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Abstract

Visual processing in the brain seems to provide fast but coarse information before information about fine details. Such
dynamics occur also in single neurons at several levels of the visual system. In the dorsal lateral geniculate nucleus (LGN),
neurons have a receptive field (RF) with antagonistic center-surround organization, and temporal changes in center-
surround organization are generally assumed to be due to a time-lag of the surround activity relative to center activity.
Spatial resolution may be measured as the inverse of center size, and in LGN neurons RF-center width changes during static
stimulation with durations in the range of normal fixation periods (250–500 ms) between saccadic eye-movements. The RF-
center is initially large, but rapidly shrinks during the first ,100 ms to a rather sustained size. We studied such dynamics in
anesthetized cats during presentation (250 ms) of static spots centered on the RF with main focus on the transition from the
first transient and highly dynamic component to the second more sustained component. The results suggest that the two
components depend on different neuronal mechanisms that operate in parallel and with partial temporal overlap rather
than on a continuously changing center-surround balance. Results from mathematical modeling further supported this
conclusion. We found that existing models for the spatiotemporal RF of LGN neurons failed to account for our experimental
results. The modeling demonstrated that a new model, in which the response is given by a sum of an early transient
component and a partially overlapping sustained component, adequately accounts for our experimental data.
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Introduction

Processing in the visual system seems to proceed through

processes where coarse information is analyzed before fine details

[1,2]. In striate cortex, single neurons respond with rapid coarse-

to-fine changes with respect to several types of stimuli [3–9]. Such

changes were observed in various experimental conditions

including static stimulus presentations with duration similar to

typical fixation periods in natural saccadic inspections [6,10].

Thus, Wörgötter et al. [9] showed rapid shrinkage of subregions in

the receptive field (RF) of simple cells during brief (300 ms) static

spot stimulation, and consistently Frazor et al. [6] demonstrated

increased spatial frequency selectivity during presentations of static

(200 ms) grating stimuli. Moreover, in Area V2 of awake fixating

macaques, Hegdé and Van Essen [7] showed increasing shape

selectivity in single neurons during brief (300 ms) stimulus

presentations. The dynamics of such properties have been ascribed

to cortical mechanisms [6,9,11]. However, several studies have

demonstrated significant changes of the spatiotemporal RF also in

the dorsal lateral geniculate nucleus (LGN) and retina [12–16],

and such changes could be an important basis for the coarse-to-

fine dynamics at the cortical level. Ruksenas et al. [16] observed

transient and rapid shrinkage of the RF-center of LGN-neurons

over the first 50–100 ms after onset of a static spot stimulus

centered on the RF. Subsequently, the center expanded slightly to

a rather stable width that sustained throughout the rest of the

stimulus period. Correspondingly, the spatial frequency selectivity

of the dLGN neurons increased during static presentations of

grating stimuli. The magnitude of these changes was sufficiently

large to account for changes observed in striate cortex during

related conditions [6,9].

The mechanisms involved in the coarse-to-fine changes in

responses of LGN neurons are unclear, but dependence on a

time-lag of the inhibitory surround relative to the excitatory center

has been suggested (e.g. [15]). Dynamics of firing rate, which consists

of an initial strong and rapidly changing transient component and a

subsequent more sustained component (e.g. [17–19]), were attrib-

uted to a similar lag between center and surround mechanism in

both dLGN neurons (e.g. [14]) and retinal ganglion cells (e.g. [20–

25]). However, rather than simply reflecting a continuous change of

balance between an excitatory center and a delayed inhibitory

surround, the dynamics of the RF-center width could reflect two

distinctly different sets of spatiotemporal mechanisms.

We addressed this question by studying the dynamics of RF-

center width of dLGN neurons with particular focus on the

transition from the first to the second component. The results

indicated that these components reflect two distinctly different

spatiotemporal mechanisms that operate with partial temporal
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overlap. Theoretical analyses demonstrated that existing mathe-

matical models for the spatiotemporal response properties are

inadequate for describing these data. We introduce a new model

that explicitly treats the response as a sum of a transient and a

sustained component. Unlike previous center-surround models, this

transient-sustained (TS) model can describe the salient features of

our data. This further strengthens the conclusion that the dynamic

changes of RF-center size reflect two sets of mechanisms with

distinctly different spatiotemporal properties.

Methods

Experimental analyses
The experimental methods have been described in detail

elsewhere [16]. The procedures were approved by the Norwegian

Animal Research Authority in accordance with the Animal

Protection Act of Norway. Briefly, adult cats (2.0–3.5 kg) were

prepared acutely (arterial and venous cannulation, tracheotomy

and craniotomies) under anesthesia induced by xylazine (1.5 mg/

kg i.m.) and ketamine hydrochloride (10 mg/kg i.m.), and

maintained during surgery by halothane or isofluorane (0.9–

1.5%, after induction with 2.5%) in N2O/O2 (70/30). Local

anesthetics (Xylocain; Astra) were applied on pressure points and

wound margins. After completion of surgery the animals were

immobilized (gallamine triethiodide, initial dose 40 mg, mainte-

nance dose 10 mg/kg/h), and anesthesia was maintained

throughout the experiment by halothane or isofluorane (0.4–

1.2%) in N2O/O2 (70/30). EEG was continuously monitored from

a pair of silver-wires in left visual cortex (Horsley-Clarke

coordinates: posterior 3.5 mm, lateral 2.0 and 10.0 mm). Arterial

blood pressure, heart rate, EEG, end tidal CO2 (kept at 4%), and

rectal temperature (kept at 38uC by a temperature-controlled

heating blanket) were also continuously monitored throughout the

experiment. Level of anesthesia was adjusted to maintain stable

blood pressure, heart rate, and an EEG with dominant frequencies

below 4 Hz. To increase the stability of the eyes we made bilateral

cervical sympathectomy [26]. We dilated the pupils with atropine,

and retracted the nictitating membranes with phenylephrine. The

eyes were focused on a video monitor 0.86 or 1.14 m in front of

the cat’s eyes by means of proper contact lenses.

Extracellular recordings of action potentials from single units in

the A-laminae of dLGN were made with glass-insulated tungsten

electrodes ([27]; exposed tip 6–10 mm), or with glass pipettes filled

with 0.9% NaCl (15–25 MV in vivo). The electrode was inserted

perpendicularly through a craniotomy over the left hemisphere at

H-C coordinates: anterior 6.0 mm and lateral 9.0 mm. After

isolation of action potentials from a single neuron, the RF-center

was plotted with hand-held stationary or moving light and dark

spots, as well as grating stimuli. The neurons were classified as X

or Y, and lagged or nonlagged [19] as described previously

[16,28].

For quantitative studies, we recorded responses to visual stimuli

presented on a computer-controlled and gamma corrected,

monochromatic video monitor (M21L-0320, Image Systems Corp;

phosphor DP104; peak at 565 nm, bandwidth 90 nm; 240 Hz) in

front of the cat’s eyes. First, the centering and extension of the RF-

center was determined with a narrow, flashing slit (bright slits for

on-center neurons, dark slits for off-center neurons) presented

stepwise across the RF along the horizontal and along the vertical

axis. Next, we repetitively presented a series of circular spot stimuli

of stepwise increasing diameters centered on the RF. Each spot

was presented for 250 ms with a pause of 1000 ms between each

spot presentation to avoid sequence effects. Spot size varied from

smaller than the RF-center to wider than the whole RF. We

presented the spots interleaved such that each spot size was

presented once in each series, and such that the whole series of

spots was repeated as many times as possible (max 200 times) to

achieve best possible spatiotemporal resolution especially in the

range of transition between the first and second response

component. The spots were luminance increments above (on-

center neurons) or decrements (off-center neurons) below a

constant, uniform background (0.53 cd/m2). Contrast, defined as

(Lspot2Lbkg)/(Lspot+Lbkg), where Lspot is spot luminance and Lbkg

background luminance, was 0.39 for the on-center neurons, and

20.45 for the off-center neurons except for two off-center neurons

where it was 20.91; contrasts that gave reasonably balanced peak

responses in on- and off-center neurons. We determined the

response to each spot size by a peristimulus-time histogram with

5 ms bin width.

