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Proteins bind to other proteins efficiently and specifically to carry on many cell functions such as sig-
naling, activation, transport, enzymatic reactions, and more. To determine the geometry and strength
of binding of a protein pair, an energy function is required. An algorithm to design an optimal en-
ergy function, based on empirical data of protein complexes, is proposed and applied. Emphasis is
made on negative design in which incorrect geometries are presented to the algorithm that learns to
avoid them. For the docking problem the search for plausible geometries can be performed exhaus-
tively. The possible geometries of the complex are generated on a grid with the help of a fast Fourier
transform algorithm. A novel formulation of negative design makes it possible to investigate itera-
tively hundreds of millions of negative examples while monotonically improving the quality of the
potential. Experimental structures for 640 protein complexes are used to generate positive and nega-
tive examples for learning parameters. The algorithm designed in this work finds the correct binding
structure as the lowest energy minimum in 318 cases of the 640 examples. Further benchmarks on
independent sets confirm the significant capacity of the scoring function to recognize correct modes
of interactions. © 2011 American Institute of Physics. [doi:10.1063/1.3615722]

INTRODUCTION

Protein-protein interactions and their associated struc-
tures are of fundamental importance in cellular biology. These
interactions are used for signaling, creating biochemically ac-
tive complexes, inhibit enzymes, and more.1, 2 In many cases
they are also constantly dynamic. They form, dissociate and
rebind as required by cell functions. Modeling complex for-
mation is therefore particularly challenging, and requires in
many cases accurate prediction of weak physical forces and
marginal binding.

In the present paper we focus on the prediction of the
correct geometry of a protein pair that is known to bind. For
the task at hand, the prediction of the absolute binding en-
ergy is less critical and we focus instead on ranking. We de-
termine the complex geometry that will have the lowest (free)
energy compared to all other docking alternatives. This geom-
etry should be in agreement with experiment. The mesoscopic
size of proteins and their complexes, and their rough energy
landscape make the prediction of the geometry of the com-
plexes challenging.

We differentiate between two cases: (i) bound and (ii) un-
bound docking. In bound docking we consider a complex of
two protein chains with a known structure. We separate the
complex to two chains and attempt to re-assemble them. Since
the two chains are taken directly from the complex there ex-
ists at least a single docked complex in which the fitted geom-
etry is excellent. The second case of (ii) unbound docking is
more complicated. We are given the structures of the two iso-
lated chains and are told that these proteins form a complex.

a)Author to whom correspondence should be addressed. Electronic mail:
ron@ices.utexas.edu.

However, the structures at hand are approximate. The atomic
positions, taken from the experimental structures of the sep-
arated chains (or homologous structures), are not necessarily
the same as in the complex. Side chain geometries and ter-
tiary conformations adjust during complex formation and can
cause significant deviation from the initial structure. There-
fore bound docking (case (i)) for which rigid modeling of the
individual chains is exact is considered easier than unbound
docking (case (ii)).

In actual applications we do not have the structure of the
complex (if we had it, we did not have to predict it) and only
unbound docking is relevant. Bound docking is used to as-
sess new algorithms and learn energy parameters by present-
ing to a program cases that carry unusually strong signals. For
an algorithm to be successful it must (as a minimum) solve
these easy cases. Despite the significant differences in diffi-
culty, docking of type (ii) is handled in a similar way to case
(i). We dock rigid models of the proteins, allowing for larger
errors during the process for unbound docking, with the hope
that the differences between the bound and the unbound struc-
tures are not so large as to diminish the signal completely.
Adjustments of complexes of type (ii) to more relaxed and
chemically sound structures are done for a small number of
candidates identified earlier.

Both bound and unbound docking require two separate
computational tasks: (a) search for plausible docked con-
formations and (b) assessment of alternative complexes and
ranking. It is useful to compare these two tasks to another
problem in structural biology, the problem of protein structure
prediction. Docking (determination of protein complexes) is
simpler since the number of the degrees of freedom is much
smaller. It can be as small as six for three rotations and three
translations if the structures of the individual protein chains
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are assumed rigid. In our searches, which are exhaustive, we
examine a million translations and 54 000 rotations. The total
number of complexes we examine is therefore on the order of
1010. This not-so-small set is a uniform sampling of docking
space. Exhaustive sampling is unlikely in the general protein-
folding problem. In protein folding, the number of conforma-
tions is exponentially large in the protein length L – zL where
z is a number of order 10 and L ∼ 100. As a result exhaustive
search is not feasible for folding and conformational sampling
is made stochastically and heuristically which reflects on the
design of appropriate energy functions. In contrast, the option
of a comprehensive search of docked conformations makes it
possible to solve optimally potential parameters for the learnt
set in docking that minimizes the error in docking calcula-
tions. Even if the problem is infeasible and there is no set of
parameters that recognizes all the correctly docked conforma-
tions, it is possible to find a parameter set that minimizes the
extent of mispredictions.

In contrast to protein folding, rigid docking has only six
dimensions (the relative translations and rotations of one rigid
protein with respect to the second protein). The smaller di-
mensionality makes exact enumeration of discrete space pos-
sible. In Appendix A we analyze the errors of a discrete space
representation and illustrate that they are bounded, and pro-
vide practical grid spacing. Based on the analysis presented in
Appendix A, and for a pair of proteins with radii of about
40 Å we estimate a translational grid spacing of 1.6 Å and
68 760 rotations. This estimate provides ∼1010 alternative
docked conformations.

In the present paper we do not introduce a new sampling
algorithm for docking and use instead approaches that were
employed successfully in the past. These techniques are based
on fast Fourier transforms (FFT) (Refs. 3, 11, 26–29, and 34)
of translational space and grid based searches of rotational
space. The contribution of the present paper is in the calcula-
tion of the energy. This brings us to the second step of deter-
mining a scoring function.

Besides exhaustive search of conformations, we also
need to score (or compute the energies of) the structures of
the complexes or folds. Obviously an exact energy surface
for solvated proteins should work for both folding and dock-
ing. Physically, however, while protein folding emphasizes
hydrophobicity, docking may include more subtle polar in-
teractions. The use of different potentials for each case allows
emphasizing physical interactions that better fit the problem
we study. Hence, it makes sense to design an energy func-
tion specifically tailored to docking, as is done in the present
paper.

While the sampling of conformational space is signifi-
cantly easier in docking compared to folding, the design of
energy functions for docking and folding is comparable in
complexity. There are a number of reasons for the additional
complexity of energy design for protein-protein interactions:
First, the energies of complex formation are small and are
sometimes as low as a few kT – the thermal energy. The de-
mands from ab initio or physics-based energies are therefore
very high. Physics-based energies are usually not accurate
enough in separating wrong and correct structures in protein
folding calculations. Reproducing smaller energy difference

in docking is even more difficult. Note that free energy dif-
ferences, including changes in solvent reorganization, are re-
quired for this estimate. Hence, not only the accuracy is in-
sufficient but also the significant computational cost forbids
large scale examination of docked alternatives. Due to compu-
tational costs most estimates of solvation effects are implicit
and approximate (such as the GBSA model of solvation4).

Second, not only the overall binding energy but also the
number of individual pair interactions in protein complexes is
small compared to the number of interactions of folded pro-
teins. The stability of complexes, supported by only a few
contacts, is marginal and leaves little room for errors (a con-
tact is set between two residues or atoms if the distance be-
tween the two objects is smaller than a critical value).

Third, the statistics of empirical complexes is rather
poor. This observation has important consequences for ma-
chine learning approaches to potential design. Determining
parameters of energies learned directly from the structures
of the complexes, the so-called knowledge-based potentials,
depends on the availability of ample empirical data. In pro-
tein folding a large number of correct folds is available (about
∼72 000 in the Protein Data Bank (PDB) (Ref. 5)). Each of
these folds contributes (in principle) residue-residue contacts
to the statistics. In our fold database6 we have about ∼18 K
independent structures. The statistics for protein complexes is
significantly smaller. There are less than 1000 structures of in-
dependent protein-protein complexes in the PDB and each of
these complexes has fewer contacts at the interface compared
to a typical number of contacts in folded proteins. Smaller
statistics of correct complexes make estimate of parameters
for knowledge-based potential more difficult.

One of the more popular models of deriving knowledge-
based potentials for protein folding is the log-odd ratio or
a statistical potential.7, 8 In this design the structures of the
proteins are examined and probability densities for contacts
are computed. The energy of interaction is given by a sum
of pair interactions U = ∑

i>j Wα(i),β(j )(rij ). The indices i, j

denote positions of the amino acids (or other particles) along
the chain, and α, β are the indices of particle types. If the ge-
ometric center of an amino acid side chain type α is rg , the
potential of mean force between a pair of amino acids is esti-
mated as

Wαβ(rαβ) = − log

[
Pαβ(rαβ)

Pαβ,ref (rαβ)

]
rαβ = |rαg − rβg|,

where P (rαβ) is the probability of observing a distance, rαβ ,
between the two amino acid types α and β, anywhere in the
learned set. Pαβ,ref (rαβ) is a reference distribution of a model
expected by chance. For example, it can be a product of proba-
bilities: The probability for a distance between any two amino
acids times the probabilities of observing amino acid α and β,
i.e., Pαβ,ref (rαβ) ≈ PαPβP (r) .

This simple model and method, learning from known
structures of proteins, was proven very effective in study-
ing protein structures and is at the core of many successful
protein-folding programs.9, 10 However, direct applications of
statistical potentials “as are” to docking is limited due to the
small statistics available as we also illustrate in the present pa-
per. Some programs for docking are using a combination of
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physical interactions (e.g., electrostatic, exposed surface area)
and statistical potentials.11 Here we re-emphasize the learn-
ing from negative examples. Negative examples are not used
in learning statistical potentials and are particularly promis-
ing in docking, in which exhaustive enumeration of all false
complexes is made.

General consideration for design of docking potential
with mathematical programming

For the purpose of separating correct from incorrect
structures we consider the approach of linear and quadratic
programming. In linear programming one learns from both
positive and negative examples by requiring that the follow-
ing inequalities are satisfied:

U (Xd ; P ) − U (Xn; P ) > 0 ∀n, d, (1)

where U is the potential energy, Xn and Xd are the coordi-
nate vector of the correct (native) and decoy structures, re-
spectively, and P is a vector of potential parameters. The
energy depends linearly on the parameters P , which are the
unknowns we wish to determine. Equation (1) is therefore re-
written as ∑

α

pα[fα(Xd ) − fα(Xn)] > 0. (2)

The α summation is over the parameters, and the func-
tions fα (X) depend only on geometrical variables, for exam-
ple, the distance between two amino acids. The linear depen-
dence is not a theoretical limitation since any potential can
be expanded in a basis set with linear coefficients to be de-
termined. However, in practice the choice of the expansion
can impact the flexibility and reliability of the results, and is
discussed further in the paper.

