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Abstract

We developed a new multiple hypothesis testing adjustment called SGoF+ implemented as a sequential goodness of fit
metatest which is a modification of a previous algorithm, SGoF, taking advantage of the information of the distribution of p-
values in order to fix the rejection region. The new method uses a discriminant rule based on the maximum distance
between the uniform distribution of p-values and the observed one, to set the null for a binomial test. This new approach
shows a better power/pFDR ratio than SGoF. In fact SGoF+ automatically sets the threshold leading to the maximum power
and the minimum false non-discovery rate inside the SGoF’ family of algorithms. Additionally, we suggest combining the
information provided by SGoF+ with the estimate of the FDR that has been committed when rejecting a given set of nulls.
We study different positive false discovery rate, pFDR, estimation methods to combine q-value estimates jointly with the
information provided by the SGoF+ method. Simulations suggest that the combination of SGoF+ metatest with the q-value
information is an interesting strategy to deal with multiple testing issues. These techniques are provided in the latest
version of the SGoF+ software freely available at http://webs.uvigo.es/acraaj/SGoF.htm.
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Introduction

Multiple hypothesis testing has become an important issue since

the advent of ‘‘omic’’ technologies: genomics, proteomics, tran-

scriptomics etc. Usually it involves the simultaneous testing of

thousands of hypotheses producing a set of significant p-values. The

later may be indicating some kind of true effect for each test. By true

effect we mean, depending on the kind of experiments, an increased

expression of a gene, or quantity of RNA, protein and so on. There

are several methods controlling the family wise error rate (FWER)

with the aim to minimize the type I error, i.e. the problem of

detecting effects which are not true ones. Unfortunately, minimizing

type I error increases type II error, that is, diminishes the statistical

power to detect true effects. An interesting alternative is to control

the false discovery rate, FDR [1], which is the expected proportion

of false discoveries among the total ones i.e. the expected proportion

of the rejected null hypotheses which are erroneously rejected.

When computing the FDR, two strategies can be followed [2,3].

First, fixing an FDR level of acceptance, say 5%, and then detecting

the rejection region of interest i.e. the widest region with associated

FDR below the fixed level. The second strategy has been proposed

by Storey and Tibshirani [4] and aims to fix the rejection region and

then to estimate the FDR over that region. This strategy also

provides the estimation of the q-values linked to each test, i.e. the

expected proportion of false positives incurred if we call a given test

significant [2]. However, the use of the q-values does not provide an

automatic procedure to detect true effects while informing about the

probability of committing a false discovery. The computation of q-

values implies a previous estimation of the fraction of tests with true

null distribution [4]. It is worth mentioning that the so called pFDR,

i.e. FDR conditional upon having rejected one or more hypotheses,

can not be controlled when the probability of having an effect is low

[2,5] or even when the p-values are obtained from low-sample size

tests [6]. The above problems are still more serious when

considering that, under realistic sample sizes, the FDR controlling

methods increase type II error if the number of tests is high and the

size of the effects are weak i.e. the higher the number of tests the

lower the power to detect true effects [6].

The obvious goal when performing multiple testing adjustments

is to detect as many true positives as possible while maintaining the

false ones below a desired threshold. Therefore, for a fixed

percentage of existing effects, the higher the number of tests

performed, the higher the number of true positives that should be

detected. In a previous work [6] we have proposed an exact

binomial meta-test as a new multiple testing adjustment which

holds the desirable property of increasing power with the number

of tests. The binomial meta-test compares the observed and

expected proportions of p-values falling below threshold c (often

c= 0.05) and makes a decision about the number of effects

accordingly. The method was shown to behave especially well with

weak-moderate alternative hypothesis, high number of tests and

low sample size. Since the SGoF method only controls for FWER

in the weak sense i.e. under the complete null hypothesis, and since

the FDR of SGoF is not keeping any a priori level, it seems
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interesting to provide with an estimate of the FDR committed after

the adjustment. In addition, the difference between the observed

and expected proportions of p-values below c may be more

informative at threshold values other than c= 0.05 [7,10].