To measure temporal changes of RF properties, we made a

time-slice through the corresponding bins of all histograms for

each 5 ms bin (cf. Fig. 1A in [16]). From the set of response vs.

spot-width values we obtained for each time-slice, we plotted a

spatial summation curve [16,29]. From this curve, we estimated

three RF parameters. First, we estimated center size by the width

of the spot that elicited maximum response. Second, surround

width was estimated by the width of the spot just large enough to

give minimum response. Third, to estimate center-surround

antagonism we determined the difference of response to the spot

that just filled the center and the one that just filled both center

and surround. We defined center-surround antagonism as the

ratio between this difference and the center response [16,29,

30]. The dynamics of the RF-properties were determined from

changes of the respective estimates throughout the series of time

slices.

We carefully monitored the data-acquisition during the

experiments to avoid distortion of results due to shifts in eye-

position. By possible indications of shifted eye-position, we stopped

data-acquisition and checked the centering of the stimulus on the

RF. If necessary, we corrected the centering, discarded the

collected data, and restarted the data-acquisition. After completed

acquisition of the spatial summation data, we repeated the

determination of the centering of the RF with flashing slits along

the horizontal and vertical axis to control for possible shifts in eye-

position. To reduce the risk of error of measurement due to

undetected eye-movements, we preferentially sampled neurons

with RF outside area centralis. We always kept the non-dominant

eye covered during recordings.

At the end of the experiment, the animal was deeply

anesthetized with pentobarbitone sodium (50 mg/kg i.v.) and

perfused transcardially with saline followed by 4% formaldehyde

in saline. We verified electrode positioning histologically from

Nissl-stained brain sections.

Mathematical modeling
Several mathematical models for the spatiotemporal response

R(ti,dj) were considered, and to assess model performance a least-

squares relative error measure was used, i.e.,

e~
X

i,j

(R(ti,dj){Rx(ti,dj))
2=
X

i,j

Rx(ti,dj)
2 ð1Þ

where Rx(ti,dj) is the experimental data. Further, i = 1,…,Nt and

j = 1,…,Nd where Nt = 49 is the number of time bins, and Nd is the

number of different spot diameters used. For the time-resolved fits

to difference-of-Gaussians (DOG) functions, cf. Eq. (4) below, we

also used the time-resolved relative error

Coarse-to-Fine Changes of Receptive Fields in LGN
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et(ti)~
X

j

(R(ti,dj){Rx(ti,dj))
2=
X

j

Rx(ti,dj)
2 ð2Þ

In the principal components analysis (PCA) the data are expanded in

terms of principal components as described by Gershenfeld [31],

RPCA(ti,dj)~Rbkgz
Xnmax

n~1

fn(ti)gn(di) ð3Þ

where n = 1,…,nmax is the number labeling the principal compo-

nent, and nmax is the total number of principal components

included in the analysis. The background firing rate Rbkg was found

by averaging the background response occurring prior to the first

stimulus-evoked response.

In the time-resolved DOG fits the DOG formula [32] was fitted

against area-summation curves for each time slice separately.

Formally, this time-resolved DOG-model is given by,

RDOGt(ti,dj)~

RbkgzA tið Þ 1{e
{d2

j
=4a tið Þ2

� �
{B tið Þ 1{e

{d2
j
=4b tið Þ2

� �� �
z

ð4Þ

where A(ti), B(ti), a(ti) and b(ti) (i = 1,…,Nt) are parameters to be

fitted, and [x]+ is the half-wave rectifying function (0 for negative x,

x for positive x) assuring non-negative model firing rates [33]. The

MATLAB routine fminsearch was used in the optimization, i.e., to

minimize the least-squares relative error et(ti) in Eq. (2) for each

time step separately. We also did time-resolved fits to a pair of

DOG functions. This time-resolved 2-DOG-model is given by

R2DOGt(ti,dj)~

RbkgzA1 tið Þ 1{e
{d2

j
=4a1 tið Þ2

� �
{B1 tið Þ 1{e

{d2
j
=4b1 tj

� �2
 !"

zA2 tið Þ 1{e
{d2

j
=4a2 tið Þ2

� �
{B2 tið Þ 1{e

{d2
j
=4b2 tið Þ2

� ��
z

ð5Þ

The center-surround models are given by,

RCS(ti,dj)~

tRbkgzA tið Þ 1{e
{d2

j
=4a2

� �
{B tið Þ 1{e

{d2
j
=4b2

� �
s
z

ð6Þ

where the choices of functional forms of A(ti) and B(ti) may vary

[14,33]. For example, Freeman and colleagues [14,15] used a

specific form where the time derivatives of the functions A(t) and

B(t) are essentially of the form,

A’(t)~K1
(c1(t{t1))n1 e{c1(t{t1)

n
n1
1 e{n1

{K2
(c2(t{t2))n2 e{c2(t{t2)

n
n2
2 e{n2

ð7Þ

where B9(t) = A9(t2td). In the present fitting to data we ins-

tead determine the parameters A(ti) and B(ti) (i = 1,…,Nt) non-

parametrically using (i) techniques from linear estimation to

estimate best fits of A(ti) and B(ti) given choices for the model

parameters a and b, and (ii) the MATLAB routine fminsearch to

find values of a and b giving the overall lowest error e. With 49

time bins and 2 parameters (A,B) to fit for each time bin (Rbkg was

found by averaging the response for the earliest time bins) plus

the two width parameters a and b, this gave a total of 100 fit

parameters.

In the new transient-sustained (TS) model the response is modeled

as a sum over a transient (Rt(t,d)) and a sustained part (Rs(t,d)), i.e.,

RTS(t,d)~ RbkgzRt(t,d)zRs(t,d)
� 	

z
ð8Þ

The transient part is modeled as a sum over two functions

consisting of DOGs multiplied with different temporal functions,

i.e.,

Rt(t,d)~Ft1(t)Gt1(d)zFt2(t)Gt2(d) ð9Þ

Here the DOG functions are given by [34],

Gx(d)~Ax 1{e{d2=4a2
x


 �
{Bx 1{e{d2=4b2

x


 �
ð10Þ

where the subscript x represents t1 or t2. The first temporal

function Ft1 is modeled as the (integrand of the) Gamma function

[14], i.e.,

Ft1(t)~h(t{t1)
((t{t1)=t1)n1 e{(t{t1)=t1

n
n1
1 e{n1

ð11Þ

where h(t) is the unit step function. The second temporal function

Ft1 is essentially modeled as the derivative of this function, i.e.,

Ft2(t)~h(t{t2)
(n2{(t{t2)=t2)((t{t2)=t2)n2{1e{(t{t2)=t2ffiffiffiffiffi

n2
p

n2{
ffiffiffiffiffi
n2
p� �n2{1

e{n2z
ffiffiffiffi
n2
p ð12Þ

Both Ft1(t) and Ft2(t) are normalized such that their maximum

values are one.

The sustained part is modeled as a DOG with an exponential

onset, i.e., Rs(t,d) = Fs(t)Gs(d). Here Gs(d) is of the form in Eq. (10),

and

Fs(t)~h(t{ts)(1{e{(t{ts)=ts ) ð13Þ

where ts and ts are the onset time and time constant of the

sustained component, respectively. The complete TS-model

applicable for non-lagged cells thus reads,

RTS(t,d)~tRbkgzFt1(t)Gt1(d)zFt2(t)Gt2(d)zFs(t)Gs(d)szð14Þ

In the fits to experimental data for the non-lagged cells, the

parameters As, Bs, as, bs for the DOG function Gs(d) of the sustained

part are first fitted to the last part of the data, i.e., the data 125 ms

or more after spot onset. Then the parameters describing Fs(t),

Ft1(t), Ft2(t), Gt1(d), and Gt2(d), are determined in an overall fit

against the experimental data using MATLAB’s fminsearch routine.