Docking one pair of proteins generates about 1010 can-
didates. Therefore consideration of the complexes available
in the PDB (∼600) requires the solution of ∼1013 inequal-
ities. This fantastically large number suggests that the avail-
able statistics for learning a potential in this case is significant.
There are, however, a number of technical problems that we
need to address. We provide below a verbal description of the
challenges. This is to help follow the more detailed mathe-
matical formulation of the following sections.

The first challenge in solving the linear programming
problem we just formulated is the problem of infeasibility.
The number of potential parameters that we determined for
the set is in the hundreds and is obviously much smaller than
the number of inequalities. While it is not impossible that a set
of parameters exists that satisfies exactly the 1013 inequalities,
it is not likely. The set of functions, fα (X), that we use for
the potential is not exact and the optimization of parameters
is limited by the flexibility of the functional form. Vendrus-
colo and Domany12 have shown that there are no parameters
of a contact potential that ranks correctly decoy and native
structures of a selected protein. Tobi et al.13, 14 pushed this ar-
gument further to demonstrate that a general parameterization
of a pair potential as a function of distance is also insufficient.
Their sets were much smaller than the set of 1013 inequali-

ties we consider here, while the Tobi’s potential14 was more
flexible than the current choice.

We therefore expect (as is indeed the case) that a straight-
forward application of a linear programming approach to the
problem at hand will detect infeasibilities, i.e., we find that
there is no set of parameters that satisfies all the inequalities at
hand. How should we deal with such an imperfect potential?
One solution is to come up with a more flexible functional
form for which a desired set of parameters could be found.
This is, however, not always possible. We must keep in mind
that the structures we usually employ are approximate. It may
be the case that an energy function that scores the nearest to
native approximations as the best models, simply does not ex-
ist. Hence, the current learning of a potential is of learning
with noise. If we try too hard to learn an energy function by
adding a large number of parameters we may end up learning
the noise and not the molecular data. How can we determine
if the potential is the best for the current (approximate) func-
tional form?

In machine learning it is a common practice to test mod-
els learned from data with noise on independent test sets to
check the transferability and generality of the designed score.
Hence while learning data with noise we are willing to accept
some inaccuracies to retain simple-to-use functional form that
is generalizable to other sets. The adjusted goal of optimizing
with noise is reflected in a new set of inequalities and an opti-
mization of a target function together with the solution of the
inequalities,

U (Xd ; P ) − U (Xn; P )>1− ηnd

�nd

ηn,d ,�n,d ≥ 0 ∀n, d

(P, η) = argmin

(
|P |2 + C

∑
ηn,d

)
(3)

The slack variables ηn,d measure the degree of inequal-
ity violations and their sum is minimized in formulation (3).
Note that formulation (3) is not exactly what we had in mind.
The prime goal is to optimize the ranking, making the cor-
rect structure lower in energy than any other decoy structure.
The above formulation minimizes the differences in energy,
or the energy gap, not the ranking. It is possible that a solu-
tion in which many wrong structures are only slightly lower
in energy than a correct structure will be preferred to a solu-
tion in which only one structure scores better than the native
by a wide margin. It turns out that optimizing the ranking di-
rectly is harder. We therefore stay with optimization of the
sum of the slack variables. The scaling of the slack variables
with a distance measure discussed below helps remove high-
scoring decoys with significant distance from the correct as-
sembly (penalty is higher for larger mistakes).

The distance measure, �n.d , is introduced to bias the en-
ergy landscape towards a funnel.15 We penalize violations less
if the structures are reasonably similar. The penalty increases
for structures far from the native that have energy lower than
the correct structure. In docking, a common distance measure
between the model and the correct structure of the complex
is the interface root mean square difference (“i-RMSD”) af-
ter optimal overlaps of the residues at the interface). We will
use the i-RMSD for �n.d in the present paper; however, this



065102-4 D. V. S. Ravikant and R. Elber J. Chem. Phys. 135, 065102 (2011)

choice is clearly not unique. Finally the “1” in the above for-
mulation set a scale for the potential parameters that are scale-
free in Eq. (1). The coefficient C determines the penalty for
violation.

Equation (3) addresses the infeasibility problem. We note
that Eq. (3) is known in the field of quadratic programming
and is used widely in machine learning. It is most popular
nowadays in the form of support vector machine (SVM),16

which is used for classification and more recently in ranking.
Support vector machine was introduced as a method for bi-
nary classification—to learn a linear separator to differentiate
between two classes. The framework argues that maximizing
the margin between the plane and its closest points leads to
good generalization. In the present paper we built on recent
results in structural SVM (Refs. 17 and 18) but our learn-
ing algorithm has useful additional twists appropriate for the
docking problem.

The second challenge of our plan to solve 1013 inequal-
ities is computational. Solving all the inequalities directly
is not possible today even with the most advanced comput-
ing technologies. We have spent considerable time to ex-
tend interior point code19 to our purposes. Indeed paralleliza-
tion and exploitation of the special structure of the problem
(relatively small number of parameters and huge number of
inequalities)20 increase the number of constraints that we can
address in one run by more than two orders of magnitude. In
the present paper we exploit clustering to make the calcula-
tions more efficient and accurate. The asymmetry of the num-
ber of inequalities, N, versus the number of parameters, L,
is particularly worth exploiting within the primal-dual repre-
sentation of linear and quadratic programming problems (see
Appendix C and Ref. 20). The linear system solved during
the process of determining an optimizing step can be made as
small as LxL (rather than NxN), which is clearly advantageous
for our problem. The formation of the matrix involved though
is expensive but can be done in a data parallel fashion even
when constraints are grouped based on clusters.

However, even with these enhancements we are not able
to solve more than ∼108 inequalities, which is still a smaller
number than 1013. It means that a solution of the complete
convex programming problem must be made with a selected
part of the inequalities. In the past we sampled heuristically
subsets of inequalities by considering the first few millions of
constraints.13, 14, 21, 22 This was also the approach taken in our
first design of a docking potential reported in Ref. 21. While it
is an appealing choice, it is not obvious that the sampled con-
straints are the needed set. For example, it is possible that we
over sample constraints of one parameter while leaving other
parameters ill determined. Rather than picking inequalities
heuristically and risking missing important constraints on pa-
rameter values it is desirable to have a rigorous approach that
allows for a systematic selection of a subset of inequalities.
The selection is expected to provide error estimates and pro-
vides systematic means of improving the selection of a subset
of inequalities.

Structural SVM (Ref. 17) was proposed as a method for
learning sequence alignments18, 23 in which inequalities are it-
eratively and systematically selected and added to the set of
inequalities to be solved (Eq. (3)). The authors used quadratic

programming as the optimization method and showed that the
procedure converged in linear number of steps in the num-
ber of examples. However, structural SVM is based on using
one slack variable for all decoys associated with the same
native data point (correct alignment). As argued in section
“Learning with clustering,” this choice is not ideal for the
docking problem since some violated pairs are over penal-
ized. In the present paper we suggest another way of selecting
slack variables and inequalities. The new selection addresses
this issue while preserving the attractive and formal features
of structural SVM. Even in this case, we obtain an iterative
procedure of determining the inequalities to solve. The itera-
tions are guaranteed to improve the quality of the solution of
Eq. (3).

The new approach for the selection of inequalities, ex-
ploits the low dimensionality of the problem (only six dimen-
sions). The large number of decoy structures that we generate
includes complexes that are quite similar to each other. Simi-
lar decoys yield inequalities that are not significantly different
and contain little new information. Furthermore, particular vi-
olations are oversampled. Since we do not use all inequalities,
oversampling of some constraints may cause other important
constraints to be missed. Hence clustering allows more uni-
form sampling. We assign a single slack variable to a cluster
of decoys.

The paper is organized as follows. We consider first the
functional form of the energy that we choose to optimize.
Second, we describe the grid that we employ to represent the
space of docking configurations. Third, we discuss the algo-
rithm to determine the potential parameters. Finally, we con-
sider examples and benchmarks.

FUNCTIONAL FORM FOR DOCKING ENERGY

The energy function depends on the translation and rota-
tion (or transformation) of one protein chain (L ligand) with
respect to the other chain (R receptor). We denote a transfor-
mation by τ (τ = (t, u) where t and u are the translation and
rotation of the ligand, respectively), and τ (rj ) are the trans-
formed coordinates of particle j,

U (τ ) = Uattr (τ ) + prepul · Urepul(τ )

+
∑

i,j (i≤j )

pα(i,j )nij (rij ) rij = |ri − τ (rj )|, (4)

where U (τ ) is the total energy of the complex, as created with
the transformation τ . Uattr (τ ) and Urepul (τ ) are attractive and
repulsive components of the energy. The last term is a sum-
mation over interactions of pairs of amino acids. nij (rij ) is
a function of the distance between particles placed at differ-
ent protein chains. Following Tobi and Bahar,24 we use 20
side chain centers of mass (cntd),the backbone carbonyl oxy-
gen, and amide groups (bkbn) as different particle types. The
parameter prepul determines the strength of the overall repul-
sion. The coefficient pα(i,j ) determines the strength of the in-
teraction type α of particles (i, j ). We provide below the ex-
plicit functional form of these sub-energies.
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Residue and backbone contact potential

Most knowledge-based potentials in the protein folding
field employ contact potentials11, 25 (residue or otherwise)
which are Ucontact (τ ) = ∑NR,NL

i,j=1 pα(i,j )nij (rij ) where pα(i,j ) is

the score for contact type α and nij (rij ) = {1 rij ≤ Rc

0 rij > Rc

}
(a step

function) defines a contact. The total number of particles of
the first protein (receptor) is NR and the second (ligand) is NL.
The total energy is therefore a sum of weighted step functions.
For a continuous description of the contact as a function of
distance, we use a linear interpolation function h(r) in place
of n(r) where

h(r) =

⎧⎪⎪⎨
⎪⎪⎩

1 r ≤ Rmin

Rmax−r

Rmax−Rmin
Rmin < r ≤ Rmax

0 r > Rmax

⎫⎪⎪⎬
⎪⎪⎭ . (5)

This function interpolates continuously from zero to one,
using two distances Rmin and Rmax with a range determined as

Rmin =
⎧⎨
⎩

6 Å cntd, cntd
5 Å cntd, bkbn
4 Å bkbn, bkbn

Rmax =
⎧⎨
⎩

8 Å cntd, cntd
7 Å cntd, bkbn
5 Å bkbn, bkbn

.

(6)

For efficient calculations of the energy it is convenient to
define a receptor grid. If a grid is available the calculation of
the energy is proportional to the number of particles.

