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Abstract

The aim of research on infectious diseases is their prevention, and brucellosis and salmonellosis as
such are classic examples of worldwide zoonoses for application of a systems biology approach
for enhanced rational vaccine development. When used optimally, vaccines prevent disease
manifestations, reduce transmission of disease, decrease the need for pharmaceutical intervention,
and improve the health and welfare of animals, as well as indirectly protecting against zoonotic
diseases of people. Advances in the last decade or so using comprehensive systems biology
approaches linking genomics, proteomics, bioinformatics, and biotechnology with immunology,
pathogenesis and vaccine formulation and delivery are expected to enable enhanced approaches to
vaccine development. The goal of this paper is to evaluate the role of computational systems
biology analysis of host:pathogen interactions (the interactome) as a tool for enhanced rational
design of vaccines. Systems biology is bringing a new, more robust approach to veterinary vaccine
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design based upon a deeper understanding of the host-pathogen interactions and its impact on the
host's molecular network of the immune system. A computational systems biology method was
utilized to create interactome models of the host responses to Brucella melitensis (BMEL),
Mycobacterium avium paratuberculosis (MAP), Salmonella enterica Typhimurium (STM), and a
Salmonella mutant (isogenic AsipA, sopABDE?2) and linked to the basis for rational development
of vaccines for brucellosis and salmonellosis as reviewed by Adams and Ficht (Adams et al. 2009;
Ficht et al. 2009). A bovine ligated ileal loop biological model was established to capture the host
gene expression response at multiple time points post infection. New methods based on Dynamic
Bayesian Network (DBN) machine learning were employed to conduct a comparative
pathogenicity analysis of 219 signaling and metabolic pathways and 1620 Gene Ontology (GO)
categories that defined the host's biosignatures to each infectious condition. Through this DBN
computational approach, the method identified significantly perturbed pathways and GO category
groups of genes that define the pathogenicity signatures of the infectious agent. Our preliminary
results provide deeper understanding of the overall complexity of host innate immune response as
well as the identification of host gene perturbations that defines a unique host temporal
biosignature response to each pathogen. The application of advanced computational methods for
developing interactome models based on DBNSs has proven to be instrumental in elucidating novel
host responses and improved functional biological insight into the host defensive mechanisms.
Evaluating the unique differences in pathway and GO perturbations across pathogen conditions
allowed the identification of plausible host-pathogen interaction mechanisms. Accordingly, a
systems biology approach to study molecular pathway gene expression profiles of host cellular
responses to microbial pathogens holds great promise as a methodology to identify, model and
predict the overall dynamics of the host-pathogen interactome. Thus, we propose that such an
approach has immediate application to the rational design of brucellosis and salmonellosis
vaccines.

Introduction

Some of the veterinary vaccines licensed for controlling infectious disease of domestic
animal species today are still based on empirical technology that was introduced by Edward
Jenner, using live vaccines in 1796, and later Louis Pasteur, using killed whole organism
vaccines. Indeed, Jenner derived the term “vaccine” from his use of the less innocuous
zoonotic cowpox virus (Latin variolae vaccinae, adapted from vaccinus, from vacca cow) to
provide protection against smallpox. Much of veterinary vaccinology is driven by the
realities that exist in raising production animals or working in veterinary practice, where
making a living depends on keeping the animals healthy. Livestock production is an industry
where vaccines are like insurance policies — protection from events that one hopes never
happen (Adams et al. 2009). For example, the USDA recognizes these varying levels of
protection in the way that they allow label claims: 1) “aids in disease control”, 2) “for the
prevention of disease”, and 3) “for the prevention of infection”. Additionally there may be
indirect protection, or herd immunity, that results from vaccination of sufficient numbers of
animals in a given population resulting in the reduction of the ability of a disease to transmit
through the vaccinated individuals. The perception that vaccines provide sterilizing
immunity, where the disease agent does not establish an infection, while widely held, is
generally unfounded and largely unrealistic. In the last 15 years, genomics, proteomics,
bioinformatics, biotechnology, immunology, pathogenesis and vaccine formulation and
delivery have dramatically enabled novel approaches to vaccine development. When used
optimally, vaccines prevent disease manifestations, reduce transmission of disease, decrease
the need for pharmaceutical intervention, and improve the health and welfare of animals, as
well as indirectly protecting against zoonotic diseases of people. The challenge in
developing an optimal vaccination program is in dealing with the great diversity that exists
within the animal world, and as such there probably is no single optimal program for all
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situations. While there is no single strategy to optimizing vaccination programs for animals,
nonetheless, a solid understanding of the animal's innate and environmental risk factors as
well as the variables such as stress, will enable the development of tailored vaccination
schedules that best meet the needs of the animal. The use of vaccines in animal health is not
restricted to the protection of morbidity and mortality of the animal hosts themselves, but
they are regularly employed as key elements in public health programs. When appropriate
biopreparedness, management modeling strategies and contingency plans of the future are
linked with 1) protective DIVA vaccines against zoonoses, 2) effective predictive modeling,
and 3) deployable implementation policies, control and prevention of serious zoonotic
diseases of man and animals will become more achievable at local, state and national levels.