Therefore, in this work we are performing a double task. First,

we present a new metatest method, called SGoF+, which is a

modification of the SGoF previous algorithm taking advantage of

the information on the p-values distribution in order to fix the

rejection region. SGoF+ uses, as a discriminant rule, the

maximum distance between the uniform distribution of p-values

and the observed one, to set the null hypothesis for the binomial

test (i.e. to choose c). This maximizer corresponds to the Youden

index for the classification problem, which means that it gives the

maximum separation between the true positive rate and the false

positive rate (an optimum in the ROC analysis). This new

approach has a significant improvement on power over the

previous method. Second, after applying SGoF+ or other

adjustment method, we compute the associated q-values. The

key point is that using a given q-value cutoff to decide what null

hypotheses should be rejected is arbitrary. In fact, we can see

SGoF and SGoF+ as metatest methods that lead to a ‘reasonable’

pFDR (q-value cutoff), because there is no a priori indication of the

proportion of false discoveries one should respect. In what follows

we will perform simulation of two-tailed one-sample t-tests to

compare statistical power and pFDR after applying Sequential

Bonferroni (SB), Benjamini-Hochberg (BH), SGoF and SGoF+
methods. The formalization of the new SGoF+ method is detailed

in the Materials and Methods section. We have also compared up

to four different pFDR estimation methods to see how well they

perform under the different adjustments. We illustrate the new

method with a reanalysis of a data set from a protein expression

experiment in eggs of the marine mussel Mytilus edulis [8]. The new

proposed SGoF+ method and the estimation of q-values have been

incorporated in the last update of the program SGoF+ [9].

Results

Statistical power
To check the relationship between power increase through the

number of tests and the pFDR committed we measured the ratio

Power/pFDR. In the Figure 1 it can be appreciated that with a

sample size of 20 BH (performed at FDR 0.05) and SB methods

(performed at strong FWER control of 0.05) has a ratio larger than

that of metatests SGoF (c= 0.05) and SGoF+ (both performed at

weak control of FWER of 0.05) only under the lowest number of 10

tests. The ratio Power/pFDR shows a decreasing shape through the

number of tests for SB and BH methods, while the opposite is true

for SGoF and SGoF+ with the latter showing the best ratio. The

same pattern is obtained when the sample size is as low as 5 though

in this case the effects are not so easily detected by SGoF and SGoF+
accordingly to the loosing of sample information (not shown). This

Figure 1 reveals the practical superiority of SGoF+ with respect to

the original SGoF method, at least when the goal is to increase the

statistical power. Indeed, SGoF+ can be regarded as an automatic

algorithm that finds inside the SGoF’s family the c leading to the

maximum power and the minimum false non-discovery rate [10].

Of course, when doing that, an extra rate of false discoveries is

committed, but the behavior of the quotient Power/pFDR indicates

that this is compensated through the power increase.

True positive versus false positive rate through different
percentage of effects

We have plotted the true positive rate (i.e. sensitivity, y-axis)

against the false positive rate (1-specificity, x-axis) through different

percentage of effects from 1 to 80% for the distinct multiple testing

methods when the number of tests is 1,000 (Figure 2). Note that

this Figure 2 displays a ROC curve in which different points are

obtained according to the threshold value provided by each of the

multiple testing adjustments, the points more to the left

corresponding to the smaller proportions of effects. In particular,

the x-axis varies from 0% to 5% since all the methods gave

thresholds below 0.05. Obviously, the best possible method would

yield points in the upper left corner or coordinate (0, 100). Values

below the diagonal or no-discrimination line (NDL) would be

considered as poor performing methods. Different panels for

separate sample size cases are shown for different proportions (%

Effect from 1 to 80%) of the alternative hypothesis contributing to

the family of 1,000 comparisons (see Methods). The pattern for

families of 10,000 comparisons was similar (not shown). Note that

the y-axis scale varies among the distinct panels. It can be

Figure 1. Power/pFDR ratio with different number of tests. The family of tests was 1,000 one-sample t tests with 20% of them coming from a
N(0.36, 1) and sample size 20. Values are averages through 1,000 replicates.
doi:10.1371/journal.pone.0024700.g001