Receptor grid

The function representing the potential experienced by a
particle type q due to the particles of the receptor is defined
as

Rq(j )(l, m, n) =
NR∑
i=1

pq(i)q(j )h(ri,(l,m,n)), (7)

where ri,(l,m,n) is the distance from particle i and the corner
of the cell (l, m, n) with smallest coordinates (least l, m, n).
The receptor grid Rj provides a discretization of potential
experienced by a particle j of type q(j ). For the calcula-
tion of the grid it is convenient to consider a single parti-
cle type (q(j )) instead of a contact type α(i, j ) as in Eq.
(4). The receptor is placed in a rectangular box that is par-
titioned into cubic cells of side length g. Consider a point
r contained in cell (l, m, n); the value of potential experi-
enced by particle of type j can be approximated by the value
at the center of the cell (l, m, n). More accurate, however,
would be an interpolation of the potential within the cell, and
we use a trilinear interpolation. Consider a point r in cell
(l, m, n). The integers (l, m, n) are defined as the largest inte-
gers that are less or equal the Cartesian component of r , that is
(l = �rx/g�, m = �ry/g� and n = �rz/g�). The displacement
of the point with respect to the lattice (grid) point (l, m, n) is
given by

x = rx

g
− l, y = ry

g
− m, z = rz

g
− n.

Let χαβγ (r) = (xδα,0 + (1 − x)δα,1)(yδβ,0 + (1
− y)δβ,1)(zδγ,0 + (1 − z)δγ,1) (δ is the Kronecker delta). The
potential for a particle of type q at r is approximated as a
linear combination of the potential on the eight corners of the
grid cube containing r . The function χαβγ is the weight for
the contribution of the potential R at the corner αβγ of the
cube,


q(r) =
∑

α, β, γ∈{0, 1}
χαβγ (r)Rq(l + α, m + β, n + γ ),

(8)
which is essentially a linear interpolation between corners
and edges of the box. The ligand grid Lq provides occu-
pancies of particles of type q. It is defined as Lq(l, m, n)
= ∑

α,β,γ∈{0,1}
∑

j∈(l−α,m−β,n−γ ) χαβγ (r (j )) where j is a par-
ticle of type q with position r (j ) in cell (l − α,m − β, n − γ ).

Vdw attraction and repulsion

Shape complementarity is an important determi-
nant of protein-protein docking. FFT-based docking
algorithms11, 26–29 define shells of various sizes around
the surface of each protein and discretize them on a grid. For
a translation and rotation the overlap between the translated
and rotated shells of the ligand and the shells of the receptor
are computed and the shape complementarity is quantified as
a linear combination of these overlaps.

The total interface vdw energy of a complex when
the proteins are docked according to transformation τ is
Eexact

vdw (τ ) = ∑NR,NL

i=1,j=1 Vij (rij ) where rij = |ri − τ (rj )| and
Vij (rij ) = 4Dij (σ 12

ij /r12
ij − σ 6

ij /r
6
ij ). The indices i, j are run-

ning over the particles of the receptor and the ligand, re-
spectively, and NR,NL are the number of particles of the
two proteins in the complex. We use the OPLS force field—
Optimized Potentials for Liquid Simulations is a standard
force field for modeling proteins derived by optimizing fitness
for gas phase and liquid phase properties of water, capped
amino-acids and small peptides.30 The energy and the con-
tact distance factorize to single particle properties as: Dij

= √
DiiDjj ≡ √

DiDj and σij = √
σiiσjj ≡ √

σiσj . We use
an approximation

Evdw(τ ) = −4
NL∑
j=1

√
Dj

σ 3
j

3.23

(
NR∑
i=1

√
Diφ

(
rij√
3.2σi

))
where

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p
repul

× (0.8 − x), x ≤ 0.8

0.5 × (x − 0.8), 0.8 < x ≤ 1.1

0.15, 1.1 < x ≤ 1.32

0.15 × (1.8 − x)/0.48, 1.32 < x ≤ 1.8

0, x > 1.8
(9)

We adopt this approximation because it is convenient to
handle using FFTs and it resembles 6–12 intermolecular po-
tentials (comparison provided in Fig. 1).
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FIG. 1. The relation of vdw approximation function to the Lennard-Jones
6/12 potential (dotted line), wvdw_repul was set to −9.

The receptor and ligand grids are defined as

Rvdw(l, m, n) =
∑

pi∈(l,m,n)

√
Dif

(
ri,(l,m,n)√

3.2σi

)

where f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√−1prepul × (0.8 − x) x ≤ 0.8

0.5 × (x − 0.8) 0.8 < x ≤ 1.1

0.15 1.1 < x ≤ 1.32

0.15 × (1.8 − x)/0.48 1.32 < x ≤ 1.8

0 x > 1.8

,

(10)

Lvdw(l, m, n) = 4
∑

α,β,γ∈{0,1}

∑
k∈(l−α,m−β,n−γ )

√
Dj

σ 3
j

3.23
χαβγ (r (k)).

Note that the grid Rvdw(l, m, n) has complex values. The
imaginary component of the calculation stores the repulsion
due to overlap. Note the change in sign, in our formulation
higher scores are better.

With the energy terms in place we discuss the algorithm
to generate alternate docked conformations. The inputs for the
algorithm are the coordinates of the receptor and the ligand. In
the sketched algorithm below we allow for (only) rigid body
transformations to be performed, but even with this restriction
the number of conformations is ∼1010. Rather than saving all
transformations, we calculate the energies of the complexes
on-the-fly and store only top 
 candidates.

In the present paper we do not consider the process of
final selection and refinement. Refinement is the adjustment
of the unbound conformations to remove sterically unaccept-
able shapes of complexes and bring the final structures closer
to the true bound form. We comment that the algorithm as
described is not new and was used in docking experiments
elsewhere.11, 25–29, 34 We provide it for completeness since the
search is strongly coupled to the learning process and to our
concrete choice of energy functions. For the algorithm to
function efficiently, every energy term must be presented as
a product or a convolution.

The use of grid representation for molecular positions
and interaction energies is common to the field. In some cases
energies are defined directly on the grid and are discontin-
uous. It is not obvious if discontinuous energy functions are
mapped correctly from the grid to the continuous space, as the
grid size is made smaller. Such mapping is important since by
the end of the day we wish to determine docked conforma-
tions in continuous space and score these conformations with
energies appropriate for that space. In Appendix A we ana-
lyze the errors of our implementation of the different energy
terms and demonstrate that in our case the functions go to the
correct limit.

ALGORITHM TO DETERMINE OPTIMAL POTENTIAL
PARAMETERS

We are not the first group to propose a docking energy
function. Below we review some of the leading potentials
and algorithms and discuss them in the context of the present
study. An important docking program is ZDOCK.11 ZDOCK
uses an atomic contact energy (ACE)—a statistical potential36

derived with a random crystal structure as the reference state
(atom pairs were randomly exchanged in the crystal structure
to obtain the reference state) that explained protein solvation
energies very well. While the ability of transferring poten-
tial parameters between fields is impressive and important,
one may expect that a potential designed specifically for the
protein-docking problem will be better at that specific task.

Another statistical potential (atomic) derived from de-
coys obtained from docking algorithm as the reference state is
employed in PIPER.35, 37 Perhaps the most challenging prob-
lem in the design of statistical potentials is the definition
of the reference state. The reference state represents hits by
chance or predictions that are false. PIPER uses decoys as
reference state but assumes that the distribution of pairwise
contacts are independent of each other. Distribution of con-
tacts is highly dependent during hydrophobic collapse. The
convex programming approach, which we advocate here, im-
plicitly generates a reference state by considering explicitly
pairs of false and positive predictions. No independence as-
sumptions are made in the generation of the reference state.
The disadvantage of the convex programming approach is that
typically the statistics of false positive is expensive to gener-
ate and in many cases it is too poor to get an accurate grasp
on the overall shape of the false positive distribution. On the
other hand, sampling directly from the false positive distribu-
tion has the advantage that no ad hoc assumptions are made
while proposing a reference state. The difficult task of choos-
ing a functional form for the reference distribution is avoided.

Self-consistent iterative procedures that circumvent the
choice of a reference state in deriving statistical contact po-
tentials were proposed38 and applied to the design of scor-
ing functions for protein-protein docking.39 The method is
restricted to the class of contact potentials and is based on
separating the near-native from the average incorrect struc-
ture. Again, the statistics of the average incorrect structure is
not too difficult to obtain. However, the direct comparison of
pairs of false and true predictions provides richer information.
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Algorithm for docking

1: Input: receptor, ligand, tolerated error in energy (ε), and minimum number of transformations to retain (
). The tolerated error in energy is how far the best
solution found by the discrete space search deviate from the optimal solution in continuous space. In the training and testing we used 
 = 219 = 524 388.

2: Find radius of each protein and determine the density of rotational sampling and grid spacing to be used such that the error can be bounded by ε (see
Appendix A).

3: Compute grids Rvdw and ∀j∈{1,...,22}Rj on the receptor protein and their inverse Fourier transforms: IFT (Rvdw) and IFT (Rj )∀j ∈ {1, . . . , 22}
4: Initiate the set of conformations selected (�) to empty set.

5: Let uα be a rotation matrix in discrete grid on the space of all rotations SU3. Begin loop on uα

5.1 compute grids Lvdw and ∀j∈{1,...,22}Lj on the ligand-protein rotated according to uα and their Fourier transforms

5.2 compute scores for all translations (�α) involving current rotation α using the convolution theorem (all functions below carry the index α to denote
the current rotation), Evdw

α = 1
NxNyNz

IFT {FFT {Lvdw}IFT {Rvdw}}, (Nx, Ny, Nz are the dimensions of the grid used)

E
particle_pair
α = 1

NxNyNz
IFT {∑22

j=1 FFT {Lj }IFT {Rj }} and Eα = Re{Evdw
α } + Im{Evdw

α } + Re{Eparticle_pair
α }.

5.3 Consider the set of conformations and their energies just discovered (�α, Eα) and the set of the other conformations (other rotations) that were
already explored (�, E). In this step we merge the two sets. We sort both sets in decreasing order of score and retain transformations that are within top 


(their energies are the lowest) or have a score within ε from the best solution. (�, E) is updated.

6: End loop

7: Output: (�,E)

We designed parameters for scoring docked confor-
mations in our earlier work.21 In that work an extensive
set of 2-chain complexes (462 bound-bound, 123 bound-
unbound, and 55 unbound-unbound cases) was derived from
the PDB.5 In that work we did not perform exhaustive sam-
pling of all docked conformations, but instead use Patch-
dock to sample nativelike and incorrect transformations for
each case. We then derive parameters pα by minimizing the
slack variables

∑
ij,ik ηij,ik similar to Eqs. (2) and (3) such

that∑
α

pα[fα,ij − fα,jk] > 1 − ηij,ik and ηij,ik > 0∀ij, ik,

(11)

where fα, ij is a vector of interface properties of the j th cor-
rectly docked structure for complex i and fα,ik is the inter-
face property vector of the kth mis-docked structure for com-
plex i. The results of the parameter optimization, using struc-
tures sampled by Patchdock, may have been program depen-
dent and not appropriate for other sampling techniques. No
exhaustive enumeration of all possible translations and rota-
tions was performed. The potential derived there compared
favorably against other docking energies21 using Patchdock
and Zdock generated structural sets. It is only when we tried
to use that potential for exhaustive sampling that we found out
that our original potential also generates significant number of
false positives.