Systems biology is bringing a new, more robust approach to vaccine design that is based
upon understanding the molecular network of the immune system of two interacting
systems. With this approach, it is within the realm of possibility to develop more effective
vaccines supported by a fuller understanding of the complexities of the host-pathogen
interactions (interactome) as a product of the innovations of the past 15 years. On the other
hand, the massive crush of data now being generated to enhance our understanding of the
host-pathogen interactions may not have as much utility as expected unless more dynamic
biologically sound models are developed and validated to comprehend and apply to vaccine
design. The complexity of host-pathogen interactions across multiple species of hosts and
pathogens requires a system level understanding of the entire hierarchy of biological
interactions and dynamics. A systems biology approach can provide systematic insights into
the dynamic/temporal difference in gene regulation, interaction, and function, and thereby
deliver an improved understanding and more comprehensive hypotheses of the underlying
mechanisms (Musser and DelLeo 2005; Franke, Miller et al. 2008). The ability to
consolidate complex data and knowledge into plausible interactome models is essential to
promote the effective discovery of key points of interaction. Accordingly, a systems biology
approach to study molecular pathway gene expression profiles of host cellular responses to
microbial pathogens holds great promise as a methodology to identify, model and predict the
overall dynamics of the host-pathogen interactome. It is believed that such an approach will
be essential for the rational design of both animal and human vaccines when incorporated
into a method of incremental refinement of these models so that new knowledge can be
accrued and utilized for future vaccine developments. What is even more challenging in
animal vaccine development is the spectrum of animal hosts in which vaccines must perform
effectively. Interactome models can be employed to assess the viability of vaccines in other
species and help reduce unnecessary animal experiments. Accordingly, the systems biology
approach to study molecular pathway gene expression profiles of host cellular responses to
microbial pathogens holds great promise as a methodology to identify, model and predict the
overall dynamics of the host-pathogen interactome to facilitate the rational design of
brucellosis and salmonellosis vaccines.

As researchers hypothesize and deduce the sequences and structures of pathogenic proteins
and develop detailed knowledge of their regulatory roles in the host, they can rationally
design vaccines with defined components in order to maximize effectiveness and minimize
safety concerns. Computational capabilities are emerging for creating host-pathogen
interactome models. Such models, utilizing data at the genomic, transcriptomic, proteomic,
metabolomics, etc. levels, can be used to learn and understand the underlying mechanisms
and points of interaction governing the host innate and adaptive responses to pathogens and
their vaccines. Such models are envisioned to play an increasingly integral part in the
vaccine and immunotherapeutic development process, with incremental model
improvements accruing as new biological knowledge is collected from translational in vivo
and ex vivo efficacy and safety studies (non-clinical through clinical trials). An exciting
prospect of such incremental modeling is the role these models can play in a forward -
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looking vaccine rational design strategy. Figure 1 illustrates the strategy of employing a
vaccine-immunotherapeutic development methodology referred to as incremental systems
biology interactome modeling. Multiple elements must come together to implement such a
methodology. Prior biological knowledge (molecular and functional biology) must be
current for both the host and pathogen biological systems. Often such knowledge is minimal
for many of the veterinary animal species and extra steps of obtaining latest genome and
proteome annotations and interaction predictions are necessary and labor intensive. The role
of the computer scientist, statistician, and biologist is integral to the successful development,
refinement and verification of such models. The interactome model cannot just be a list of
possible interaction prediction, but must be part of a dynamic model in which the
relationships governing the host immune response can be captured, interpreted and refined.
The interactome model becomes a tool that can be interrogated and employed in simulation
to help guide vaccine development and/or immunotherapeutic drug candidate selections.
Experimental verification will always be a necessary element, and as such experiments are
conducted, the resulting biological information should be retained and employed as new
biological knowledge for creating the next refined interactome model.