Significance in High-Throughput Experiments
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appreciated that SB method only has a true positive rate in the case

of highest sample size (n = 100). The BH method needs sample size

of 20 or higher to display a true positive rate, and it is the best

method with n = 100 within the region of 1 to 10% of effects. With

more than 20% of effects the true positive rate is almost constant

while the false positive rate is increasing. With low sample sizes of

n = 5 and n = 10 the only methods performing well are the metatest

ones (SGoF and SGoF+), both of them being always far above the

NDL except for sample size 5 and just 1-5% of effects. Thus, if we

look to the y-axis (true positive rate), the BH and SB methods had no

true positives (no power) under these sample sizes. Furthermore, we

see that SGoF+ appears with larger y and x coordinates than SGoF,

i.e. SGoF+ has true positive rate larger than that of SGoF although

at the cost of increasing its false positive rate.

Interestingly, when sample size is the largest (n = 100) the metatest

methods perform the best in the case of high percentage of effects

(40% or higher). On the contrary BH performs the best with

percentage of effects as low as 1% (first triangle from left to right

with n = 100). This good behavior of BH with large sample sizes is

not surprising from previous simulation results [6]; note also that a

large sample size results in a strong relative effect, a situation in

which FDR-controlling strategies are expected to perform well [10].

Positive false discovery rate
Because we are performing simulations we can exactly measure

the false discovery rates committed by the different methods. The

positive false discovery rate, pFDR, was measured and averaged

through replicates. The difference of measuring pFDR instead of

FDR is that when measuring FDR the average is taken through all

runs including those without discoveries which will have a FDR of

0. However, in the case of pFDR only runs with discoveries are

averaged. Upon inspecting Figure 3 we can firstly appreciate that

the pFDR is decreasing with the increasing percentage of effects.

This is expected since given that a discovery is reported (the

necessary condition for measuring pFDR) the probability of it

being a true one is higher with a larger number of true effects.

Secondly, we can see that, independently of the method and of the

percentage of effects, the pFDR is always higher with the lower

sample size. This occurs because with larger sample size the

relative effect is stronger in the sense that, for a given effect size,

that effect will be more easily detected with a larger n. For the

lowest sample size (n = 5) all correction methods perform similarly.

In the other cases, the metatest methods have in general a larger

pFDR than SB and BH especially with n = 20. With the largest

sample size (n = 100) all methods perform similar again but the

SGoF+ in the case of 1% of effect commits the highest pFDR.

Estimation of positive false discovery rate
To assess the performance of the several pFDR estimation

methods (see Methods section) we plotted the difference between

the estimated (epFDR) and the observed pFDR. Thus, the positive

differences indicate conservative estimates. The results are given in

Figure 4 for the case with sample size 20. We can appreciate that

the four estimation methods perform similarly. Indeed, for the

Figure 2. True versus false positives through different percentage of effects. The family of tests was 1,000 one-sample t tests. TPR: True
Positive Rate. FPR: False Positive rate. Marked points in the lines represent 1, 5, 10, 20, 40, 60 and 80% of effects coming from a N(0.36, 1). n: Sample
size. Values are averages through 1,000 replicates.
doi:10.1371/journal.pone.0024700.g002
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metatest methods (SGoF and SGoF+) the pFDR is accurately

estimated always when the percentage of effects is above 1%. In

the case of a number of effects as low as 1% epFDR slightly

underestimate the observed pFDR corresponding to the metatests.

For the SB and BH methods the pFDR estimates are quite

conservative. The explanation to this behavior is that we are using

the robust pFDR estimate [11] which grossly overestimates the

pFDR when the probability of having a true effect is low.