In this work we derive parameters that ensure selection
of nativelike structures from all possible transformations. If
one follows the linear programming formulation, one is faced
with enormous number of constraints – the number of pos-
sible transformations for a pair of proteins when transforma-
tions are sampled on a cubic grid discretized into 100 intervals
in each dimension and when around 54 000 rotations are used

(the number of rotations required to sample SU3 at 6◦) is 54
× 109; the total number of constraints would be 36 trillion,
the resultant linear program cannot be solved in practice. The
number of inequalities is simply too large to load directly to
linear programming solvers.20

A solution is possible by sampling a subset of the in-
equalities. In principle many inequalities do not provide new
information (e.g., of the inequalities a > 5 and a > 3 it is
sufficient to keep only the first inequality a > 5). While the
problem at hand is usually more complex it is still expected
that a smaller number of inequalities of the total possible will
be sufficient to obtain a satisfactory solution. In the past we
have sampled heuristically 
 inequalities (
 is much smaller
than the total number of inequalities possible) and still we
were able to find high quality solutions.13, 14, 21 The inequali-
ties chosen were the ones least satisfied.

This choice is intuitively appealing, however, it is not pre-
cise. A potential problem might be that many of the selected
inequalities do not provide additional information. Sampling
more of (almost) the same inequalities does not add signifi-
cant new information. For a fixed total number of inequalities
that we can consider this procedure may miss important con-
straints and some parameters may be left ill determined. It is
therefore desired to have a more systematic way of choosing
inequalities, perhaps using iterations if they are guaranteed to
improve the solution.

Joachims et al.18 and Tsochantaridis et al.17 provide a
quadratic programming formulation for these classes of learn-
ing problems and demonstrate an iterative scheme that solve
these quadratic programs efficiently. The algorithm is based
on iteratively adding selected violated constraints that ensure
that the optimal parameters are found in number of iterations
that is linear in the number of complexes. The optimization
problem to be solved in their framework (quadratic program-
ming: structural SVM) for learning docking potentials is
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QP (STR_SVM)

(P ∗, η∗) = arg min

[
1

2
P tP + C

n

∑
i

ηi

]
P,η

such that

∑
α

pα[fα(τ ) − fα(τi)] ≥ 1 − ηi

� (τi, τ )

ηi ≥ 0 ∀i, τ, τi τi �= τ (12)

n is the number of complexes in the training set, τ is a
rigid body transformation,τi is the transformation for cor-
rectly docked structure of complex i, and fα(τ ) is the α el-
ement of a vector of interface properties of transformation τ .
The elements of the parameter vector P are the pα . The func-
tion �(τi, τ ) is the i-RMSD between structures generated by
the transformations τ and τi . The i-RMSD (or other dissim-
ilarity measures of the interfaces that we could have chosen)
helps shape the potential like a funnel. As the complex is get-
ting closer to the correctly docked conformation the penalty
for mis-ranking becomes smaller. It imposes larger penalty
if the interfaces in the complexes (decoy and native) are less
similar to each other, creating an energy landscape with a fun-
nel structure. (x∗∗

) = argmin[f (x)] is a notation to indicate x∗

minimizes the value of the function f (x).
The formulation with a single slack variable per com-

plex belongs to the algorithm category SV M�s
1 (Sec. 2.2.3

of Tsochantaridis et al.17). The algorithm proposed there can
be directly used to solve the problem and it provably con-
verges. The efficiency of algorithms in the structural SVM
framework17 comes from the intelligent formulation involv-
ing only a single slack variable per instance of observed
sequence-structure pair (there is only one slack variable ηi

per complex). This formulation has a serious limitation in our
case –ηi reflects the maximum difference between the score of
the optimal mapping (τ ∗) according to current set of param-
eters (pα) and the observed output (τi); that is,

∑
α pαfα(τ ∗)

≥ ∑
α pαfα(τi) + 1 − ηi

�min
. This means that the score of the

native transformation is within ηi

�min
from the optimal solution.

This measure is not an indicator of how many mispredictions
would result from a docking algorithm based on the param-
eter set P (see illustration in Fig. 2). The reason is that all
violations for a particular complex are going to be penalized
according to the worst-case scenario while no information is
provided on the extent of violations of the rest of the inequal-

−

−

−

+ −

−

−

− w

penalty

−

−

−

+ −

−

−

− w

penalty

−

−

−

−
−

−

III

FIG. 2. The problem of learning to dock is approached as learning a linear
separator w(represented by the line here) that scores the native transforma-
tion (+) above all possible transformations (−). In formulation QPstruct_svm

same penalty is paid in both cases while case 2 has many false positives.

ities. There can be many violations that are close to the na-
tive and therefore over-penalized. For example, we find in our
learning of parameters that many inequalities do not satisfy
the gap criterion (their difference is smaller than one) but have
scores worse that the score of the correct complex. Hence, the
recognition is actually better than one may expect from the
number of violations.

It would be nice to minimize the false positive rate (the
number of misclassified complexes) rather than empirical risk
which is the sum of the slack variables, or extent of viola-
tion, but minimizing false positive rate is NP-hard (the com-
putational cost grows exponentially with the number of com-
plexes) even when all constraints are explicitly listed (this is
a simple corollary of the construction employed by Hoffgen
et al.40 to show that finding a separating plane with minimum
misprediction rate is NP-hard).

Building on results in linear programming approach20 for
learning protein threading potentials, we propose a quadratic
programming approach for sum-slack minimization. In place
of counting number of false positives, we penalize a false pos-
itive by the extent to which it scores above the native,

QP (extent_misprediction)

(P ∗, η∗) = arg min
P,η

⎡
⎣1

2
P tP + C

n

∑
i,j

ηij

⎤
⎦ such that

∑
α

pα[fα(τij ) − fα(τi)] ≥ 1 − ηij

�(τi, τij )
ηij ≥ 0

∀i, j, τij , τi τi �= τij (13)

The above representation is more flexible than the
method of structural SVM, better measures the extent of vi-
olations for a particular complex, and is therefore likely to
produce better potential parameters. The main assumption is
that the noise level is low, since if it is high the sum of the
slack variables will be higher (there are now a lot more slack
variables) and the noise will bias the minimization.

Furthermore, if some generated decoy structures are
highly similar (and so are the inequalities) we would end
up over penalizing for the same mistake (by adding similar
inequalities we repeatedly add similar slack variables to the
function to be optimized). To address both of these concerns
we introduced the idea of clustering to assist in selection and
weighting of inequalities. Clustering of solutions is implicit
in structure prediction tasks, so similar false positives should
not be penalized multiple times. A natural way of clustering is
to choose ε-balls in a metric � on the output space (the space
of all translations and rotations – SE3). Complexes that fall
within a single ε-ball are collected to one cluster. One would
like to have a penalty per mispredicted cluster. The goal is to
derive parameters P such that an exhaustive search algorithm
based on P that uses clustering of predicted outputs, results in
the minimum extent of misprediction. An optimization prob-
lem that captures these properties is
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QP (extent_misprediction_with_clustering)

(P ∗, η∗,�∗) = arg min
�, P, η(�)

×
⎡
⎣1

2
P tP + C

n

∑
i, j

η�ij

⎤
⎦ such that

∑
α

pα[fα(τij ) − fα(τi)] ≥ 1 − η�ij

�(τi, τij )
η�ij

≥ 0

∀i, j, τij , τi τi �= τij (14)

where �ik is the cluster covering transformation τik , and
η�ik

are the slack cost associated with cluster k of the
complex i. A direct solution for QP (extent_misprediction)
or QP (extent_misprediction_with_clustering) would require
listing all negative transformations which is impractical. For
a natural metric on SE3, we provide an iterative algorithm
that finds P + which is comparable in quality to the solution
P ∗ of QP (extent_misprediction_with_clustering).

Algorithm description

The idea of the algorithm in short is – iteratively – dock
all pairs of proteins using the current estimate for P , as new
violations are discovered, (a violation is when the score of
a decoy complex is better (higher) that the score of the cor-
rectly docked protein pair). If current set of clusters does
not cover the points causing the violations, add new clusters
(that is create new slack variables), else use existing clusters.
Over-sampling a neighborhood of a cluster does not lead to
extra penalty as the penalty assignment is per cluster and not
per inequality. Add new constraints requiring the slacks to be
large enough to cover the violations; and retrain the poten-
tial. Continue this process until no new violations are dis-
covered, the number of iterations is bounded by the mini-
mum extent of misprediction attainable on the explicit enu-
meration of all constraints. The comprehensive screening of
all transformations to find the most violated constraints for
a given choice of parameters is needed for the correctness
of the algorithm. Our code DOCK/PIE and a fast rmsd al-
gorithm accomplish the exhaustive enumeration. The rmsd
between a pair of docked structures arising in rigid body dock-
ing is computed in constant time (independent of the pro-
tein sizes) with the addition of a simple pre-processing step
(Appendix B).

We provide a constant-time algorithm to calculate rms
between a pair of docked structures arising in rigid body dock-
ing (Appendix B). Together with DOCK/PIE this completes
the description of the procedure for efficient generation of the
top 
 violated constraints in step 8 of the learning algorithm.

Below, we discuss the proof that the algorithm converges
within known error bars from the exact solution. Readers that
are more interested in the practical aspects of the algorithm
are encouraged to skip sections: Algorithm convergence, Du-
ality theory and a summary of previous work, and Learning
with clustering.

FIG. 3. Elements of the optimal cover �∗ are in red and elements of the
current cover �e are in black. When the set of parameters w∗ is used, slack
cost is paid only for points in a red cluster.

Algorithm convergence

The proof of convergence of the learning algorithm de-
pends on properties of the clustering algorithm. The optimal
clustering should be connected to the iterative clustering pro-
cedure used in the algorithm (problem is portrayed in Fig. 3).
We show that the number of clusters that the iterative proce-
dure ends up adding for every cluster in the optimal cluster-
ing is bounded. When comparing two clustering schemes, the
covering number is defined as the largest number of clusters
in one scheme that intersect a cluster in another scheme. In the
following text we show that the covering number is small for
the docking problem and so the iterative clustering scheme is
relatable to the optimal clustering.

Definition. A metric � on space X is said to satisfy
small-cover property if there is a constant K such that for all
ε > 0,x ∈ X, Bε(x) = {x ′ ∈ X�(x, x ′) < ε} (ε-ball around
x) and covers P(ε) = ⋃

i {Bε(xi)} of X that satisfy the con-
dition ∀ij�(xi, xj ) > ε; at-most K elements of P(ε) are suffi-
cient to cover Bε(x). K is said to be the covering number of
X,�.