Gene Expression Data Acquisition

An established in vivo perinatal calf ligated ileal loop model, in conjunction with custom
bovine microarrays, was used to study the early temporal changes in the host response to a
previously optimized dosage of 1 x 10° colony forming units of STM, STM mutant, BMEL,
or MAP at four common sampling time-points post infection (0.5, 1, 2, and 4 hours post-
infection) conducted under protocols approved by the Texas A&M University Institutional
Animal Use and Care Committee. Gene expression and phenotyping data were collected at
the College of Veterinary Medicine, Texas A&M University, following a surgical and
sample collection methodology described elsewhere (Santos, Zhang et al. 2002; Zhang,
Santos et al. 2002; Khare, Nunes et al. 2009; Santos, Raffatellu et al. 2009). For each
pathogen condition, under approved BSL2/BSL3 conditions, there were four biological
replicate non-survival surgeries for each pathogen performed on 3-week old male
Salmonella, Brucella and Mycobacterium-free Holstein calves. Host RNA (from each host-
pathogen surgery) was collected and co-hybridized in quadruplicate against bovine reference
RNA to 13K custom bovine arrays (fabricated by W. M. Keck Center, University of Illinois
at Urbana-Champaign) to allow for cross-comparison between experimental conditions.
These custom microarrays consist of 70-mer oligonucleotides representing 13,258 unique
oligos with 12,220 cattle open reading frames (ORFs). A detailed description of the design
and development of the microarray has been published elsewhere (Loor, Everts et al. 2007).
Time matched RNA from non-infected ligated ileal loops were used as healthy state
controls. Proteomics analysis of the STM-Host samples was provided by Pacific Northwest
National Labs (PNNL) utilizing an approach referred to as the accurate mass and time
(AMT) tag approach. The microarray annotation was updated to the latest bovine Unigene
Build #95.

The microarrays were scanned using a GenePix scanner. The spots representing genes on the
arrays were adjusted for background and normalized to internal controls using GenePixPro
image analysis software. Spots with fluorescent signal values below background were
disregarded in all analyses. Samples were normalized against the bovine reference RNA
signals across array and within each array (across duplicate spots). Pairwise comparisons
and Student's t test with Benjamini-Hochberg correction were performed using GeneSifter
and Spotfire DecisionSite. Note, the statistical analysis results are not provided herein,
because this paper is focused on interactome analysis and modeling. However, these
normalized data were employed in the interactome analysis and modeling as described next.
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Interactome Systems Biology Analysis and Modeling

Results

Interactome analysis and modeling were completed using the Seralogix (Seralogix, LLC,
Austin, TX http://www.seralogix.com/) suite of software with an integrated platform
enabling a systems biology computational pipeline for multi-conditional analysis and
modeling, termed the BioSignature Discovery System (BioSignatureDS™). Its core tools are
based on Dynamic Bayesian Networks (DBN) (Murphy 2002), an advanced form of
machine learning and pattern recognition. The platform enables comprehensive cross-
comparisons of the genomic/proteomic data to identify key pathway/GO perturbations and
underlying mechanistic regulatory points. BioSignatureDS™ is used to identify groups and
individual genes that capture the perturbation in a pathway or biological process over time.
This technique is named Dynamic Bayesian Gene Group Activation (DBGGA™). DBGGA
utilizes the normalized microarray data, as described above, as its data input. A subset of the
complete array of genes that map to the analyzed pathways and gene ontology groups are
used in the analysis.