The coefficients n1 and n2 in the functions Ft1(t) and Ft2(t),

respectively, were constrained to be less than 15. In the numerical

fitting all model parameters except Rbkg and the time of onset of the

sustained part (ts) were varied, leaving a total of 19 model

parameters to fit.

For lagged cells a simplified model was chosen where the transient

components are omitted and only the sustained component

remains, i.e.,

Coarse-to-Fine Changes of Receptive Fields in LGN
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RS(t,d)~tRbkgzFs(t)Gs(d)sz ð15Þ

The spatiotemporal impulse-response function DTS(t,r) [33] for

the TS-model in Eq. (14) is given by

DTS(t,r)~ft1(t)gt1(r)zft2(t)gt2(r)zfs(t)gs(r) ð16Þ

where the spatial functions gm(r) (m = t1,t2,s) are DOG functions

gm(r)~
Am

pa2
m

e{r2=a2
m{

Bm

pb2
m

e{r2=b2
m ð17Þ

and the temporal functions fm(t) are found from temporal

differentiation of the temporal response functions Fm(t) in

Eqs.(11–13), i.e., fm(t) = dFm(t)/dt. This gives

ft1(t)~

h(t{t1) n1{
t{t1

t1

� �
t{t1

t1

� �n1{1

e{(t{t1)=t1
en1

n1
n1 t1

ð18Þ

ft2(t)~h(t{t2)e{(t{t2)=t2

t{t2

t2

� �n2

{2n2
t{t2

t2

� �n2{1

z n2
2{n2

� � t{t2

t2

� �n2{2
 !

ffiffiffiffiffi
n2
p

{1
� �

en2{
ffiffiffiffi
n2
p

n2{
ffiffiffiffiffi
n2
p� �n2 t2

ð19Þ

and

fs(t)~h(t{ts)e
{(t{ts)=ts ð20Þ

To facilitate comparison with previous results [14,15] we also give

the expression of the ‘one-dimensional impulse response’, i.e., the

response to thin vertical bars. This impulse-response function is

also of the form given in Eq. (16), but with the spatial functions

gm(r) replaced by a new function gbar,m(x) (found by straightforward

spatial integration of gm(r) in the y-direction):

gbar,m(x)~
Amffiffiffi
p
p

am

e{x2=a2
m erf L=2amð Þ{

Bmffiffiffi
p
p

bm

e{x2=b2
m erf L=2bmð Þ

ð21Þ

This expression applies for a thin bar (bar width much smaller

than am and bm) and length L positioned perpendicularly to and

symmetrically around the x-axis. The function erf(x) is the so called

error function.

Results

Experimental analyses
We studied neurons from A-laminae of LGN with RFs within 30

deg from area centralis (N = 51; 32 X-, 19 Y-neurons; 14 X-neurons

were lagged). There was no overlap between this set of neurons

and the set of neurons in our previous study [16]. For each neuron,

we recorded responses to presentation (250 ms) of a series of spots

(light spots for on- and dark spots for off-center neurons) centered

on the RF. Spot width was stepwise increased from considerably

smaller than the RF-center to larger than the whole RF. Temporal

RF-changes during spot presentation were analyzed based on

time-slicing across peri-stimulus-time histograms for the response

to the series of spots (cf. Fig. 1 in [16]). We estimated the RF-

parameters at a given time from a spatial summation curve across

the respective time-slice; e.g., we determined the width of the RF-

center by the diameter of the spot that elicited maximal response

on the assumption that this spot just covered the RF-center. Since

a major purpose of this series of experiments was to obtain detailed

insight into the spatiotemporal RF, particularly concerning the

changes in the interval of transition between the primary transient

response and the secondary sustained response, we repeated the

presentation of the spot series as many times as possible to achieve

adequate spatiotemporal resolution.

Changes of RF-center size: two components with different

spatiotemporal properties. We found pronounced changes of

RF-center width during spot presentation consistent with our

previous study [16]. The changes consisted of an initial transient

component characterized by rapid shrinkage of the RF-center

followed by a second component characterized by an initial minor

center expansion to a subsequent relatively stable size. This is

illustrated in Fig. 1 by results from a representative on-center

nonlagged Y-neuron. Fig. 1A shows a color-map image of the

response (z-axis) to the set of spot width (y-axis) plotted against

time after spot onset (x-axis). Notice the increasing latency to peak

response during the first response component, that is, the curved

shape of the color map in the bottom left corner. Due to low firing

rate at the start of the visual response, we determined the initial

spatial summation curve for the first time-slice where the maximal

visual response was at least twice the average spontaneous activity.

Thus, the timing of the first time-slice does not express the very

start of the visual response.

Interestingly, the color-map image suggests that there is a

discontinuity rather than a continuous change at the transition

between the dynamic initial response and the later more sustained

component. The possible discontinuity is even more apparent in

Fig. 1B where RF-center diameter is plotted against time after spot

onset. Such discontinuity could indicate that the dynamic change

of the RF during the 250 ms stimulus period involved two

distinctly different sets of neural mechanisms. Figs. 2A and 2B

illustrate similar results for a representative on-center X-neuron.

The initial rapid response changes for the neurons illustrated in

Figs. 1 and 2 could partly be due to fast luminance adaptation

since the spot stimulus for on-center neurons was a luminance

increment above the constantly presented background of fixed

luminance. This is unlikely because similar changes occurred for

off-center neurons for which the spot stimulus was a luminance

decrement below the background luminance as illustrated in Fig. 3

by results for a representative off-center Y-neuron.

The initial shrinkage of the RF-center occurred in all nonlagged

neurons (n = 37). On average, the initial field center was 4.562.9

(SD) times wider (p,0.001, paired t-test) than the minimum center

width. The center subsequently widened to on average 2.261.2

times minimum center width (n = 37). These values are consistent

with our previous results [16]. The degree of shrinkage during the

transient component was more pronounced in Y- than in X-

neurons; initial width was 6.063.0 times minimum width for Y-

neurons (n = 19), and 2.861.7 for the non-lagged X-neurons

(n = 18; p,0.001). The mean increase from minimum width to the

average width during the sustained component was also larger for

Y-neurons (2.761.4 times) than for X-neurons (1.760.6 times;

p,0.001).

Coarse-to-Fine Changes of Receptive Fields in LGN
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Figure 1. RF dynamically changes during brief stimulus presentation. Data from an on-center Y-neuron. A, Colormap image of response (z-
axis) to a series of spots (n = 25) of different diameters (y-axis) at different time after spot onset (x-axis). Spots were centered on the RF. B, Center-
width as function of time after spot onset. Center-width was determined by spot diameter giving maximal response. The RF-center shrank from
initially 8 deg to a minimum of 0.5 deg and then increased to a stable width of 2 deg at ,100 ms. C: Spot width tuning curves for a selected number
of time-slices. Notice the truncated x-axis. The time-slice for the spatial summation curve at 52.5 ms is marked by the vertical dashed line in (A), and
the first and last data point in this curve are marked by white crosses in (A). Notice the shoulder or bimodal appearance of the curves in the range of
72.5 and 107.5 ms. Single (Eq. 4) and double (Eq. 5) DOG-functions were fitted to the data. Continuous curves show the best-fitting 2-DOG function
(linearly interpolated between the spot sizes corresponding to experimental data points). Cases in which the 2-DOG gave statistically better fit than

Coarse-to-Fine Changes of Receptive Fields in LGN
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In most time-slices, it was difficult to determine a reasonably

precise estimate of the width of the RF-surround due to the low

rate of response change to the wide spots. Nevertheless, it was

possible in most cases to estimate center-surround antagonism.