Example of application
We performed an example of application of SGoF+ jointly with

the estimate of the q-values using a list of p-values coming from

protein expression experiments in eggs of the marine mussel Mytilus

edulis [8]. In that study, M. edulis female protein expression profiles of

two lines differing in sex ratio of their progeny were compared. In

that exploratory study authors had no power to detect any

significant effect after correction with BH at the 20%. However,

when proteins spots were able to be identified by mass spectrometry,

authors briefly speculate about the possible biological role of some

differences and so they decided to accept the necessary FDR to get

the whole set of the a priori significant p-values (26 out of 261 tests at

the 5% level). Therefore they assumed an FDR of 50% to get all 26

candidate spots [8]. Because that study had low sample size (two

biological replicates in each group) and power it is an interesting one

to check how many significant tests are detected and the FDR that

will be committed using SGoF+.

We have used the SGoF+ software [9] in its last version, to

apply metatest corrections jointly with the q-value estimate over

the same 261 p-values from the Diz et al. [8] study. We have

estimated the proportion of true nulls p0 using the four previously

checked methods. We can appreciate (Table 1) that the four

methods give different estimates with the SDPB giving the most

conservative estimate (92%) while the Smoothing the most liberal

(61%). When grouping these values in intervals of 0.05 length the

mode is 0.82. Therefore, we use this modal value of 82% as our

estimate of p0 to study which proteins should be considered as

differentially expressed after correction with SGoF+ jointly with

the consideration of the associated q-values (Table 2). Using a 5%

significance level SGoF (c = 0.05) detects 6 spots with associated q-

value of 0.22 corresponding to the highest significant p-value

(0.007) The discriminant rule of SGoF+ automatically gives

c= 0.244703 and SGoF+ detects 17 significant protein spots with

q-value of 0.32 for the highest significant p-value (0.026).

Concerning to our p0 modal estimate if we decide to reject all

26 spots with p-values below 0.05 we should assume an FDR of

40% instead of the 50% assumed in Diz et al. [8] study. We also

performed the analysis at 0.1% significance level to get just 1

significant spot after SGoF+ with a q-value of 0.2 (Table 2). In this

case the number of effects declared by SGoF+ is limited to 1

because there is only one p-value below 0.001 among the 261

original ones.

Discussion

There is a problem with multiple test adjustment methods trying

to control type I error rates because of the increase of the type II

Figure 3. Observed positive False Discovery Rate (pFDR). The family of tests was 1,000 one-sample t tests with 1, 5, 10, 20, 40, 60 and 80% of
them coming from a N(0.36, 1). n: Sample size. Values are averages through 1,000 replicates.
doi:10.1371/journal.pone.0024700.g003

Significance in High-Throughput Experiments
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error i.e. the loss of power when the number of tests is high.

Furthermore, it is known that the methods controlling FDR are

not controlling pFDR in some situations [2,5]. It seems clear that

pFDR is what the researcher desires to control at least if interest is

restricted to experiments where some discovery has been made

[12]. So, when applying an FDR-based adjustment as BH we are

loosing power while still not necessarily controlling false

discoveries as desired.

In fact, we have shown (Figure 3) that SB, BH and the metatest

methods commit very similar pFDR under realistic sample size

(n = 5). This is interesting since the power of SGoF+ method is the

highest so, its power/pFDR rate will be better.

Therefore, it is reasonable to take advantage of a priori

information on the p-value distribution and perform the estimation

of the q-values linked to the p-values, i.e. the pFDR we expect to

commit over all the rejection regions below. Indeed, if sample size

is low and the effects are weak, the robust pFDR estimation

method [11] should be preferred. In any case, the use of the q-

values does not provide an automatic procedure which maximizes

the power of detecting true effects while informing about the

probability of committing a false discovery. We have shown that

metatest methods as SGoF and SGoF+ represent a good

compromise between power and pFDR (Figure 1) when the

number of tests is larger than 100. Importantly, results obtained

for SGoF+ indicate that this modification reports an extra power,

Figure 4. Estimated positive false discovery rate epFDR minus the observed pFDR. The family of tests was 1,000 one-sample t tests with 1,
5, 10, 20, 40, 60 and 80% of them coming from a N(0.36, 1). Sample size was 20. The panels: Smoothing, SDPB, Bootstrap and LBE, refer to the
corresponding method to estimate the pFDR (see Methods section). Values are averages through 1,000 replicates.
doi:10.1371/journal.pone.0024700.g004

Table 1. Proportion, p0, of truly null features estimated by
different methods for the dataset of Diz et al (2009).