DBGGA creates a Dynamic Bayesian network (DBN) model for each pathway based on
KEGG (KEGG; Kanehisa and Goto 2000) while a naive Bayesian classifier (Friedman,
Geiger et al. 1997) type network model is created for each GO category. Each network
model is trained using the gene expression data from the control condition. The other
experimental condition expression data are then used as evidence to test the goodness-of-fit
of this data against the trained DBN control model. Goodness-of-fit is determined by
Bayesian likelihood ratio tests that are subsequently transformed to a z-score test statistic
(Bayesian z-score) to permit comparison of scores across all pathways and GO categories
(i.e., biological processes). The DBGGA computational method scores and rank groups of
interrelated genes within a given pathway or gene ontology category across all time points in
lieu of just one gene in a single time point (such as used in traditional t-tests), and thus
determines the differences and commonalities between experimental and control conditions.
DBGGA can also determine which genes are the significant sources of the perturbation.
Such genes are designated as “candidate mechanistic genes”, a term we coined to describe
those genes within a pathway that individually contributed significantly to the overall
pathway Bayesian z-scores divergence, and thus are considered mechanistic candidates that
may play key roles in governing the host's immune response. Only those genes that are
associated with a given pathway or GO category were examined using the DBGGA
modeling approach.

BioSignatureDS™ utilizes the significantly perturbed pathways, GO categories and the
“candidate mechanistic genes” as building blocks to construct a system level interactome
network model of the disease/condition. Encapsulating global time-course patterns and
multi-conditional behaviors of a large group of genes/proteins, the systems level model has
great discriminating power even when the effects of individual genes are small. Thus, the
disease models are useful for more efficient comparative modeling, pattern recognition
(diagnostics) and simulations (prognostics). Further, proteomic data are effectively
integrated into the models as an overlay to individual pathway and system-level models to
both confirm the presence of proteins for their encoding genes as well as to visualize the
temporal patterns of protein abundance.

To evaluate the potential for computational systems biology analysis of host:pathogen
interactions (the interactome) to be used as a tool for enhanced rational design of vaccines,
each host/pathogen interaction condition was modeled and scored 219 known metabolic and
signaling pathways and 1620 biological processes (gene groups associated with Gene
Ontology (GO) terms) at four time points. DBGGA was employed to identify the
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perturbations between pathogen conditions for pathways, GO categories, and genes. The
DBGGA method generates Bayesian log likelihood scores that are normalized and
transformed to a z-score equivalent (the Bayesian z-score) so that all pathways and GO
categories across all host/pathogen conditions can be equivalently compared and assessed
for significance.

DBGGA Gene Ontology Analysis

A DBGGA analysis was conducted for gene GO categories. For each pathogen condition,
1620 biological process GO categories were scored. Each condition produced its own unique
set of highly scored GO functions, but for comparison purposes, we chose a small subset of
highly perturbed categories to illustrate the different temporal responses as shown in Figure
2(a). Figure 2 (b) illustrates the comparative analysis of gene scores for just the phagocytosis
GO term category. The gene ontology group scores show a very diverse pattern over time.
As can be seen, the induction or suppression of groups of genes allows us to identify specific
biological process groups that define the pathogenicity biosignatures of each pathogen.
Individual gene patterns within the groups can be further compared as show in Figure 2(b).
For example the gene encoding ADORAL (adenosine Al receptor) is up modulated in
BMEL for at all four time points, but is not significantly expressed in MAP or STM.
Comparative pathogenicity can provide important insights into the mechanistic differences
and guiding the research biologists to identify unique and common mechanisms that may be
new targets for immunotherapeutic drugs or indicators of immunogenicity of novel vaccine
candidates. Such comparative modeling could also be utilized to compare the effectiveness
of vaccine candidates across multiple species.