The strongest antagonism we could determine, termed 100%,

occurred when the surround inhibition became sufficiently strong

to prevent firing of action potentials. In most neurons, the center-

surround antagonism increased rapidly from weak to 100%

antagonism during the transient component (Figs. 1E, 2E, 3E).

Partial temporal overlap of the two components indi-

cates contributions from two distinct sets of neural

mechanisms. Detailed analyses of differences between the

spatial summation curves at different time-slices provided strong

evidence for two distinct spatiotemporal components. The spatial

summation curves in the beginning of the series of time-slices were

unimodal, and through the successive curves, the peak shifted

toward smaller spot sizes reflecting the shrinking RF-center of the

transient component. However, in the interval of transition

between the two components, an inflection or shoulder in the

falling part of the spatial summation curves occurred, and in the

subsequent time-slices, this shoulder could develop into a local

maximum giving the curves a bimodal shape (Figs. 1C, 2C, 3C).

This shoulder or second peak occurred at spot widths

corresponding to the center width of the sustained component

indicating parallel and simultaneous generation of the sustained

and the transient component in this transition interval. During the

successive time-slices in the transition interval, the peak related to

the transient component continued to shift toward smaller spot

widths while the amplitude gradually decreased until the peak

eventually disappeared ,120–130 ms after stimulus onset

(Figs. 1C, 2C, 3C). Meanwhile, the amplitude of the peak

related to the sustained component was relatively stable such that

the spatial summation curves eventually regained a unimodal

shape (Figs. 1C, 2C, 3C).

This complex shape of the spatial summation curves in the

transition between the transient and sustained response compo-

nents was noticed in all non-lagged neurons except for two X-

neurons. The neurons with the largest shrinkage of RF-center

tended to have the most pronounced bimodal shape of the curves,

whereas in neurons with smaller degree of shrinkage the peaks

related to the two response components were less clearly

separated. Accordingly, Y-neurons had more pronounced bimodal

shape of the summation curves in the transition interval than X-

neurons. In the two deviating X-neurons we could not exclude the

possibility that the steps in spot sizes, used in the series of stimuli to

detect a possible shoulder or double peak, were too large.

The characteristics of the spatial summation curves in the

transition interval between the transient and the sustained

component indicate involvement of two distinctly different sets of

neuronal mechanisms that contribute simultaneously to the

response in this interval. Clearly, the transient component was

generated from a source with strong RF-center dynamics, and the

sustained component from a source with more stable RF-center size.

Both sources have antagonistic center-surround organization as

demonstrated in the spatial summation curves by the gradual

response reduction as the spot widths became increasingly wider

than the putative RF-center. Moreover, the center-surround

antagonism of the transient component had a pronounced

development from little or none antagonism at the start of the

response, to a very strong one. Possible temporal changes of center-

surround antagonism in the RF for the sustained component during

the spot stimulation was difficult to determine, but clearly, they were

small compared to those of the transient component.

To further investigate the hypothesis that the changes of RF-

center width reflect contributions from two distinct sets of

mechanisms that both have antagonistic center-surround organi-

zation, we fitted two different mathematical functions to the set of

spatial summation data in each time slice (cf. Methods). One of the

functions is based on the assumption that the data reflected a

single DOG function (Eq. 4), the other that the data reflected a

sum of two DOG functions with different spatial and temporal

characteristics (Eq. 5). The rationale for choosing the 2-DOG

function is that it represents a natural extension to the single-DOG

function, and can simply account for response curves with two

maxima. The results showed that this 2-DOG function did not

give a significantly better fit than a single DOG function to data in

early time slices during the transient component, or to the data in

the late time slices during the sustained component. However, for

data in time-slices in the transition between the two components,

the 2-DOG function gave a significantly better fit than the single

DOG function (p,0.05, F-test) for 21 of the 35 neurons. The

remaining neurons showed less pronounced separation of the two

components, and the inflections in the transition region between

the transient and sustained part of the response was most likely not

large enough to give a statistically significant difference between

the best fit of the two DOG functions. In Figs. 1C, 2C, 3C the

continuous curve shows the best-fitting 2-DOG function, and time

slices marked by an asterisk show cases in which the 2-DOG

function gave a significantly better fit than the single DOG

function.

The fit of the 2-DOG-functions to the spatial summation curves

showed an interesting systematic deviation for the response to the

smallest spots during the transient response components. For this

range of spots, the best-fitting curves had a smaller rate of change

than indicated by the data points (Fig. 1C, 42.5–97.5 ms; Fig. 2C,

47.5–77.5 ms; Fig. 3C, 27.5–67.5 ms). Thus, at small spot sizes the

response vs. spot-width increased at a higher rate during the

transient response component than accounted for by the 2-DOG

functions, indicating that the model is inaccurate in this region.

With our method, the start of the sustained response component

and thereby the start of the interval over which the transient and

sustained components occurred simultaneously, was detected by

the inflection in the falling part of the spatial summation curve (e.g.

Fig. 1C, 82.5 ms). However, the real start must have occurred

even earlier. As a putatively conservative estimate of the start of

the sustained component, we took the time of the last time-slice in

the beginning of the series at which no inflection in the falling part

of the spatial summation curve was noticeable. This estimated start

varied in the sample of neurons between 45 and 90 ms after

stimulus onset with a mean of 62.5612 ms (N = 35). There was no

statistically significant difference between X- and Y-neurons. The

last appearance of the transient component, and thereby the last

simultaneous appearance of the two components, was noticeable

by a minor notch near the start of the rising part in the spatial

the best-fitting single DOG are marked with asterisk. D, Replot of data in (B) where center width of the transient (red curve) and sustained component
(green curve) are separated based on the estimated start of the sustained component, and the end of the first component. E, Development of center-
surround antagonism. Notice that 100% antagonism was reached within the first 70 ms. F, Development of the firing rate to the spot that just filled
the RF-center. G, Data from (F) separated for the transient (red) and sustained (green) components. Error bars are 6SE. Number of presentations of
each spot, 200.
doi:10.1371/journal.pone.0024523.g001
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Figure 2. RF dynamics for an on-center X-neuron. Similar plots as for the Y-neuron in Fig. 1. Number of presentations of each spot 125.
doi:10.1371/journal.pone.0024523.g002
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summation curve (e.g. Fig. 1C, 112.5 ms). To estimate the end of

the transient component we took the time of the first time-slice

after the disappearance of this notch. Thus, the estimated

disappearance of the transient component varied in the sample

of neurons between 95–145 ms after stimulus onset with a mean of

123613 ms. Also for this quantity there was no statistically

significant difference between X- and Y-neurons. The average

length of the interval of overlap according to these estimates was

59618 ms. Based on the estimated start of the second component

and the end of the first component, we replotted center width

Figure 3. RF dynamics of an off-center Y-neuron. Similar plots as for the Y-neuron in Fig. 1. Number of presentations of each spot 115.
doi:10.1371/journal.pone.0024523.g003
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against time (Figs. 1D, 2D, 3D) to demonstrate the overlap

between the two components (transient in red, sustained in green).

To control for the possibility that the shoulder or bimodal shape

of the summation curves in the transition between the transient

and sustained component could be due to a shift of eye-position

during the recordings, we verified that the centering of the RF was

the same before and after the experiments on spatial summation

(cf. Methods). Moreover, the gradual shift of the peak related to

the transient component combined with the relatively stable

position of the peak to the sustained component is inconsistent

with the hypothesis that the inflection or bimodality was due to a

shift of eye-position during the recording. Furthermore, for

neurons for which we had sufficiently strong response, we

compared the spatial summation properties determined from the

response to the first fifty presentations of the series of spots with the

properties determined from the last fifty presentations, and showed

that the characteristics were similar in the two cases.