Theorem. For the metric �((t1, u1), (t2, u2))

=
√

‖t1 − t2‖2 + L2 × ‖u1u
−1
2 − I‖Frobenius on the space of

rigid body transformations SE3, and for covers P(ε) with
ε ≤ L

√
8, the covering number K ≤ 46.

Proof. Frobenius-distance is a metric on the space

of matrices. For an orthogonal matrix O = { o11 o12 o13
o21 o22 o23
o31 o32 o33

}
,

‖O − I‖F = √
2T race(I − O)

(‖O − I‖F )2 = (1 − o11)2 + o2
12 + o2

13 + o2
21 + (1 − o22)2

+ o2
23 + o2

31 + o2
32 + (1 − o33)2

= 3 − 2(o11+o22+o33)+((
o22

11+o2
12+o2

13

)
= +(

o2
21 + o22

22 + o2
23

) + (
o2

31 + o2
32 + o2

33

))
= 2T race(I − O).

Frobenius norm is invariant under rigid body ro-
tation (Theorem 3.1 in Trefethen and Bau42). So, we
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Algorithm for learning to dock

1: Input: Set of correctly docked conformation Xij (i is the complex index and j is the index of the protein chain, total of n complexes and 2n chains), their
sequences, and their transformations τi ((X11, X12), τ1), . . . , ((Xn1, Xn2), τn), C – the weight of the slack variable penalty, tolerated approximation error υ,
size of region in output space ε.

2: Start the search by calculating an initial set of potential parameters. For all n complexes with known empirical structures generate set of incorrect
transformations �

(0)
i ∀i = 1, . . . , n (i is index of the complex). Any set of decoys can be used to boot strap the algorithm. In the present study we used

Patchdock.41

3: Calculate the set of constraints Si ∀i and a set of clusters of transformations Gk ∀k (k is the index of the cluster)

Si ← {∀Gk ∈ �
(0)
i ∀τ

(j )
i ∈ Gk :

∑
α pα(fα(τi ) − fα(τ (j )

i )) ≥ 1 − ηik

�(τi ,τ
(j )
i

)
} where �(τi , τ

(j )
i ) = irmsd((Xi1, Xi2)(τi ), (Xi1, Xi2)(τ (j )

i
)), τ

(j )
i is an element in

the cluster of transformations Gk.

4: Solve the quadratic programming problem (P, η) = argminw,ξ
1
2 P tP + C

n

∑
i,k ηik subject to the constraints

⋃n
i=1 Si and ∀i,kηik ≥ 0

5: Start the main iteration cycle and set the number of iterations:ς = 0

6: Repeat: ς = ς + 1

7: for i = 1, . . . , n do /* Loop over all complexes*/

8.1: Find most violated transformations, T(ς)
i , the energies of the violating decoys, E, and their similarity to the native, �. The input is the coordinates of the

two chains Xi1 and Xi2 of complex i, the set of transformations, τi to model complex i, the set of parameters P , tolerated energy error υ, the geometrical size
of a ball ε that determines the boundary of a cluster, and the number of complex structures to retain,
. We also provide the set of clusters added in previous
iterations cycles

⋃ς−1
β=0 ∪k�

(β)
ik so that clusters are added only if not already present.

find_top_violations:

• Input: receptor XR , ligand XL, native transformation τnat , scoring function parameters w, tolerated error υ, existing clusters T, cluster size ε and minimum
number of solutions to retain 


• find radius of each protein and determine the density of rotational sampling and grid spacing to be used such that the error can be bounded by υ

• compute score of native transformation Enat

• compute grids Rvdw and ∀j∈{1,...,22}Rj on the receptor protein and their inverse Fourier transforms
• (�,E, �) ← Ø /* set of high scoring transformations, their energies and distances from native */
• Vsorted = [0, 0, . . . , 0] (sorted array of extents of top 
 violations)
• for uα ∈ U (the space of rotations) do

◦ compute scores EGrid
α for all transformations (�α) involving current rotation

◦ for τ ∈ �α with Eτnat − EGrid
τ ≤ 1 + υ do

� compute �(τ, τnat ) = irmsd((XR, XL)(τ ), (XR, XL)(τnat ))
� if (1 − (Eτnat − EGrid

τ )) >
Vsorted [
]
�(τ,τnat ) − υ, then

� compute exact score Eτ

� if (1 − (Eτnat − Eτ )) >
Vsorted [
]
�(τ,τnat ) and Eτnat − Eτ ≤ 1, then

◦ compute Vτ = �(τ, τnat )(1 − (Eτnat − Eτ )), update Vsorted

• fi
� fi

• end for
◦ end for
• incremental cluster retained transformations and add/update clusters, let Tout be the final set of clusters
• Output: (Tout , E, �)

More compactly: (T(ς)
i , E,�) = find_top_violations(Xi1, Xi2, τi , P , υ, ε,
,

⋃ς−1
β=0 ∪k�

(β)
ik )

8.2: Create new clusters if regions of top scoring transformations have not been seen so far according to current set of parameters.
/* add violated constraints to the working set */

for Gk ∈ T(α)
i do

for τ
(j )
i ∈ Gk do
if �(τ (j )

i , τi )(1 − ∑
α pα[fα(τi ) − fα(τ (j )

i )]) > 0 /* have a violation */

if cluster ik exists from previous iteration or added in this loop (say it was �
(ι)
il ) and �(τ (j )

i , τi )(1 − ∑
α pα[fα(τi ) − fα(τ (j )

i )]) > ηil + υ,

�
(ι)
il = �

(ι)
il ∪ {τ (j )

i } fi

if new cluster ik, �
(ς)
ik = {τ (j )

i } fi
fi

end for
end for

9: Set constraints

Si ← ⋃ς
β=0 {∀Gk ∈ �

(β)
i ∀τ

(j )
i ∈ Gk :

∑
α pα[fα(τi ) − fα(τ (j )

i )] ≥ 1 − ηik

�(τi ,τ
(j )
i

)
} and solve the quadratic programming problem:

(P, η) = argminP,η
1
2 P tP + C

n

∑
i,k ηik subject to the constraints

⋃n
i=1 Si and ∀i,kηik ≥ 0

10: end for

11: until no new constraints found during iteration (
⋃

i,k �
(ς)
ik = Ø)

12: Output:P
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have ‖u1u
−1
2 − I‖F = ‖u1u

T
2 − I‖F = ‖(u1 − u2) × uT

2 ‖F

= ‖u1 − u2‖F . Hence � is a metric.
Distances max out at

√
8 (under the Frobenius norm) in

the rotation space while they could get arbitrarily large in the
translation space. We introduce a scaling factor L to combine
distances in both spaces in the metric �. For ε ≤ L

√
8, con-

sider covers P(ε) of SE3 that are collections of ε-balls (It
is sufficient to show the covering property for small ε, the
proof can be extended to all values of ε by taking into ac-
count the maxing out of distances in SO3.), such that the
centers of any pair of balls are at least ε apart. The number
of elements in P(ε) is infinite, but we are interested in cov-
ering arbitrary ε-balls in SE3 using elements in P(ε). Let B

be the given ε-ball that needs to be covered, let R(B) be its
center. Consider all balls {B1, B2, . . . , Bn} in P(ε) that inter-
sect B and let R(B1), R(B2), . . . , R(Bn) be their centers. Then
d(R(B), R(Bi)) < 2ε; since d(R(Bi), R(Bj )) > ε, every ball
Bi has a sphere of radius ε

2 around R(Bi) that does not inter-
sect any other element of P(ε). So K times volume of radius
ε
2< = volume of radius of 2ε.

Lemma. For ε ≤ L
√

8, the volume of an ε-ball is propor-
tional to ε6.

Proof of lemma. Consider the quaternion representation
of SO3, let O ∼= a + b�i + c �j + d�k. We have a2 + b2 + c2

+ d2 = 1

(‖O − I‖F )2 = 2T race(I − O)

= 2 × (3 − (a2 + b2 − c2 − d2) + (a2 − b2

+ c2 − d2) + (a2 − b2 − c2 + d2)

= 2 × (3 − 3a2 + b2 + c2 + d2)

= 8 × (b2 + c2 + d2),

i.e., for ν ≤ 1, the volume of a ν-ball in SO3 is 4
3π

(
v√
8

)33

.
The volume of an ε-ball in SE3 is given by volume

= ∫
t2
x +t2

y +t2
z +L2×8(a2+b2+c2)≤ε2 dtxdtydtzdadbdc = π3

6×(L
√

8)3 ε
6.

volume =
∫

t2
x +t2

y +t2
z +L2×8(a2+b2+c2)≤ε2

dtxdtydtzdadbdc

= 1

(L
√

8)3

∫
t2
x +t2

y +t2
z +x2

a+x2
b+x2

c ≤ε2
dtxdtydtzdxadxbdxc

= π3

6 × (L
√

8)3
ε6

Hence K ≤ 46.
With the metric � we perform greedy incremental clus-

tering. We add new clusters if the distance (using �) to the
existing cluster centers exceeds 10 Å. The clustering is per-
formed as follows. We start with the most violated constraint
as the center of the first cluster. If there are more violations
that are farther than 10 Å from existing clusters we take the
most violated constraint and add it as a new cluster. This pro-
cess is repeated until all the violations are counted for. In prac-
tice, in a single iteration we allow the addition of 105 clusters
per complex.

Duality theory and a summary of previous work

We state results from duality theory that are used later
in proving that the algorithm converges. Given a clustering
� of transformations, denoting η(�)ik by ηik , the quadratic
optimization problem with all constraints included is

Z(P, η) = 1

2
P tP + C

n

∑
i,k

ηik such that ∀i,∀τ ∈ SE3\τi :

×
∑

α

pα

[
fα(τi) − fα

(
τ

(j )
i

)] ≥ 1 − η
ik

�(τi, τ
(j )
i )

and η
ik

≥ 0 (P ∗, η∗) = argmin
P,η

Z(P, η) (15)

Define M as the matrix of inequalities M(ij, α) = fα(τi)

− fα(τ (j )
i ), Nj,k = { 1

�(τi ,τ
(j )
i

)
if k = j (i)

0 else
(transformation τ

(j )
i be-

longs to cluster k). Let e be a column vector with each ele-
ment equal to 1. The constraints can be written in matrix form
as MP + Nη ≥ e.

Let L(P, η, α, t, s) = 1
2P T P + C

n
eT η − αT (MP + Nη

− s − e) − tT η such that η ≥ 0, α ≥ 0, s ≥ 0, t ≥ 0 and
D(α) = − 1

2αT MMT α + eT α such that NT α ≤ C
n
e. The

problem (P ∗, η∗) = argminP,η Z(P, η) is said to be primal
problem and α∗∗ = argmaxαD(α) is said to be the dual prob-
lem. A point is said to be feasible point of a problem if it
satisfies the constraints associated with the problem.