DBGGA Pathway Analysis

Of the 219 signaling/metabolic pathways scored, we focused on a subset of immune
response related pathways as listed in Figure 3. This figure shows a heat map comparison of
pathway Bayesian z-scores between pathogen conditions over time post infection. There
were considerable differences between the host response profiles. MAP had strong early (30
minute) induction of the majority of its pathways and appeared to reverse to a more
suppressive state by 240 minutes. STM's early response indicated mild perturbations at 30
minutes that increased over time until several pathways were strongly induced by 240
minutes. BMEL was more strongly suppressive for the majority of pathways over time. At
early times (30, 60 minutes) there were a few commonly induced pathways: Antigen
Processing and Presentation, B Cell Receptor Signaling, Fc epsilon RI Signaling, Hedgehog
Signaling, and Natural Killer Cell Mediated Cytotoxicity. In contrast, only ECM-receptor
Interaction, Apoptotic Signaling and Apoptotic DNA Fragmentation had similar
suppressions at 30 and 60 minutes. Interestingly, there was no single pathway at later times
(120, 240 minutes) with similar perturbed states, implying that the host defenses have
divergent biosignatures against the various virulent mechanisms presented by the pathogens.

Significant divergent responses between conditions were observed for MAPK Signaling and
Regulation of Actin Cytoskeleton, for example. For MAP, the MAPK pathway reversed
from induced to suppressed, while STM increased induction and BMEL maintained a
suppressed state. The MAPK Signaling Pathway has been implicated in bacterial
pathogenesis for a number of pathogens such as Salmonella enterica serovar Typhimurium
(Hobbie, Chen et al. 1997), Yersinia spp. (Ruckdeschel, Harb et al. 1998), Listeria
monocytogenes (Tang, Sutherland et al. 1998), and Mycobacterium spp. (Schorey and
Cooper 2003). For the MAP condition, the Regulation of Actin Cytoskeleton pathway was
induced within the first 30 minutes and became suppressed after 240 minutes, while for
STM, this pathway became more strongly induced over the course of 240 minutes. The
BMEL condition had a biphasic response from suppressed to induced and back to being

Vaccine. Author manuscript; available in PMC 2012 September 22.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Adams et al.

Page 7

suppressed over the 240 minute time course. The manipulation of the Actin Cytoskeleton
pathway by STM to invade host cells has been well established (Guiney and Lesnick 2005),
but not as well documented for MAP or BMEL.

The MAPK pathway was selected as a potential candidate gene for more detailed discussion
with regard to gene perturbations, mechanistic interpretations, and gene knockout
simulation. Figure 4 is a heat map of significantly perturbed genes for the MAPK pathway
by pathogen condition. In this figure, the genes are sorted in order of highest up modulation
to lowest down modulation, and for a gene to be included in this figure, a Bayesian z-score>|
2.24| at any one time point was required. The Bayesian z-score > |2.24| reflects 99%
confidence in the data. It is easy to observe that the perturbed genes and their expression
patterns are quite different between conditions. Surprisingly, of the 171 measured genes in
this pathway, only two genes in Figure 4 were found to be commonly perturbed across all
three pathogen conditions: 1) IL1A, which encodes interleukin 1 protein involved in various
immune responses, inflammatory processes, and hematopoiesis; and 2) RASGRP1, which
encodes a protein characterized by the presence of a Ras superfamily guanine nucleotide
exchange factor (GEF) domain that activates the Erk/MAP kinase cascade and regulates T-
cell and B-cell development, homeostasis and differentiation. The perturbation of IL1A and
RASGRPL1 is consistent with genes involved in immune response, but the expression patterns
for these two genes vary significantly between pathogens.