Lagged neurons lack the initial shrinkage of the RF-

center. The lagged neurons did not show any marked change of

RF-center width during the spot stimulation period [16], also not

with the increased spatiotemporal resolution of the method used in

the present series of experiments. On the contrary, the center

width remained remarkably stable during the period of visual

response (Fig. 4). Notice that instead of the pronounced initial

shrinkage seen in nonlagged neurons, the lagged neurons are

initially suppressed during spot stimulation [19,35,36].

Relation to the transient and sustained components of

firing rate. The dynamic changes of RF-center width in

nonlagged neurons occurred in parallel with the well-known

dynamic changes of firing rate during spot presentation (e.g. [17–

19]). The rapid initial shrinkage of the RF-center occurred during

the initial transient firing (compare Figs. 1B and 1F, 2B and 2F,

and 3B and 3F), but the relationship between center width and

firing rate was not monotonic. During the interval when the RF-

center gradually shrank, the firing rate increased to a maximum (at

,60 ms in Fig. 1F), where after it rapidly decreased. However,

center width and firing rate had similar timing in the sense that

both properties had an initial dynamic component and a later

largely sustained component. Moreover, the dynamic component

in both cases occurred within the same time interval, suggesting a

common underlying dynamic mechanism. Correspondingly, the

sustained component occurred within the same time interval with

respect to both firing rate and RF-center width.

The firing rate usually had a secondary peak at the beginning of

the sustained firing component, but we observed no consistent

monotonous relationship between these changes and possible

changes of center width in our data.

Mathematical modeling
Comparison with existing spatiotemporal receptive-field

models. We next investigated to what extent various existing

mathematical models for the spatiotemporal response can account

for the experimental data. We first performed a principal components

analysis (PCA; [31]) to get insight into the level of model complexity

needed to account for the data. The modeling was based on the

results in Figs. 1 and 2 which were representative for the basic

response properties of the Y- and X-neurons, respectively. With

PCA the experimental spatiotemporal response data was expanded

into a sum over spatiotemporally separable components (Eq. 3)

where the first component accounts for as much of the data as

possible, the second component for as much as possible of the data

unaccounted for by the first component, and so on. For the Y and X

example neurons depicted in Figs. 1 and 2, respectively, these two

first components together account for 96% or more of the stimulus-

evoked data: the error e (Eq. 1) by including two components in the

sum in Eq. (3) is found to be 0.036 and 0.015 for the Y- and X-

neurons, respectively. The resulting two first principal components

for these example Y- and X-neurons are shown in Fig. 5. This figure

illustrates further that the shrinking of RF-center width is captured

well by the sum of the two first principal components, while the first

principal components alone are insufficient. The latter observation

is as expected since keeping only the first principal component

amounts to assuming a model expression for the stimulus-

evoked activity of the form R(d,t)2Rbkg = f1(t)g1(d). With such a

spatiotemporally separable response function, the RF-center size

will by necessity be constant over time since it is only determined by

the function g1(d).

The conclusion from this PCA analysis is that if we stick to

models based on sums of spatiotemporally separable component

functions, at least two separate components are needed. An

example of such a two-component model is the center-surround model

(Eq. 6) which has been used previously to describe spatiotemporal

response properties of dLGN neurons [14,15]. In these applica-

tions, specific choices for the temporal functions A(t) and B(t) in Eq.

(6) were made (cf. Eq. 7). Here we are less restrictive and allow for

non-parametric fits of A(t) and B(t), which means that the values

A(ti) and B(ti) are allowed to vary freely for each time bin ti. The

best fits of the center-surround model with non-parametric time-

dependent weights (Eq. 6) to the experimental responses for the

example Y and X cells are shown in Fig. 6. For both examples we

observe that the model cannot reproduce the salient RF shrinking

effect for short times. The fitting errors, e, were found to be 7.1%

and 4.0%, respectively. Any model of the CS-type in Eq. (6) where

the center (A(ti)) and surround (B(ti)) weights have specific functional

forms [14,15,33], will by necessity have less flexibility than this

non-parametric model, and should give even poorer fits.

Figure 4. RF dynamics of a lagged on-center X-neuron. Similar
plots as for the Y-neuron in Fig. 1. In (A), notice the initial suppression of
the response. Number of presentations of each spot 70.
doi:10.1371/journal.pone.0024523.g004

Coarse-to-Fine Changes of Receptive Fields in LGN

PLoS ONE | www.plosone.org 9 September 2011 | Volume 6 | Issue 9 | e24523



While center-surround models of the form in Eq. (6) with fixed

center and surround widths were found to be inadequate for

describing the RF shrinking effect, the fitted values of the center

(A(ti)) and surround weights (B(ti)) for the center-surround model

from the X-neuron fit in Fig. 6 were found to be in qualitative

accordance with results from previous studies: in Fig. 6H the

surround weight B(ti) is seen to be similar to, but lag the center

weight A(ti) with a few milliseconds for this X-neuron, in

accordance with previous observations [14,15]. Further analysis

of the time-derivatives of the fitted weights A(ti) and B(ti) for this X-

neuron also revealed that they could be well fitted by the functions

suggested in Cai et al. [14], cf. Eq. (7) (results not shown). For the

example Y-neuron, however, no such systematic lag between the

center and surround weights was found. As seen in Fig. 6D the

fitted center (A(ti)) and surround weights (B(ti)) are both extremely

large and essentially identical with each other for all time slices for

this neuron. However, since the fitted center width a is only slightly

different from the fitted surround width b, the two huge center and

surround contributions almost cancel each other completely,

leaving only a (relatively speaking) small net model response.

These unphysiologically large center and surround components in

the best fit further point to the inadequacy of the CS-model in

accounting for the example Y-cell data.

Fits to time-resolved DOG models. The clear conclusion

from the above fits is that any center-surround model of the type in

Eq. (6), where the spatial widths of the center and surround terms

are fixed to a constant value, is incapable of accounting for the

present data and in particular the salient features of the time-

dependence of the RF-center sizes. We thus needed to search for

other model types. To help elucidate the form such a new model

must have, we next fitted the standard difference-of-Gaussians (DOG)

model to time-resolved response data, cf. Eq. (4). As can be seen in

Fig. 7 such a set of DOG models is in general able to account well

for the salient features of the response data for the example Y- and

X-neurons. The total errors e of these best fits are 1.6% and 1.2%,

respectively, and the shrinkage of the RF-centers at short times is

well captured. This is not surprising since a large number of model

parameters are allowed to vary freely, 4 parameters for each time

bin multiplied by the number of time bins which here is 49.

In Figs. 7D, 7E, 7J, 7K we show the time dependence of these

fitted DOG parameters for our example cells. In Figs. 7D and 7J

we see that the fitted center (A(ti)) and surround weights (B(ti))

mostly follow each other closely and are very similar, even though

both are strongly time dependent. Note that the fitted surround

weights (B(ti)) become very large for some time bins around 100 ms

and are beyond the maximum values of the depicted axes.

Unlike the weights, the fitted center (a(ti)) and surround. widths

(b(ti)) are seen to have very different time dependencies. An

exception is the times beyond about 110 ms for the Y-cell where

the center width is only slightly smaller than the surround width so

that the shapes of the center and surround contributions are

almost identical.