Method p0

Bootstrap 0. 80

LBE 0. 84

SDPB 0. 92

Smoothing 0. 61

Mode 0.82

The mode of the methods is computed using intervals of length 0.05 for
grouping the data.
doi:10.1371/journal.pone.0024700.t001

Table 2. Number of significant tests after multiple test
adjustment at the 5% and 0.1% levels and the q-value
associated to them for the dataset of Diz et al (2009).

Method # of tests 5% q-value # of tests 0.1% q-value

SB 0 --- 0 ---

BH 0 --- 0 ---

SGoF 6 0.22 0 ---

SGoF+ 17 0.32 1 0.20

doi:10.1371/journal.pone.0024700.t002

Significance in High-Throughput Experiments
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which compensates for the resulting increase in the proportion of

false discoveries.

Thus, we suggest combining SGoF+ with the information

provided by the q-values as a reasonable tool to perform the

multiple test adjustment.

The proposed strategy was illustrated by analyzing real data

from a protein expression experiment. In the original study [8] the

authors faced the question of what FDR should be assumed in

order to get some positives to continue with their exploratory

analysis. Because a FDR of 20% does not produced any positive

they decided to assume the cost of a 50% FDR to get the whole set

of 26 positives obtained previously to the multiple testing

correction. From an exploratory point of view such a low number

of candidates represents a good cost-benefit compromise for

further confirmatory studies (Diz, personal communication). Here

we applied SGoF+ to conclude that there is statistical motivation

to assume 17 positives as significant. Hence the FDR to assume in

doing so is provided by the corresponding q-value estimate of 0.32

so we expect 11–12 out of those 17 to be the true positives. One

interesting point about SGoF+ is the kind of statistical significance

the method searches for. In general, the number of significant

cases provided by the SGoF strategy can be regarded as a lower

bound for the number of effects with p-value smaller than c [10].

For the protein expression experiment, the discriminant rule gave

c= 0.24; then, SGoF+ is telling us that there are at least 17 tests

among the 94 tests with p-value below 0.24 which correspond to

true effects. This kind of evidence is useful in settings where FDR-

controlling strategies suffer from a remarkable lack of power.

An important issue related to multiple testing in high-

throughput experiments is the intrinsic inter-dependency in gene

effects [13]. Usually weak-dependence, which corresponds to local

effects between a small number of genes, is considered [14]. It has

been shown that under weak-dependence, both the FDR-based

[4,14] and the SGoF [6] methods are still robust. Indeed we have

checked that in the worst case of no effects (complete null

hypothesis) and with pair wise correlations of 0.1 the FWER is

being controlled by SGoF+ still when blocks of correlated genes

are of size 100. When correlations are as large as 0.5 then blocks of

size 50 provoke the loosing of the FWER control of SGoF+ but the

number of false positives is still very low [15]. The behavior of

SGoF+ under dependence is still better when some percentage of

true effects exist (data not shown). Since short blocks of correlated

genes are expected in genome and proteome wide studies [4,13]

the above methods should even be useful. However, in some cases

high correlations could be found in the data and this could have

great impact in the p-value distribution and consequently in the

correction methods [16–17]. In the case of the metatest correction

methods, SGoF and SGoF+, such high correlations could provoke

the weak FWER control to be lost. The BH however still remains

conservative as expected when the dependence relationships are

positive [18]. Therefore, if strong dependence is suspected the

combination of metatest methods with the most conservative BH

method should be preferred. Alternatively the empirical null

distribution can be computed to get the adequate critical level for

the multiple testing [16]. An automatic correction of metatest

methods for data with strong dependence is work in progress.

Finally, it is worth mentioning that the above adjustment

methods and the q-value estimation have been implemented in the

latest version of the SGoF+ software. The q-value estimation is

performed via the different methods used in this paper, for the

robust and standard pFDR estimation (C parameter in formula (2),

see Methods). The program provides to the user with two files.