Simply comparing and contrasting the expression patterns of perturbed genes was
inadequate for deciphering the MAPK pathway response dynamics. Clearly, the uniqueness
of the MAPK pathway responses suggested that very different invasion/evasion mechanisms
have evolved for each pathogen. More sophisticated methods are needed to identify potential
points of host response disruptions. This is done by interrogating the trained DBN model for
the MAPK Pathway for genes that exceed threshold Bayesian z-scores>|2.24| (*mechanistic
genes”) and gene-gene network relationships (arcs). For example, Figure 5 shows the
visualization of the MAPK pathway network. The network can be employed to visualize
several key features that would otherwise be difficult to discern by looking at spreadsheet
lists of genes. For example the state of gene modulation is distinguished by color-coded
nodes. The state of upstream and downstream genes can be easily identified. Various
threshold levels can be modified to identify significantly perturbed genes (annotated with
orange circles, Figure 5). The strength of correlation between gene pairs is indicated by the
color and thickness of the arcs connecting the genes.

In Table 1, we show a list of 20 specific gene-to-gene relations associated with the MAPK
pathway (Figure 3) having strong positive and/or negative arc weight correlations. We
normalized the DBN arc weights to allow equivalent comparison to other pathway gene-
gene relations. In this arc weight table, a few significant relationships are numbered in the
table and on the network (Figure 3) with an encircled number and arrow pointing to the
corresponding arc. It is hypothesized that virulence factors from each pathogen can have
different disruptive influences on the host's MAPK Signaling Pathway and that such
disruption can be used to identify pathogenic mechanisms unique to each pathogen, thus
providing a rationale for development of deletion mutants of the corresponding pathogen
virulence factors as potential vaccine candidates. For example, the relation arc TRAF2-
>FLNA had a strong positive weight (correlated) for STM-Host (0.241) and for the BMEL-
Host (0.204) while MAP-Host had a large negative weight (anti-correlated) of —0.17.

The reversal of gene-to-gene arc weight of MAP-Host may indicate a disruption of either
TRAF or FLNA gene by virulent factors of the pathogens, identifying potential novel points
of interaction. TRAF2 encodes a protein that is a member of the TNF receptor associated
factor (TRAF) protein family. This protein is required for TNF-alpha-mediated activation of
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MAPKS8/INK and NF-«B. It has a binding relationship with the filamin-A protein encoded
by the FLNA gene. FLNA participates in the anchoring of membrane proteins to the actin
cytoskeleton. This type of interaction analysis can be done for every pathway and used to
identify novel differences between pathogen conditions. The visualization of mechanistic
genes and arc weight enables an efficient identification of the differences between
pathogenic influences.

Interrogating the Influence of Genes by Interactome Knockout Simulations

More detailed interrogation of the BMEL-Host model found that the gene, MAPK1, was
significantly upregulated in the BMEL condition while not in MAP or STM. Further, it was
observed that MAPK1 had a number of interactions with other genes within the MAPK
Signaling pathway model that showed either very strong anti-correlated relationship such as
the MAPK1->YWHAZ or strongly correlated relationship such as MAPK1->MAPT, while
in MAP and STM host interactome models, the influence of MAPK1 was negligible.
Specifically for the BMEL condition, we found that MAPK1 has a series of direct
relationships with highly significant correlations as listed in Table 2. This could imply that
MAPKZ1 has a unique role in BMEL pathogenesis during early host cell invasion. Mitogen-
activated protein kinase 1 (MAPKZ1 or ERK 1/2) controls many biological functions
(Johnson and Lapadat 2002). The MAPK signaling cascade, represented by 3 well
characterized subfamilies of MAPKs (ERK1/2, JNK and p38), has been implicated in
bacterial internalization (Tang, Sutherland et al. 1998) and intracellular survival and
replication (Hobbie, Chen et al. 1997; Palmer, Hobbie et al. 1998; Schorey and Cooper
2003). Jimenez-Bagues et al. (Bagués, Gross et al. 2005) demonstrated the importance that
the integrity of the MEK - MAPK - ERK 1/2 pathway has on the elimination of rough
Brucella suis in macrophages. To identify the importance of this MAPK signaling pathway
in BMEL invasion and intracellular survival in HeLa cells, a sSiRNA molecule (1D1449) was
used to knock-down MAPK1 expression. Our results confirmed that the internalization of
BMEL decreased more than 60% when the gene was knocked-down with the siRNA
molecule as shown in Figure 6.