Figure 5. Principal components analysis (PCA) for example on-center Y and X neurons in Figs. 1 and 2. A, B, 1st and 2nd principal
components, respectively, for the Y-neuron response data, i.e., contributions from terms with n = 1 and n = 2 in Eq. (3). C, Sum of contributions from
two first principal components (and background activity) for Y neuron. D, Deviation between experimental results for Y neuron and PCA results in (C).
Error e (cf. Eq. 1) is 0.036. E–H, Same as (A)–(D) for the X-neuron response data. The deviation between experimental results and PCA results (G)
corresponds to an error e = 0.015.
doi:10.1371/journal.pone.0024523.g005
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In Figs. 7F and 7L we finally show the time dependence of the

relative fitting error et, Eq. (2), for the example Y- and X-neurons.

The relative fitting error is seen to be at a maximum at around

100 ms indicating that the response data is poorly described by a

single DOG function at these times. This further hints that more

than one mechanism is evoked and overlap at these times.

The time-variation of the widths are seen in Figs. 7E and 7K to

be particularly large for times less than ,110 ms after stimulus

onset. This observed time-dependence hints at why center-surround

models of the type in Eq. (6), where center and surround terms

with fixed spatial widths and time-dependent weights, are not well

suited to account for the present data. If anything, a new type of

center-surround model with equal center and surround weights,

but time-dependent (and different) spatial widths, is suggested, i.e.,

R ti,dj
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Transient-sustained (TS) model. The direct observations

of two separate components with different spatiotemporal

properties in the experimental data in Figs. 1, 2, 3 combined

with the observation in Fig. 7 that a single DOG is insufficient to

account for spatial responses for times around 100 ms after

stimulus onset, suggest a new two-component model, the transient-

sustained (TS) model, cf. Eq. (8). In this TS model the response is

given as a sum over two components: an early transient component

(Rt(t,d)) lasting up to about 120 ms after stimulus onset, and a

partially overlapping sustained component (Rs(t,d)) starting about

60 ms after onset.

We first focus on the sustained component: A principal

components analysis of the last part of the sustained response

(t.122.5 ms) for our example Y- and X-neurons revealed that the

first principal component in both cases could account for more

than 99.4% of the data, i.e., the ‘error’ was less than 0.6% (results

not shown). This suggests that a spatiotemporally separable

function Rs(t,d) = Fs(t)Gs(d) can account well for this part of the

response, and we further found that the spatial part Gs(d) could

be excellently modeled as a DOG (Eq. 10). The detailed spatial

shape of this sustained DOG was found by fitting the DOG-

model area summation curve to all sustained data (t.122.5 ms),

and the results for the fits to the example Y- and X-neuron data

are shown in Fig. 8. The temporal profile of the sustained part of

the response Fs(t) was modeled as a (low-pass) rising exponential

function (Eq. 13), but the fitting of the temporal parameters ts was

done in the final optimization routine involving the complete TS

Figure 6. Fits to center-surround (CS) model for example on-center Y and X neurons in Figs. 1 and 2. A, Experimental Y-neuron response
data. B, Best fit to CS-model in Eq. (6) with non-parametric representation of A(ti) and B(ti). C, Deviation between experimental results (A) and CS
model results in (B). Error e (cf. Eq. 1) is 0.071. D, Fitted values of weight parameters A(ti), and B(ti), cf. Eq. (6), E–H, Same as (A)–(D) for the X-neuron
response data. The deviation between experimental results (E) and CS model results (F) corresponds to an error e = 0.040.
doi:10.1371/journal.pone.0024523.g006
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model. The onset time of the sustained component ts was fixed to

62.5 ms in this final optimization, in accordance with the results

found in the Experimental Analyses section above.

We next focus on the transient part: a PCA analysis of the first

part (t,97.5 ms) of the response for the example Y- and X-

neurons revealed that the first principal components in both cases

were found to account for less than 90% of the data, see Fig. 9.

This demonstrates that a simple spatiotemporally response

function Rt(t,d) = Ft(t)Gt(d) will be insufficient. The PCA analysis

further revealed that the first and second principal components

combined in both cases accounted for more than 97.5% of the

stimulus-evoked data, and that these two principal components

together are sufficient to capture the temporal shrinking of the RF-

center size (Fig. 9C and 9I). We thus chose to model the transient

part of the response by a sum over two spatiotemporally separable

functions, i.e., Rt(t,d) = Ft1(t)Gt1(d)+Ft2(t)Gt2(d).

Figure 7. Fits to time-resolved DOG functions for example on-center Y and X neurons in Figs. 1 and 2. A, Experimental Y-neuron
response data. B, Best fit to time-resolved DOG model in Eq. (4). C, Deviation between experimental results (A) and model results in (B). Error e (cf. Eq.
1) is 0.016. D, Fitted values of weight parameters A(ti) and B(ti) for Y neuron. E, Fitted values of width parameters a(ti) and b(ti) for Y neuron. F, Time-
resolved error et (cf. Eq. 2) for Y neuron. G–L, Same as (A)–(F) for the X-neuron response data. The deviation between experimental results (G) and
model results (H) corresponds to an error e = 0.012. Note that the almost vertical lines in panels (D) and (J) signal a rapid growth of the fitted value of
the weight parameter B to values beyond the maximum values of the y-axes. The almost vertical lines in panels (E) and (K) correspondingly signal a
rapid growth of the width parameter b.
doi:10.1371/journal.pone.0024523.g007
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To choose the functional forms of Ft1(t), Ft2(t), Gt1(d), and Gt2(d)

we investigated the temporal scores (fn(ti)) and spatial loadings

(gn(di)) of these first two principal components of the transient

response. The temporal scores of the first PCA components were

found to have monophasic time courses (Figs. 9E and 9K), and we

chose to model Ft1(t) using the monophasic function in Eq. (11).

This function were found to be able describe the temporal scores

of the first principal components excellently (Figs. 9E and 9K).

The second PCA components were found to have biphasic time

courses, and we thus chose to model it using the function Ft2(t) in

Eq. (12), which essentially is the time-derivative of Ft1(t). Ft2(t) were

found to fit the temporal scores of the second principal component

for both example cells very well (Figs. 9E and 9K). The spatial

loads of both the first and second principal components were

found to be well accounted for by the DOG function except for

one feature: the spatial load of the second PCA component has

two extremal points for the example X cell, a feature that cannot

be captured by the DOG model (Figs. 9F and 9L). We thus chose

to model also the spatial components of the transient parts Gt1(d)

and Gt2(d) as DOG response functions (Eq. 10).

The fits of our full TS-model in Eq. (14) to the example Y and X

cell response data are shown in Figs. 10B and 10I. The fitting

errors are only 2.9% and 2.2%, respectively, and importantly we

see that the TS-model can account for the shrinking of the RF for

early times. In Figs. 10D, 10E, 10K, and 10L we illustrate how the

individual transient and sustained components contribute to the

total response function. Figs. 10F, 10G, 10M, and 10N show the

corresponding fitted temporal (Ft1(t), Ft2(t), Fs(t)) and spatial

functions (Gt1(d), Gt2(d), Gs(d)) constituting the building blocks of

RTS(d). It is notable that the spatiotemporal characteristics of the

first and second parts of the transient response are very different:

while the first component has the traditional shape with a

monophasic temporal function and an area summation curve

corresponding to a center smaller than the surround, the second

component has a biphasic temporal function and an unconven-

tional area summation curve that has a first negative peak for spot

diameters much smaller than the RF-center size and then changes

sign for larger spot diameters. Whether the separation into these

two components of the transient response relates in any way to

different physiological mechanisms is, however, unclear. The

resulting fitted parameters for the example Y- and X-neurons are

listed in Table 1.

With all model parameters determined by fitting the TS-model

to our spot-response data, we can now calculate a corresponding

spatiotemporal impulse-response function DTS(r), cf. Eq. (16),

which predicts the spatiotemporal firing-rate response to tiny test

spots on for only a tiny period of time. Such a mapping from a

measured response with one stimulus to predicting the response for

another stimulus, requires the system to be linear, an assumption

that appears particularly questionable for Y cells [37]. Regardless,

in Figs. 11A and 11D we show the total impulse response

predicted by Eq. (16). Figs. 11B and 11E show the contribution

from the transient part, and Figs. 11C and 11F the contribution

from the sustained part. The figures further illustrate that for the

example Y cell the sustained part is much weaker than the

transient, while the difference is smaller for the example X cell.