The first one includes a list of selected tests after performing the

adjustment by each method at a desired significance level. The

second one (in excel and html formats) provides the user with the

full list of a priori significant tests and the adjusted p-values for

each correction method, jointly with the estimated q-value for each

test.

As a conclusion, it seems that SGoF+ shows an improvement in

the statistical power to detect true effects with respect to other

adjustment methods including SGoF. Combining SGoF+ with the

q-value associated to each test can be an interesting strategy when

performing multiple test adjustments. The latest version of the

SGoF+ software is freely available at http://webs.uvigo.es/acraaj/

SGoF.htm.

Materials and Methods

Formalization of the SGoF+ test
Consider testing at significance level c a set of S null hypotheses

H1, H2, …, HS. Let p1#p2 #…# pS be the sorted p-values, and

denote by Hi the null hypothesis corresponding to pi . Individually,

each null hypothesis is rejected when the p-value is smaller than

the given c. However, all these rejections can not be identified as

true effects since the individual tests do not correct for the

multiplicity of tests. Let Kc be the proportion of rejections with

such a procedure. Provided that the S nulls are true, the expected

proportion of rejections (i.e. false positives) is E(Kc) = c. Consider

now from a set of possible c values the one which maximizes the

difference between the observed and the expected proportions of

rejections, i.e. c 0 = arg max c { Kc – E(Kc)} = arg maxc { Kc – c }.

We perform a goodness-of-fit test via an exact binomial test or

(for S$10) a chi-squared test with one degree of freedom onto the

null hypothesis H0: E(Kc0) = c 0 at a desired level a. The procedure

now is identical as in the previous SGoF version [6]. Let ba(c0) be

the critical value of S6Kc0 for such a goodness-of-fit test (i.e. ba(c0)

is the 100(1-a)% percentile of the Binomial(S,c0) distribution); that

is, the test gives rejection at level a when S6Kc0$ba(c0). Here,

‘‘rejection’’ means that at least one of the null hypotheses is false.

In the case of rejection, the test concludes that the Na(c0 =

min(S6Kc0 - ba(c0) +1, S6Ka) hypotheses with the smallest p-values

(these are, H1 , H2 ,…, HNa(c0)) are false. This is a subset of the

initial set of S6Ka hypotheses one would reject when performing

the S tests individually at level a. We bound the ‘excess of

significants’ S6Kc0 - ba(c0) +1 in the metatest by S6 Ka in the

definition of Na(c0) to exclude the p-values above a as potential

discoveries. This caution was not needed in the original

conception of SGoF which just sets c0 =a (so S6Kc0 - ba(c0)

+1,S6Ka in this case).

It has been shown [6] that the SGoF method controls for

FWER in the weak sense at the a level; however, the automatic

selection of c0 introduced by SGoF+ gives a FWER above the

nominal. This problem is avoided by adding a preliminary step to

compare the Kc0 - E(Kc0) with the critical value of the one-sided

Kolmogorov-Smirnov test at level a, ksa , so no effect is declared

when Kc0 - E(Kc0),ksa. By definition of c0, this correction (which

has been incorporated in the implementation of SGoF+)

guarantees a family wise error rate of 100a% (Figure S1). Note

that the one-sided Kolmogorov-Smirnov test is adequate because

it computes the supremum of the set of distances between the

theoretical (the uniform) and the empirical distribution function of

the p-values.

True positive versus false positive rate through different
percentage of effects

True positive rate (TPR) is expressed as the power or sensitivity,

i.e. proportion of true effects which were correctly identified. False

positive rate (FPR) is expressed as the fraction of false positives out

Significance in High-Throughput Experiments
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of the negatives i.e. one minus specificity, where specificity is the

proportion of nulls which were correctly identified. Plots of TPR

versus FPR are computed for different number of tests (S = 1,000

and 10,000), sample sizes n = 5, 10, 20, 100 and percentage of

effects. Specifically, the points in Figure 2 are computed as TPR

versus FPR for 1, 5, 10, 20, 40, 60 and 80% of tests having effects

(alternative hypothesis).

pFDR estimation (epFDR)
The proportion p0(l) of features that are null and the point l

from which the uniform distribution of p-values occurs are

estimated via four different methods.