The following properties hold:

(1) For every feasible point (P, η, α, t, s) of L if (P, η) is a
feasible point of the primal, L(P, η, α, t, s) ≤ Z(P, η).

(2) For every feasible point (P, η) of the primal there exist
α, s, t such that (P, η, α, t, s) is a feasible point of L.

(3) For every feasible point (α) of the dual there exist
P, η, s, t such that (P, η, α, t, s) is a feasible point of
L.

(4) For every feasible point (P, η, α, t, s) of L if (α) is a
feasible point of the dual, D(α) ≤ L(P, η, α, t, s).

(5) If (P ∗, η∗) = argminP,ηZ(P, η) and α∗∗ = argmaxα

D(α), there exist s, t such that D(α∗) = L(P ∗, η∗,
α∗, t, s) = Z(P ∗, η∗). Further (P ∗, η∗, α∗, t, s) sat-
isfy P ∗ − (α∗)T M = 0

(
∂L
∂P

= 0
)
, C

n
e − t − (α∗)T N

= 0
(

∂L
∂η

= 0
)
, MP + Nη − s − e = 0

(
∂L
∂α

= 0
)
.

(6) As a result of 1–5; if (P, η) is a feasible point of the pri-
mal and α a feasible point of the dual, Z(P, η) ≥ D(α).

We summarize the framework of Tsochantaridis et al.17

here for the benefit of the reader. Our proof extends their ideas
to incorporate clustering. Let �i = maxτ {�(τi, τ )}, �̄ =
maxi{�i}, Ri = maxτ {

∑
α ‖fα(τ ) − fα(τi)‖},R̄ = maxi{Ri}.

For docking, � would be the maximum i-RMSD and R is the
maximum feature difference (in absolute terms) encountered
in the problem.

The authors show that one does not have to list all con-
straints to solve the primal problem. They show that it is suf-
ficient to add violations that incur the largest penalty at each
iteration. Although a quadratic optimization is solved to up-
date parameters at each iteration, the analysis is in terms of
progress made in solving the dual D. They show that the
dual improves by at least a constant amount in each itera-
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tion. Since P = 0 and η = �e is a feasible solution of pri-
mal, D(α∗) = Z(P ∗, η∗) ≤ Z(0,�e) and so the procedure
converges.

Learning with clustering

Proposition. (Extension to Proposition 16 of Tsochan-
taridis et al.17): The improvement in dual objective function δ

is lower bounded by δ ≥ min{Cυ
2n

, υ2

8�
2
R̄2

}.
While the dual problem stays the same during the solu-

tion to SV Mstruct , the dual changes as new clusters are added
during the course of our algorithm, i.e., new columns and new
rows are added to the MMT matrix. The old solution with ad-
ditions of zeroes in the new dimensions is feasible for the new
problem (since we get a trivial solution for the new compo-
nent). This solution can now be improved following Proposi-
tion 16, i.e., given a new D(α) the solution can now be opti-
mized.

Our task here is complicated by the fact that we do not
know the best clustering scheme and we use instead cluster-
ing on-the-fly as more inequalities are added. The impact of
less than optimal clustering on the learning needs to be eval-
uated. The covering property discussed previously allows us
to estimate the cost of clustering in the worst case scenario
that still provide coverage of the conformation space leading
to violations.

Theorem. Let (P ∗, η∗,�∗) = argmin�,w,η(�)
1
2P tP

+ C
n

∑
i,k η(�)ik such that ∀i,∀τ ∈ SE3\τi :∑

α pα[fα(τi) − fα(τ (j )
i )] ≥ 1 − η�ik

�(τi ,τ
(j )
i )

(the least ex-

pensive solution over all possible clustering schemes). Let
σ ∗ = 1

2P ∗tP ∗ + C
n

∑
i,k η∗

ik . For a given υ > 0, the learn-

ing algorithm terminates after K × max
{

2nσ ∗
Cυ

, 8�̄2R̄2σ ∗
υ2

}
iterations.

Proof. At each step the dual objective function increases
by at least δ = min{ υ

2n
, υ

8�̄2R̄2 }. Suppose the algorithm does
not converge in said number of iterations; let (P e, ηe,�e) be
the solution at this stage and let σZ, σD be the values of the
primal and dual objective functions (with partial covering �e

of transformation space – clustering of a space induces a cover
on it) and σ+

Z be the cost of the optimal parameters P ∗ when
the current clustering �e is used.

σD ≤ σZ(primal is a minimization problem)
σZ ≤ σ+

Z (P e minimizes the primal objective function
when clustering �e is used)

Claim. σ+
Z ≤ Kσ ∗

Proof of claim. Consider the following mapping from �e

to �∗ ∪ {O}: for each cluster in Ge
ik ∈ �e, if it does not inter-

sect any element in �∗, map it to O, if it does intersect, map it
to the intersecting element with the largest slack cost. By the
covering property, the number of elements that get mapped to
any element of �∗ is at most K and P ∗ does not incur any
penalty on elements mapped to O. So σ+

Z ≤ Kσ ∗.
Since the algorithm makes progress of at least δ in

each iteration we have σD ≥ Kσ ∗, leading to a contradiction.
Hence the theorem.

It follows from the proof that the solution returned satis-
fies σZ ≤ Kσ ∗.

We emphasize that we retain all inequalities in the itera-
tions and clustering procedure. Clustering is only used to de-
termine the slack variables.

RESULTS

Derivation of parameters

We used the set of 640 protein-protein dimer complexes
prepared in our earlier work.21 The scoring function is based
on a linear combination of vdw attraction, vdw repulsion, and
contacts between 22 different particle types (a particle type
was chosen for the backbone carbonyl group, backbone amide
group, and each residue type was represented by a different
particle type). We used a piecewise linear interpolation to rep-
resent the functional form for the contact function (see section
“Residue and backbone contact potential”).

The initial parameter set was computed with straightfor-
ward linear programming using decoys generated by Patch-
dock (as outlined in our earlier work21). This study does not
include exhaustive set of transformations and it relies instead
on another docking program (Patchdock41) to provide a set of
structures appropriate for learning.

The parameters determined from optimization with the
Patchdock-based set of structures were used in exhaustive
ranking of all docking candidates on a grid at the first iter-
ation, as described in the text. At each iteration, we docked
protein partners using the current parameter set. To reduce
the noise in the learning we added a new constraint requiring
that the native (bound) transformation score above any false
transformation. If the false positive led to a new cluster, we
added a new slack variable. For each complex, up to 100 000
top violated constraints were added in each iteration. All con-
straints from the 640 complexes were pooled with the con-
straints discovered so far and the resultant quadratic program
was solved for the new set of parameters. The dimension of
the feature space was 252. The largest quadratic optimization
problem solved as part of the learning involved 258 127 822
constraints with 27 564 303 slack variables. We follow the
framework outlined in OOQP,43 use the parallel routines re-
ported in an earlier work,20 and develop a primal-dual interior
point algorithm for solving the QP arising in the learning al-
gorithm. The final quadratic program was solved in 32 h on
618 cores on Ranger, a super computer maintained by Texas
Advanced Computing Center. The potential converges with
successive iterations (illustrated in Fig. 4 and Table I).

We obtained the initial guess (iteration 0) from linear pro-
gramming framework following the procedure explained in
our earlier work,21 this switch from linear programming to
quadratic programming probably caused the blip at iteration
2. The normalized dot product between the normalized pa-
rameter vectors estimated at iteration 5 and 6 is 0.978. Our
results reaffirm the observation of Lu et al.31 that subtle differ-
ences in the potential grossly affect its performance in struc-
ture prediction tasks; the dot product between the parameters
estimated at iterations 0 and 6 is 0.7 while the performance on
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FIG. 4. The scoring function converges as iterative learning proceeds, for
each iteration we plot the dot product between the parameters (normalized
to have L2 norm 1) at this iteration and the previous iteration. The blip at
iteration 2 arises due to switching from linear programming to quadratic pro-
gramming for parameter estimation.

protein-protein docking improves from iteration 0 to iteration
6 by a factor of 2. The final potential is provided in Table II.

Test on newly deposited complexes

There were 157 heterodimeric protein-protein complexes
deposited in the PDB since 2008 that were not similar to
any complex in the training set. Of these 55 complexes had
no ligand molecules or ions close to the interface, no disul-
phide bonds and did not involve extensive conformational
change upon docking (terminal unfolding/insertion, domain
rearrangement). Twelve of these complexes had unbound con-
figurations (homolog with tm-score44 below 0.95) for at least
one chain; these constitute the test set. When using homologs
we always model the structure of the native sequence based on
the homolog and dock models. The input pdbs are available
at http://users.ices.utexas.edu/~ravid/pie/test_set/.

Our protocol (flowchart illustrated in Fig. 5) is to dock
using the learnt potential, sort the solutions, cluster them
based on i-RMSD, and return high scoring representatives
from these clusters. The same algorithm was used for CAPRI
targets 46, 48, 49, and 50 (parameters from iteration 3 were
used for target 46). This protocol identifies a near native so-

FIG. 5. Outline of algorithm used in CAPRI to predict mode of binding in
a protein-protein interaction, testing and available as web service. We only
retain 219 = 524 388 conformations due to computational limitations.

lution within top 10 (100) on 5 of 12 cases (8 of 12) cases
compared to 3 of 12 (6 of 12) by Zdock3.0 + Zrank; 5 of
12 (7 of 12) by Cluspro33 and 2 of 12 (5 of 12) by Gramm-
X.34 The comparison on each case is provided in Table III.
Note that the algorithm presented in the text is coarse grained,
using residue-based potential, and rigid protein shapes. The
other algorithms we compared to are using more sophisticated
description, including atomic models and refinement of the
initial structures. We find it encouraging that the simplified
model is doing consistently better than other approaches.

Tests on Zlab benchmark

The Zlab benchmark is the de facto standard in the field.
We therefore decided to test our potential on this set as well.
We removed constraints corresponding to cases similar to
Zlab Benchmark 2 (Ref. 45) from the learning set and re-
trained the potential. This potential was used for evaluating
the learning procedure on the benchmark. We docked every
pair listed in the Zlab benchmark using our docking proce-
dure and ranked solutions according to the potential designed
here. We did not use the potential reported in Ref. 21 since it

TABLE I. A complex is said to be explained if a high quality hit – ((irmsd ≤ 3Å) ∨ (Cαrmsd ≤ 3) ∧ (f rac_native_contacts ≥ 0.5)) is ranked within
top N.