LGN cells have also been studied using reverse-correlation

techniques where randomized long bar stimuli have been used

instead of small test spots [14,15]. The resulting ‘one-dimensional’

impulse-response function is also straighforwardly predicted for

our TS-model, cf. Eq. (21) in Methods, again with the caveat that

linearity must be assumed. In Fig. 12 we show for completeness

these predicted one-dimensional impulse responses for our

example cells. Finally we also found the sustained-only model in

Figure 8. Fits to spatial part of sustained component of TS model for example on-center Y and X neurons in Figs. 1 and 2. A, Last part
(t.125 ms) of experimental Y-neuron response data used in fit. B, Best fit to DOG model in Eq. (10) representing the spatial part of the sustained
component in the TS-model. C, Deviation between experimental results (A) and model results in (B). Error e (cf. Eq. 1) is 0.053. D–F, Same as (A)–(C) for
the X-neuron. The deviation between experimental results (D) and model results (E) corresponds to an error e = 0.019. The fitted parameter values (As,
Bs, as, bs) from both fits are listed in Table 1.
doi:10.1371/journal.pone.0024523.g008
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Figure 9. Principal components analysis (PCA) of early part of response data (t,100 ms) for example on-center Y and X neurons in
Figs. 1 and 2. A,B, 1st and 2nd principal components, respectively, for the Y-neuron response data, i.e., contributions from terms with n = 1 and n = 2
in Eq. (3). C, Sum of contributions from two first principal components (and background activity) for Y neuron. D, Deviation between experimental
results for Y neuron and PCA results in (C). Error e (cf. Eq. 1) is 0.044. E, Fitted transient temporal function Ft1(t) (Eq. 11, blue dashed line) to 1st

temporal PCA component (blue solid line), and fitted transient temporal function Ft2(t) (Eq. 12, green dashed line) to 2nd temporal PCA component
(green solid line) for early part ( t,97.5 ms) of Y-neuron data. F, Blue dashed line: Fitted DOG spatial functions (Eq. 10) to 1st spatial PCA component
of early part (t,97.5 ms) of Y-neuron data (blue solid line). Green dashed line: Corresponding DOG function fit to the 2nd spatial PCA component
(green solid line). The best fit of a DOG function (red dashed line) to the 1st spatial PCA component of the last part of the Y-neuron data is also shown
(red line). G–L, Same as (A)–(F) for X-neuron response data. The deviation between experimental results and PCA results (I) corresponds to an error
e = 0.021.
doi:10.1371/journal.pone.0024523.g009
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Figure 10. Fits to transient-sustained (TS) model for example on-center Y and X neurons in Figs. 1 and 2. A, Experimental Y-neuron
response data. B, Best fit to TS model in Eq. (14). C, Deviation between experimental results (A) and model results in (B). Error e (cf. Eq. 1) is 0.029. D,
Transient component only, i.e., R(t,d) = [Rbkg+Ft1(t)Gt1(d)+Ft2(t)Gt2(d))]+. E, Sustained component only, i.e., R(t,d) = [Rbkg+Fs(t)Gs(d)]+. F, Fitted transient
temporal functions Ft1(t) (Eq. 11,blue line) and Ft2(t) (Eq. 12, green line), and sustained temporal function Fs(t) (Eq. 13, red line) for Y-neuron. G, Fitted
transient spatial functions Gt1(d) (blue line) and Gt2(d) (green line), and sustained spatial function Gs(d) (red line) for Y-neuron. All spatial functions are
modeled as DOGs, cf. Eq. (10). H–N, Same as (A)–(G) for the X-neuron response data. The deviation between experimental results (H) and model
results (I) corresponds to an error e = 0.022. The fitted parameter values from both fits are listed in Table 1.
doi:10.1371/journal.pone.0024523.g010
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Eq. (15) to account well for the experimental data for lagged

neurons. The best fit to the example X-off lagged neuron in Fig. 4

is shown in Fig. 13.

Discussion

The experimental results demonstrated an initial pronounced

transient shrinkage of the RF-center and a subsequent more stable

center-width during the static spot stimulation for all non-lagged

neurons, consistent with our previous results [16]. The color-map

images of the responses and the plots of spot-width vs. time

indicated a discontinuity in the change of RF-center width rather

than a continuous change at the transition from the first to the

second component. This was substantiated by results from the

detailed analyses of the spatial summation curves, which showed

an inflection or bimodal shape of the curves in the range of

transition between the two components, and indicated a partial

temporal overlap between the two components. These results

suggest that the transient and the sustained part reflect

contributions from two distinctly different neuronal mechanisms

that operate in parallel with partial temporal overlap. Spatially,

both mechanisms have antagonistic center-surround organization

as demonstrated by the summation curves. Thus, rather than

simply reflecting a continuous change of balance between an

excitatory center and a delayed inhibitory surround (e.g. [15]), the

dynamics of the RF-center width seems to involve two distinctly

different sets of spatiotemporal mechanisms.

It could be argued that the initial changes in the color-map

images reflect primarily temporal response properties rather than

spatial changes in the RF, i.e. that the response to larger spots have

shorter latency than the response to smaller spots simply due to

differences of spatial summation. However, the short duration of

the response to the large spots is inconsistent with this hypothesis.

Moreover, we previously [16] demonstrated that a small eccentric

stimulus spot presented outside the minimum RFC but inside the

maximum RFC elicited only a fast and transient response

consistent with a real shrinkage of the RFC.

The results from the mathematical modeling support the

conclusions from the experimental data. In the modeling, we

systematically investigated various models for the spatiotemporal

response and compared them with our detailed time-resolved data.

The principal components analysis (PCA) clearly demonstrated that a

model response function for non-lagged neurons must at least

include a sum over two different spatiotemporal functions. One such

type of candidate model is the commonly assumed center-surround

(CS) models [12,14,15,24] built up as a sum of a center term and a

surround term, and a fixed time lag between the two components.

However, our mathematical analysis clearly showed that the CS-

model was unable to capture the salient features of the

spatiotemporal response, in particular the shrinkage of the RF-

center during the transient phase. This conclusion not only applied

to the version of the CS-model with the particular choices of the

temporal weight functions assumed in, e.g., Cai et al. [14] and Allen

and Freeman [15]; our analysis with a non-parametric fit of the CS-

model, corresponding to allowing 100 model parameters to vary in

the fit, also gave a poor fit. Our conclusion from this analysis was

thus that no CS-model could account for the present data, and we

therefore investigated alternative mathematical models.

Fitting of the data to the DOG model for each time slice

separately supported the conclusion from the direct analysis of the

experimental data, namely that the data are most naturally

represented by a sum of an early transient component and a

partially overlapping sustained component. Further mathematical

analysis revealed that two spatiotemporal components are needed

to represent the transient part of the response with a time-

dependent RF-center size, while a single component is sufficient

for the sustained component. Our new transient-sustained (TS) model,

described by a sum of three spatiotemporal components,

accounted excellently for the experimental data. The successful

fit to the TS-model involved 19 freely varying model parameters

rather than the 100 model parameters of the unsuccessful non-

parametric fits to the CS-model. Accordingly, the better fit of the

TS-model came despite of a much smaller number of fitting

parameters. Use of the Akaike information criterion [38], which

penalizes models with many fitting parameters, would in fact favor

the TS-model even more compared to the CS model. The crucial

new feature of the TS-model is the assumption of the response

being given as a sum over a transient and a sustained component.