1.- Smoothing. We fit a natural cubic spline to the data (lr,

p0(lr)), where lr, r = 1,...,R, is a grid of l-values and p0(lr) follows

formula (1) below, and we evaluate it at the point l= 1 to get the

p0 estimate [4]. The algorithm is that in Storey and Tibshirani [4]

except that the number of degrees of freedom is not limited to be

3. By default we use the grid lr = 0, 0.05, 0.1,…, 0.95.

2.- Bootstrap. We estimate the point l by minimizing the

mean-squared error of the estimated p0. This is attained via

bootstrapping the p-values. This is exactly the same procedure as

in Storey [14]. Once that l is estimated, the proportion of true

nulls p0 is computed as

p0 lð Þ~# piwlf g= S| 1:0{lð Þð Þ: ð1Þ

3.- LBE. The location based estimator (LBE) of p0 proposed

in Dalmasso et al [19]. A threshold l = 0.052 for the variance upper

bound of the estimator was assumed so that, m = 1 for 2#S,2000,

m = 2 for 2000#S,7500 and m = 3 for S$7500 where m are the

natural numbers corresponding to n in Dalmasso et al [19].

4.- SDPB. The method proposed in Meinshausen and Rice

[20]. Estimating the proportion L of false null hypotheses can be

achieved by bounding the maximal contribution of true nulls to

the empirical distribution function of p-values. We use the

standard deviation-proportional bounding function that has been

shown to have optimal properties among a large class of possible

bounding functions [20]. The proportion of true nulls is computed

as p0 = 1-L.

Once the proportion of true null hypotheses p0 is estimated by

any of the methods above, the estimated pFDR (epFDR) is

computed as

epFDR~ p0|S|pð Þ= C|# piƒpf gð Þ ð2Þ

where p is the p-value threshold of a given multitest correction and

C = 1- (1 - p)S. This is the robust pFDR estimation given in Storey

[11]. The standard, i.e. non-robust, pFDR estimation is attained

just by setting C = 1 in (2).

To compare the performance of the above pFDR estimations

we measure the difference between the estimated epFDR and the

observed pFDR. In the real data example section we have assigned

the different p0 estimates to intervals of length 0.05 in order to

compute p0 as the mode of the different estimates.

Simulations
To compare the efficiency of the proposed new SGoF+ metatest

jointly with the precision of the pFDR estimation methods, we

performed one sample two-tailed t-tests. As in previous work [6],

we implemented a modification of the procedure outlined in

Brown and Rusell [21] to perform the series of t tests.

For a given sample size n, we got a sample of n standard normal

deviates N(0,1) if there is no effect or N(x,1) if there is an effect of

size x. After that, we performed the t-test for the null hypothesis

that the sample belongs to a population with mean 0 and variance

1 which is true if there is no effect but false otherwise. The t-test

values were transformed to p-values via the incomplete beta

function [22]. In this work we focused in the case with weak

effects. That is, while the mean of the normal deviates generated

for the null hypothesis was 0, we chose the mean for the alternative

hypothesis so that the probability of a p-value less than 5% should

be 0.10 under asymptotic conditions. This means an effect of

x = 0.36 i.e. sampling from N(0.36,1).

We assayed different percentages (% effect = 1, 5, 10, 20, 40, 60

and 80%) for the alternative model being true with respect to the

total number S of tests. We generated the normal deviates under a

given, null or alternative, distribution, with sample size n = 5, 10,

20 or 100. Because we performed a two-tailed t-test with n -1

degrees of freedom, at the 5% significance level, there was a power

of 0.10, 0.18, 0.33 and 0.95 respectively, for the sample sizes

indicated above, when we tested versus the alternative with mean

0.36. These were, at each test, the probabilities for rejecting the

null being false i.e. detecting true effects. Each test case was

replicated 1000 times to obtain empirical standard deviations in

the estimates.

Supporting Information

Figure S1 Family Wise Error Rate (FWER) with differ-
ent number of tests.
(TIF)
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