No. of complexes explained

Iteration Method No. of constraints No. of clusters Top 1 Top 10 Top 100 Top 1000

Zdock3.0 333 375 441 489
Patchdock 201 302 431 513
0 LP 25 719 027 . . . 179 237 337 437
1 QP 66 893 447 8 293 956 171 212 278 387
2 QP 101 088 699 12 090 751 234 303 401 497
3 QP 134 079 719 15 109 006 270 353 446 535
4 QP 168 055 994 18 911 122 291 364 454 526
5 QP 204 805 256 22 225 252 315 389 471 546
6 QP 258 127 822 27 564 303 318 398 484 557

http://users.ices.utexas.edu/~ravid/pie/test_set/
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TABLE IV. Comparing Dock/PIE and ZDOCK + ZRANK on Zlab bench-
mark. Dock/PIE ranks a near native solution at the top 1/top10/top 100 in
12/28/52 cases compared to 10/21/41 by Zdock3.0.

DOCK/PIE ZDOCK + ZRANK

Case Besthit Nos. returned No. of hits Besthit No. of hits

1A2K 2 5784 23 1038 570
1ACB 1 813 4 780 581
1AHW 64 3299 5 27 347
1AK4 50 1720 17 1315 253
1AKJ 1064 3341 3 175 236
1ATN 670 14 708 11 1076 15
1AVX 5 7291 45 11 744
1AY7 24 817 4 74 407
1B6C 3 1353 5 1 509
1BGX 0 4776 0 0 0
1BJ1 3 1553 12 19 1637
1BUH 5 1396 5 353 514
1BVK 321 6793 52 116 425
1BVN 2 2252 34 10 946
1CGI 13 1818 20 22 1167
1D6R 39 13 847 107 2347 32
1DE4 4 47 977 117 426 133
1DFJ 1 2100 4 2 334
1DQJ 401 2236 11 753 374
1E6E 14 7823 84 3 448
1E6J 7 660 10 1 1244
1E96 2 3023 16 24 196
1EAW 2 787 6 1 597
1EER 97 12 028 5 330 11
1EWY 27 985 5 21 586
1EZU 1 1763 4 2247 340
1F34 19 3664 6 62 172
1F51 40 3973 7 3 304
1FAK 0 10 006 0 0 0
1FC2 96 903 15 154 92
1FQ1 189 8187 4 15 260 9
1FQJ 1301 9687 5 491 24
1FSK 1 2045 25 1 851
1GCQ 407 1602 4 922 146
1GHQ 0 6887 0 2982 2
1GRN 321 1025 1 558 166
1HE1 7 1666 4 36 253
1HE8 323 10 776 17 75 8
1HIA 1 824 6 618 145
1I2M 11 1366 1 473 98
1I4D 19 2407 4 1349 351
1I9R 112 4585 16 31 370
1IB1 26 7290 18 33 099 2
1IBR 0 2346 0 0 0
1IJK 107 3773 16 444 116
1IQD 1 4171 23 1 802
1JPS 135 2143 5 1 385
1K4C 3663 34 627 78 162 1323
1K5D 798 1514 1 84 143
1KAC 725 7541 35 11 160
1KKL 115 2815 12 70 173
1KLU 907 11 041 24 13 333 18
1KTZ 1003 3369 12 397 90
1KXP 1 5639 7 12 283
1KXQ 4 1848 3 14 200
1M10 3705 4175 1 10 647 4
1MAH 16 11 048 170 3 1177
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TABLE IV. (Continued.)

DOCK/PIE ZDOCK + ZRANK

Case Besthit Nos. returned No. of hits Besthit No. of hits

1ML0 1 5999 167 1 548
1MLC 129 2715 17 5 616
1N2C 4 12 875 47 3203 129
1NCA 317 10 089 37 14 126
1NSN 375 28 750 121 468 174
1PPE 1 370 28 1 3616
1QA9 0 3170 0 1850 29
1QFW 1737 3265 7 192 107
1RLB 9 9268 70 1 1767
1SBB 2334 3298 1 3639 26
1TMQ 2 8857 59 71 353
1UDI 1 2855 23 2 359
1VFB 92 1571 5 437 341
1WEJ 65 1059 9 2 907
1WQ1 41 2082 2 296 142
2BTF 51 11 102 26 151 295
2HMI 67 13 332 21 272 331
2JEL 1 2696 20 42 1285
2MTA 68 940 9 57 627
2PCC 13 1549 8 218 389
2QFW 16 3978 15 6 510
2SIC 14 1010 4 1 768
2SNI 1 608 6 114 554
2VIS 6084 25 047 4 8 703
7CEI 2 1488 10 3 965

does not work well for exhaustive sampling. When asked
to pick the best transformation from all possibilities in the
rigid transformation space, the scoring potential almost al-
ways picks up an incorrect solution. This issue is addressed
here. Benchmark 2 comprises 84 complexes for unbound
protein-protein docking. Our algorithm selects a near native
solution on the top/top 10/top 100 in 12/28/52 cases compared
to 10/21/41 by Zdock3.0 + Zrank (Table IV).

Comparison to other residue contact potentials

The algorithm to generate decoys influences the learn-
ing of a potential. It is therefore not trivial to compare score
functions on decoy structures that were generated by the same
approach that is used for the learning. In the previous sections
we compared the algorithms (not the energy functions) letting
every protocol generate its own candidates for correct dock-
ing. Nevertheless, there are docking potentials learnt with
different techniques (statistical potentials, or linear program-
ming) without clearly defined docking algorithm that we wish
to evaluate and compare to our approach. To conduct the com-
parison it is necessary to generate decoy structures that are in-
dependent of our own (and others) procedures. We therefore
use Zdock3.0 to computed 54 000 decoys for the 640 com-
plexes that were included in the training set. The results of
scoring these structures with different energy functions are
provided in Table V. Statistical potential derived for template
identification46 is better than random (has p-value below 0.5),
potentials derived on protein-protein interfaces31 perform bet-

TABLE V. Top 54 000 structures generated by Zdock3.0 are re-ranked un-
der various schemes, for each case the rank for which the probability that a
random scoring function will do better with probability 0.5 is computed, the
row labeled reference summarizes this evaluation (Zdock3.0 generated a lot
of near native structures, scoring at random would pick up a hit in top 100
models in 162 cases). Statistical potentials capture signal in protein-protein
interfaces in the PDB, our iterative learning procedure does a better job of
mining this information. Round6 potential does a better job when used for
sampling and scoring rather than rescoring alone.

No. of complexes explained

Method Top 1 Top 10 Top 100 Top 1000

Reference 0 1 162 501
MJ3 50 104 224 386
LLS 94 179 282 417
TB 148 229 350 460
Round6 potential 290 361 434 502
Round6 potential no 244 334 417 489
shape complementarity

ter, discriminative learning improves them further. Account-
ing for exhaustive enumeration of conformation space im-
proves the result even further. Ignoring the OPLS factor in
our potential (set Pvdw to 0 and use the remaining terms as is
from Table II), which results in a function closer to a contact
potential, still explains a significant fraction of complexes in
the training set.

DISCUSSIONS

Mathematical programming was used extensively in the
field of protein folding,12–14, 47, 48 protein docking,21, 24 and
protein design.49, 50 These algorithms are invariably based on
heuristic sampling of constraints. As carefully as the selec-
tions were made, there was no proof that the algorithms con-
verge or even improve with the addition of new constraints.
The extension provided in the present work provides an al-
gorithm that shows systematic and monotonic improvement
in the energy function as the number of constraints that are
added to the set increases.

The learning algorithm presented in this work connects
iterative learning procedures used for potential design in pro-
tein folding and protein docking community with research
in support vector machines. Learning a contact potential
(residue, atomic, even after inclusion of distance dependence)
that always scores native above all possible conformations is
infeasible12 and it is critical to develop approaches to select
the best model under these circumstances. Other simpler
methods that optimize Z-scores9 or work with limited confor-
mational sampling13, 38, 46–48 have worked well in practice and
the quality of the potential generally improved with the ex-
tent of the conformational space explored. However, in these
approaches there are no theoretical guarantees on the quality
of solution, and it is difficult to further improve the solution
upon the discovery of new examples. As more data become
available, it is important for algorithms to continue systemat-
ically and consistently to improve their capacity. This is the
promise of convex programming.
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Recent research in structured output prediction has pro-
vided significant breakthroughs on this front.17 When the
global optimum can be found, learning procedures can be
designed with provable guarantees. Efficient procedures exist
for finding the global optimum in certain models for protein
docking, which makes the above advances particularly rele-
vant to docking. We extend the structural SVM framework
to include notions of clustering, traditionally used in protein
structure prediction, and illustrate the learning procedure on
protein docking.

The learning algorithm presented in this work connects
iterative learning procedures used in protein docking commu-
nity to the rich body of research on support vector machines.
For the first time, we provide a learning procedure that prov-
ably and systematically improved the quality of the parame-
ter set by a large-scale minimization of misprediction extent.
The procedure has a simple-minded explanation – “progress
in learning is achieved by looking at the largest mistakes, the
more the better.”

Interestingly, a single residue-based potential is doing
well for both filtering and ranking. It is of course possible to
re-rank the final results with more fine tuned energy functions
and protocols and perhaps improve the results. However, the
current potential is putting together the ranking and filtering
quite successfully, and on coarse level.

The framework is applicable for parameter optimization
in a wide range of tasks in structural bioinformatics – wher-
ever the problems of finding the global minimum and find-
ing the largest violation with a given choice of parameters are
tractable and one can look at the output space as a low di-
mensional space. For instance, potentials can be designed for
protein structure refinement by iteratively adjusting the model
using the current potential, accumulating mistakes made, and
constraining the potential to avoid (pay for) these mistakes.
Nonlinear functional forms using Gaussian kernel functions
in quadratic programming have shown promise in design-
ing scoring functions for protein design.51 These approaches
could be explored through extensions to the QP solver.
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APPENDIX A: ERROR ANALYSIS

Theorem. Let τ ∗ = (t∗, u∗) be the optimal solution for
docking based on the scoring function parameterized by w,
let D(g,U ) be the discretization used. There is a solution
τ = (t, u) ∈ D such that ε = |E(τ ∗) − EGrid (τ )| approaches
0 along with ‖t∗ − t‖ and ‖u∗ − u‖ as g, err(U ) approach 0.

Proof. Let u = argminuj ∈U (‖u∗ − uj‖)(the rotation in
the discrete set closest to the correct rotation) and t

= [argmin(l,m,n)(‖(l, m, n) × s − t∗‖)] × g(the translation in
the discrete set closest to the correct translation), let τ

= (t, u).

E(τ ∗) − EGrid (τ ) = (E(τ ∗) − E(τ )) + (E(τ ) − EGrid (τ ))

= (Evdw(τ ∗) − Evdw(τ ))︸ ︷︷ ︸
1

+ (Eparticle_pair (τ ∗) − Eparticle_pair (τ ))︸ ︷︷ ︸
2

+ (Evdw(τ ) − Evdw
Grid (τ ))︸ ︷︷ ︸

3

+ (Eparticle_pair (τ ) − E
particle_pair

Grid (τ ))︸ ︷︷ ︸
4

.