To effectively capture the rapid shrinking of the receptive-field

center size for the transient component, we chose to model this

component as a sum over two product functions mimicking the

two first PCA components of the transient part of the response.

This choice is mathematically convenient, but it is unclear if, or to

what extent, this decomposition of the transient component relates

to two different underlying physiological mechanisms.

In the human visual system the existence of spatiotemporally

distinct transient and sustained channels were suggested by a

Table 1. Best-fit parameters from fitting the transient-
sustained (TS) model in Eq. (14) to response data for example
Y and X cells, cf. Fig. 10.

Y cell X cell

t1 (ms) 38.7 19.1

t1 (ms) 5.5 2.7

n1 3.0 15.0

A1 (spikes/s) 477 527

B1 (spikes/s) 500 637

a1 (deg) 0.56 0.35

b1 (deg) 1.91 1.04

t2 (ms) 40.7 20.2

t2 (ms) 9.7 3.1

n2 2.1 14.0

A2 (spikes/s) 537 345

B2 (spikes/s) 358 207

a2 (deg) 0.83 0.53

b2 (deg) 0.26 0.22

ts (ms) 24.0 15.2

As (spikes/s) 174413 226

Bs (spikes/s) 174440 232

as (deg) 1.186 0.30

bs (deg) 1.187 0.89

Rbkg (spikes/s) 6.5* 15.3*

ts (ms) 62.5* 62.5*

error (e) TS-model 0.029 0.022

error (e) CS-model 0.071 0.040

The number marked with asterisks are not fitted: Rbkg is found by averaging the
background response prior to the stimulus-evoked response, and ts is fixed at
62.5 ms (see main text). Fitting errors (Eq. 1) for both the TS-model and the CS-
model (center-surround model, Eq. 6) are also listed.
doi:10.1371/journal.pone.0024523.t001
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Figure 11. Predicted spatiotemporal impulse-response function DTS(t,r), cf. Eq.(16), for the transient-sustained (TS) model for
example on-center Y and X neurons in Figs. 1 and 2. All model parameters correspond to the fit depicted in Fig. 10 and are listed in Table 1. A.
Predicted impulse-response function for full TS-model for Y neuron. B. Contribution from transient part (ft1(t) gt1(r)+ft2(t) gt2(r)). C. Contribution from
sustained part (fs(t) gs(r)). D–F. Same as (A)–(C) for the X-neuron. Notice that (i) the color scale in C and F differ from the scale in the other
corresponding color maps and (ii) that the negative response for the Y-neuron has been truncated at the value 250 spikes/s/deg2 in panels A and B.
doi:10.1371/journal.pone.0024523.g011

Figure 12. Predicted ‘one-dimensional impulse response’, i.e., impulse response for long and thin bars, for the transient-sustained
(TS) model for example on-center Y and X neurons in Figs. 1 and 2. This impulse-response function of the form given in Eq. (16), but with the
spatial functions gm(r) replaced by the function gbar,m(x) listed in Eq. (21). The test bar in the example has a length L = 10 deg. All model parameters
correspond to the fit depicted in Fig. 10 and are listed in Table 1. A. Predicted receptive-field function for full TS-model for Y neuron. B. Contribution
from transient part (ft1(t) gbar,t1(x)+ft2(t) gbar,t2(x)). C. Contribution from sustained part (fs(t) gbar,s(x)). D–F. Same as (A)–(C) for the X-neuron. Notice that
(i) the color scale in C and F differ from the scale in the other corresponding color maps and (ii) that the negative response for the Y-neuron has been
truncated at the numerical value 2100 spikes/s/deg in panels A and B.
doi:10.1371/journal.pone.0024523.g012
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number of early psychophysical studies (e.g. [1,39–44]). The

transient channels operate at low and moderate spatial frequencies

mediating brief response (,100 ms, [42]) at onset or offset of a

flashed stimulus, the sustained channels operate at high spatial

frequencies mediating response for the whole duration of the

stimulus. The two channels have been related respectively to Y

(transient) and X (sustained) retinal ganglion cells and dLGN

neurons (e.g. [39–45]), but this link seems less likely since both Y

and X retinal ganglion cells and nonlagged dLGN neurons

typically respond to a flashed stimulus with an initial transient

followed by a sustained response. However, the dynamics of RF-

organization we found are consistent with the reinterpretation that

the two psychophysically defined channels may actually reflect two

different components in the receptive field evolvement in both Y

and X neurons. As illustrated by Figs. 1A, 2A and 3A, the response

to large spots (low spatial frequencies) was limited to the initial

response and accordingly transient like responses in the psycho-

physically defined ‘transient channel’. Gradually during the time

sequence, the response becomes limited to smaller spots, and the

response becomes more sustained like the psychophysically

defined ‘sustained channel’. This relationship would suggest that

a similar dynamics of RF-center size also exists in the human visual

system.

Lagged neurons are generated in dLGN by transformation of

the characteristic transient-sustained response pattern of retinal

ganglion cells into the delayed and sustained response pattern of

the lagged neurons [19]. The transformation is presumably caused

by fast intrageniculate feed-forward inhibition that eliminates the

initial transient response component since direct application of

GABA-A receptor antagonists on a lagged neuron changes its

response into a nonlagged pattern [36]. It is of interest in this

connection that our modeling demonstrated that the spatiotem-

poral characteristics of the lagged neurons were adequately

accounted for by the sustained-only model (Eq. 15).

The underlying neuronal mechanisms for the dynamics of the RF-

center width of the nonlagged neurons are unknown. We previously

demonstrated that the retinal input to nonlagged dLGN neurons has

a similar dynamics of RF-center width during spot stimulation as the

dLGN neurons [16], indicating that the initial pronounced

shrinkage of the RF-center must at least mainly be of retinal origin.

It is of interest in this connection that Passaglia et al. [46] showed

increased firing in some X and most Y retinal ganglion cells to

stimulation with gratings of low spatial but high temporal frequency

outside the classical RF. This is consistent with the low spatial

resolution we found in the initial response of the retinal input to

nonlagged neurons in dLGN [16]. However, the retinal mechanisms

that generate the key characteristics of the transient component are

unclear. The initial very wide RF-centers might reflect lateral spread

of excitation between retinal neurons through neuronal gap

junctions [47], for instance already between photoreceptors [48–

51], beside the convergence of synaptic input in the vertical retinal

pathway. Possible mechanisms for the fast constriction of the RF-

center during rapidly increasing center-surround antagonism could

be increasing lateral summation of activity across horizontal cells in

the outer plexiform layer or interactions in the inner plexiform layer,

for instance interaction between wide-field and transient amacrine

cells (e.g. [52,53]) and bipolar cells.

It is generally assumed that the width of the RF-center of a

neuron is directly related to its spatial resolution for details in

visual stimulus patterns. Accordingly, the change of center width

during the visual stimulation strongly suggests that this dynamics

has an important role in the coarse-to-fine processing manifested

in several phenomena of visual perception (cf. e.g. [1,2]). In

particular, the transient and sustained component of the response

may have different functional roles. The fast onset, high peak firing

rate, and coarse spatial resolution of the transient response

component is well suited for functions related to object and pattern

detection [54,55], whereas the subsequent sustained response

component with its higher spatial resolution is well suited for

functions related to fine discrimination and detailed pattern

analyses. Moreover, it is reasonable to suggest that the dynamics of

several types of response selectivity observed in visual cortex is

largely a reflection of the dynamics of geniculate input to the

cortical circuits that generate the various types of stimulus

selectivity. This includes dynamics of spatial frequency selectivity

[4,6], increasing sharpness of disparity tuning [5,56], orientation

discriminability or selectivity [3,57,58], shape selectivity [7], or

shrinkage of cortical RF-subregions [9]. Interestingly, this response

dynamics seems to be mainly of retinal origin [16].
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