intact cells, and the supernatant was

centrifuged at 10 000 g for 15 min at 4uC. The resulting

supernatant (cytosolic fraction) was removed while the pellet

(mitochondrial fraction) was collected for downstream applications.

Immunoprecipitation and Western blot
Cells were lysed for 30 min on ice in lysis buffer (50 mM Tris-

HCl, pH7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100,

10% glycerol and protease inhibitors). The lysates were centri-

fuged at 15 000 g for 15 min at 4uC and the supernatant was

collected. Antibody was added to the supernatant and incubated

for 3 h with rotation at 4uC. The immunecomplex was then

precipitated with protein A/G-sepharose beads (Pierce) according

to manufacture’s instructions. The precipitated samples were

boiled and separated by 10%–15% SDS-PAGE, then transferred

to PVDF membrane (Millipore). The membrane was probed with

the indicated primary antibody over night at 4uC after blocking

with 10% skim milk in TBS-T (Tris-Buffered Saline supplemented

with 0.1% Tween 20), and followed by incubation with an

appropriate secondary HRP-conjugated antibody for 1 h at RT

after washing with TBS-T. Bands were detected using enhanced

chemiluminescence kit (ECLTM, GE Healthcare) as per manu-

facturer’s instructions.

Statistical analysis
All the data are presented as mean 6 SD. The two-tailed,

paired student’s t tests were used for comparison between two

experimental groups. Statistical significance was determined as

P,0.05.

Supporting Information

Figure S1 Gene architecture of RNF185 and conservation
analysis. RNF185 proteins are evolutionarily conserved among

vertebrates. The orthologs from chimpanzee(XP_515084), pig(XP_

001925859), mouse(NP_663330, with the first 36 amino acids deleted),

rat(NP_001019442), dog(XP_852634), cattle(NP_001077172), chick-

en(NP_001007841), hoptoad(NP_001088405) and zebrafish(NP_

998202) were compared with human RNF185(NP_689480) by

alignment of the amino acids sequences. The red asterisks indicate

the conserved residues in a canonical RING domain. Underlined

sequences represent regions predicted to be TM domains.

(TIF)

Figure S2 The depiction of mutation for RING domain
and TM1 domain. The Zn2+ binding C3HC4 RING domain

of RNF185 was completely destroyed by replacing the central

three cysteine (C) residues and one histidine (H) residue with

alanine (A) and tryptophan (W) residues respectively. The TM1

domain (133aa to 154aa of RNF185) was mutated by replacing the

amino acids with hydrophilic and polar residues Arg, Asp and Glu

for every five residues. The demolishment of this hydrophobic

region was confirmed by the TMPred Server (http://www.ch.

embnet.org/software/TMPRED_form.html).

(TIF)

Figure S3 More images for the mitochondrial localiza-
tion of endogenous RNF185. HeLa cells were analyzed by
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confocal microscope after staining with MitoTracker Red and

affinity chromatography purified highly specific polyclonal antibody

raised against RNF185. Alexa fluor 488 goat anti Rabbit IgG(H+L)

(Green) served as the secondary antibody. White bar, 10 mm.

(TIF)

Figure S4 RNF185 negatively regulates apoptosis. (A)Over-

expression of RNF185 did not induce apoptosis. HeLa cells were

transiently transfected with GFP tagged RNF185 (GFP-RNF185) or

GFP vector alone. GFP+ cells were gated to analyze the induction of

apoptosis by PE-Annexin V and 7-AAD staining at 36h post

transfection. Numbers in quadrants represent frequencies. (B)–
(D)Over-expression of RNF185 inhibited etoposide induced cell

apoptosis. At 20 h after transfection, HeLa cells were treated with

300 mM etoposide for an additional 4 h before being collected for

apoptosis analysis. GFP+ cells were gated to analyze the staining of

PE-Annexin V and 7-AAD (B). The histogram plots of 7-AAD

staining (C) and PE-Annexin V staining (D) for GFP+ cells are

displayed. Numbers in quadrants represent frequencies. (E) – (F)

Knocking down of RNF185 increased the sensitivity to apoptosis

induction. HeLa cells were transiently transfected with RNF185

specific siRNAs (siR-341 and siR-440), or with a non-specific control

siRNA (siR-NC), and 24 h later the cells were treated with 20 mM

etoposide for an additional 24 h before being collected for apoptosis

analysis. The representative histograms depicting PE-Annexin V

staining are displayed (E), and numbers in gates represent

percentages of PE-Annexin V positive cells. Knocking down of

RNF185 significantly increased the percentages of PE-Annexin V

positive cells (F). n = 4 for each group. **, P,0.01; ***, P,0.001.

(TIF)

Figure S5 RNF185 is involved in the control of cell cycle
and cell growth. (A) – (B)HeLa cells were transfected with

siRNAs (siR-341 and siR-440) targeting two different sequences of

RNF185 mRNA, or with a negative control siRNA (siR-NC). At

36 h post transfection, knocking down efficiency was determined

by conventional RT-PCR (A) and western blot (B). (C)Knocking

down of endogenous RNF185 led to decreased G1 phase

population and increased S phase population. At 36 h after

transfection with the indicated siRNA oligos, HeLa cells were

harvested for cell cycle assay. (D) Ectopic expression of RNF185

caused G1 arrest. GFP alone or GFP fused with wild type RNF185

and its mutants were individually over-expressed in HeLa cells,

and the GFP+ fractions were gated for cell cycle analysis at 24 h

post transient transfection. WT, wild type; RM, RING domain

mutated; TM, both TM1 and TM2 were deleted. (E) Control 293

cells and RNF185-Myc inducible 293 cells were incubated in

culture medium with or without 1 mg/ml tetracycline (Tet) for

24 h. Cells were harvested for western blot analysis using the

indicated antibodies. b-tubulin served as internal control to assure

equal loading. (F) Over-expression of RNF185 inhibited cellular

proliferation. MTT proliferation assay was performed in control

293 cells and RNF185-Myc Tet-On inducible 293 cells with or

without treatment by tetracycline. Data represent one of five

independent experimental results. n = 6 for each group. *, P,0.05;

**, P,0.01; NS, not significant.

(TIF)

Figure S6 The induction of punctate GFP-LC3 by
ectopic expression of RNF185 depends on its RING
domain and TM domains. Confocal microscopic analyses

were taken at 24 h post the co-transfection of the indicated

constructs. WT, wild type; RM, RING domain mutated; TM,

transmembrane domains deleted. White bar, 10 mm.

(TIF)

Table S1 List of Bcl-2 family proteins with transmem-
brane domains.

(DOC)

Materials and Methods S1 Analysis of cell cycle and Cell
proliferation assay.

(TIF)
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