T erm 2. Eparticle_pair (τ ∗) − Eparticle_pair (τ )

=
22∑

j=1

Eparticle_pairj (τ ∗) − Eparticle_pairj (τ ).

Claim. |Eparticle_pairj (τ ∗) − Eparticle_pairj (τ )| ≤ N
(j )
L

× max error(φj (r)) where N
(j )
L is the number of particles of

type j in the ligand.

Proof. Consider a particle p of type j of the ligand, let P

be its position upon application of transformation τ ∗ and Q be
the position upon application of transformation τ . Consider
spheres of radii Rmin and Rmax around P and Q; let �1 be the
region common to the smaller spheres, �2 be the region not
common to the smaller spheres and �3 be the region enclosed
by the larger spheres not in �1 and �2. These regions are
illustrated in Fig. 6.

dp = |
⇀

PQ| = |τ ∗(
⇀
rp) − τ (

⇀
rp)| = |(t∗ − t) + (u∗ − u)(

⇀
rp)|

≤ |(t∗ − t)| + |(u∗ − u)(
⇀
rp)| ≤

√
3

2
gs + dLerr(U ) also,

d = max
1≤p≤NL

{dp} ≤
√

3

2
g + dLerr(U ).

The error in the potential �

(p)
j = 
j (P ) − 
j (Q)

≤ dp

Rmax−Rmin
× maxi∈{1,...,22}{|wij |} × η where η is the number

of particles of the receptor with centers in the region �2 ∪ �3.
η ≤ NR , (actually one can derive a tighter upper bound

on η if one uses a proposition that the particles of the re-
ceptor are packed such that they have impenetrable cores) so
maxerror(
j (r)) ≤ d

Rmax−Rmin
× maxi∈{1,...,22}{|wij |} × NR

so, |Eparticle_pairj (τ ∗) − Eparticle_pairj (τ )| ≤ N
(j )
L

× d

Rmax − Rmin
× max

i∈{1,...,22}
{|wij |} × NR

Hence |Eparticle_pair (τ ∗)−Eparticle_pair (τ )| ≤ d

Rmax−Rmin

×NL × max
i∈{1,...,22}

{|wij |} × NR
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FIG. 6. In proof of the theorem for error analysis of DOCK/PIE, P is the
position of the particle upon application of transformation τ ∗ and Q is the
position upon application of transformation τ . Consider spheres of radii Rmin
and Rmax around P and Q. The difference between contact potential at P and
Q is only dependent on particles in the regions 2 and 3.

T erm 4. Eparticle_pair (τ ) − E
particle_pair

Grid (τ )

=
22∑

j=1

Eparticle_pairj (τ ) − E
particle_pairj

Grid (τ )

Claim. |Eparticle_pairj (τ ) − E
particle_pairj

Grid (τ )| ≤ N
(j )
L

× max_approx_error(
j (r)).

Proof. The error in the potential is given by

�

(p)
j = 
j (P ) − 
Grid

j (P )

≤
∑

1≤q≤NR

wtype(q)j (h(rpq) − hinterpolate(rpq))

≤ max
k∈{1,...,22}

{|wkj |} ×
∑
pi

(h(rpq) − hinterpolate(rpq))

h(rpq)−hinterpolate(rpq) =
∑

α,β,γ∈{0,1}
wαβγ

(
h(rpq) − h

(
rαβγ
pq

))
,

where r
αβγ
pq is the distance between center of particle q and

corner αβγ of the cell containing the point P.

h(rpq) − h
(
rαβγ
pq

) ≤ |rpq − r
αβγ
pq |

Rmax − Rmin
≤

√
3g

Rmax − Rmin
, so,

×h(rpq) − hinterpolate(rpq) ≤
√

3g

Rmax − Rmin
.

Therefore �

(p)
j ≤ maxk∈{1,...,22}{|wkj |} × η2

×
√

3g

Rmax−Rmin
where η2 is the maximum number of parti-

cles of the receptor with centers in the region spawned by the
union of spheres of radii Rmax centered at corners of a grid

cell.

η2 ≤NR, so,�

p

j ≤ max
k∈{1,...,22}

{|wkj |}×NR×
√

3g

Rmax−Rmin
;

therefore

|Eparticle_pairj (τ ) − E
particle_pairj

Grid (τ )| ≤ N
(j )
L

× max
k∈{1,...,22}

{|wkj |} × NR ×
√

3g

Rmax − Rmin

and

|Eparticle_pair (τ ) − E
particle_pair

Grid (τ )| ≤
√

3g

Rmax − Rmin

×NL × max
k∈{1,...,22}

{|wkj |} × NR

T erm 1. |Evdw(τ ∗) − Evdw(τ )| ≤ max{0.5, |wvdw_repul|}

× max
i,j

[
4
√

εiεjσ
2.5
j

3.23.5

]
× Natom

L × Natom
R × d

T erm 3.
∣∣Evdw(τ ) − Evdw

Grid (τ )
∣∣ ≤ max{0.5, |wvdw_repul|}

× max
i,j

[
4
√

εiεjσ
2.5
j

3.23.5

]
× Natom

L × Natom
R ×

√
3g

Hence the theorem.

APPENDIX B: FAST COMPUTATION OF RMSD
IN RIGID BODY DOCKING

We provide a constant-time algorithm to calculate rms
between a pair of docked structures arising in rigid body dock-
ing. Together with DOCK/PIE this completes the description
of the procedure for efficient generation of the top 
 violated
constraints in step 8 of the learning algorithm.

Preprocess

1: Input: Sets of points XR = {�r1, �r2, . . . , �rm}, XL

= {�l1, �l2, . . . , �ln} representing the receptor and ligand in
the native structure.
2: Center the point sets,

〈r〉 =
∑n

i=1 �ri

m
, 〈l〉 =

∑m
i=1

�l
n

, c = m 〈r〉 + n 〈l〉
m + n

�ri = �ri − c

and �li = �li − c, recalculate 〈r〉 =
∑n

i=1 �ri

m
and 〈l〉 =

∑m
i=1

�l
n

3: Compute

A =
⎧⎨
⎩

axx axy axz

ayx ayy ayz

azx azy azz

⎫⎬
⎭

where

aαβ =
n∑

i=1

riα × riβ
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and

B =
⎧⎨
⎩

bxx bxy bxz

byx byy byz

bzx bzy bzz

⎫⎬
⎭

where

bαβ =
m∑

i=1

liα × liβ

RMSD calculation

1: Input: Rigid body transformation τ = (t, u), to compute
RMSD((XR,XL), (XR, τ (XL)))
2: Compute

� =
⎧⎨
⎩

ρxx ρxy ρxz

ρyx ρyy ρyz

ρzx ρzy ρzz

⎫⎬
⎭

where

ραβ = aαβ + ∑n
i=1 (τ (li))α × liβ

m + n

= aαβ + ∑n
i=1 (uαxlix + uαyliy + uαzliz + tα) × liβ

m + n

= aαβ + uαxbxβ + uαybyβ + uαzbzβ + tα × 〈l〉β
m + n

3: Calculate rmsd from eigen-values of �T �
Claim. Let NR,NL be the number of points in the recep-

tor and ligand. The algorithm RMSD_RIGID_DOCK takes
O(NR + NL + M) time to process M transformations.

The straight forward approach of computing RMSD be-
tween the model and the native by explicitly listing the points
of the model would involve �((m + n)M) operations. This
procedure is also applicable to cluster solutions according the
I-RMSD, all pairwise distances between M transformations
are calculated in O((m + n)M + M2) (the straight forward
procedure would involve �((m + n)M2) operations).

APPENDIX C: QP SOLVER

OOQP (Ref. 43) provides open source framework with
tools for solving general quadratic programs and quadratic
programs arising from binary classification problems. We fol-
low the framework outlined in OOQP, use the parallel routines
reported in an earlier work (Wagner et al.20), and develop a
primal-dual interior point algorithm for solving the QP aris-
ing in the learning algorithm. Predictor-corrector based inte-
rior point algorithms iteratively approach the optimal solu-
tion by alternatively reducing the duality gap and maintaining
centrality.

We develop two algorithms for quadratic programming.
The first one follows the infeasible starting point algorithm
introduced by Potra.52 The solution traverses a path guided by
the Karush-Kuhn-Tucker (KKT) conditions. KKT conditions
are a generalization of the method of Lagrange multipliers
for solution of systems with inequality constraints. After each
update, the new point is closer to satisfying feasibility and the

KKT conditions compared to the starting point. The second
algorithm follows Gondzio’s approach.53

Primal.
(w, ξ ) = argminw,ξ

1
2 ||w||2 + C

n

∑
i,k ξik subject to ξik

≥ 0 and
⋃α

β=0

{∀τ
(j )
i ∈ Si : wT (Pτi

− P
τ

(j )
i

) ≥ (
1 − ξik

�(τi ,τ
(j )
i )

)}
,

rewritten as Mw + Nξ ≥ e where Nj,k = { 1

�(τi ,τ
(j )
i

)
if k = j (i)

0 else

(transformation τ
(j )
i belongs to cluster k)

Primal-dual.
1
2 ||w||2 + C

n
eT ξ − υT (Mw + Nξ − s − e) − tT ξ sub-

ject to ξ ≥ 0, υ ≥ 0, s ≥ 0, t ≥ 0
KKT conditions.

w − MT υ = 0,Mw + Nξ − s − e = 0,C
n
e − Nυ − t =

0,V Se = 0 and T �e = 0. Where, V is a diagonal matrix
with V [i, i] = vi ; S, T , � are similar diagonal matrices
defined by s, t, ξ .

The system of equations to be solved for the update at
each iteration is⎡

⎢⎢⎢⎢⎢⎢⎣

I −MT 0 0 0

M 0 N −I 0

0 −N 0 0 −I

0 S 0 V 0

0 0 T 0 �

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

�w

�υ

�ξ

�s

�t

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−rw

−rM

−rC

−rSV

−rT �

⎤
⎥⎥⎥⎥⎥⎥⎦

Which reduces after block eliminations to,

(I + MT DM)�w = −rw + MT D(−rM − V −1rSV

+NT −1rT � + NT −1�rC)

where

D = (V −1S + NT −1�NT )−1.

The computationally intensive task is to form and compute
the Cholesky factorization of I + MT DM quickly so that the
linear system arising in each iteration of the interior point al-
gorithm can be solved efficiently. We reuse the procedure de-
scribed in an earlier work20 (after minor extensions to handle
clustering) for the calculation of I + MT DM in a completely
data parallel fashion. We modified the SVM module in OOQP
to parallelized combined weighted slack 1-class SVM to han-
dle our formulation.
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