To gain better insight regarding the influence of MAPK1 on other genes, we employed the
interactome model to simulate the MAPK1 knockdown in both the MAPK Signaling and
Regulation of Actin Cytoskeleton models. The simulation identified a set of genes that were
heavily influenced by MAPK1 as shown in the gene expression plots of Figure 7 in which
the simulation data is plotted in comparison to the actual data used to train the interactome
model. Interestingly, the simulation identified genes that were both in correlation with the
reduced MAPK1 knockdown expression as well as several that had an increase in expression
(anti-correlated). Either set of correlated or anti-correlated genes could be considered
important contributors to the observed internalized reduction of BMEL in the HeLa host
cells. For example, a correlated gene, SRF (serum response factor), is known to be involved
in actin filament organization, regulation of cell adhesion, negative regulation of cell
migration, negative regulation of cell proliferation, and regulation of transcription. Another
correlated gene, MAPT (Microtubule-associated protein tau) is associated with regulation of
microtubule depolymerization. The anti-correlated gene, YWHAZ (14-3-3 protein zeta/
delta), is known to be involved in the biological processes of anti-apoptosis, histamine
secretion by mast cell and signal transduction. The anti-correlated gene RHOA
(Transforming protein RhoA) is associated with actin cytoskeleton organization, regulation
of I-kappaB kinase/NF-kappaB cascade, and cell adhesion. This type of analysis is an
integral part of the “incremental systems biology interactome modeling” process and
introduced here as preliminary illustration as to how simulation/inferencing of the
interactome model can be employed to guide next phases of in vitro and in vivo
experimentation.
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Biological System Model Generation for Comparative Pathogenicity Analysis

Comparative pathogenicity is a method by which the host response between different
pathogens or pathogen vaccine candidates can be utilized to elicit unique and/or common
biomarkers of immunogenicity. Utilizing BioSignatureDS™, the significantly perturbed
pathways and gene groups from DBGGA were integrated to construct a plausible system
level model of the STM wild type (WT) condition versus an isogenic AsipA, sopABDE?2
mutant. The system model encompasses whole time-course patterns and multi-conditional
behaviors of larger groups of genes and proteins than utilized only in the pathways. The
system model expands the relationship of genes across related pathways and can be used for
more efficient comparative modeling, pattern recognition and simulation supporting “what-
if” type of analyses as previously described at the pathway level. The system model is
constructed from a method based on merging of pathways with known gene/protein
relationships and produces a trained and optimized network model similar to the MAPK
signaling pathway network shown in Figure 5. Following this procedure, a system model
was constructed from 10 selected pathways (listed in Figure 8) showing significant
perturbation between the host infected with STM WT and STM mutant. The resulting model
has a common network structure that is trained using the host response data for the WT,
mutant and control conditions and was comprised of 930 genes and over 1500 gene-to-gene
relations. By interrogating the model, we identified a number of significantly differentially
expressed genes (|Bayesian z-score| >= 2.24) as shown in the center heatmap of Figure 8.
From this heatmap, the difference in the STM mutant shown as green in the heatmap are a
subset of genes which were found to be very highly up regulated in the STM mutant
compared to the wild type and could be considered candidate genes governing the effective
immune response of the host. These genes also form the basis of a biosignature that can be
correlated to immunogenicity for more rational vaccine development. As expected for the
WT, we found increased expression of genes associated with immune response such as those
encoding IFNG, TNF, TLR4, and as well as genes associated with signaling and regulation
of the actin cytoskeleton.

Discussion and Conclusions

Advances in the last decade or so using comprehensive systems biology approaches linking
genomics, proteomics, bioinformatics, and biotechnology with immunology, pathogenesis
and vaccine formulation and delivery have dramatically enabled modern approaches to
vaccine development. Systems biology is bringing a new, more robust approach to
veterinary vaccine design based upon a deeper understanding of the host-pathogen
interactions and their impact on the host's molecular network of the immune system. A
computational systems biology method was utilized to create interactome models of the host
responses to Brucella melitensis (BMEL), Mycobacterium avium paratuberculosis (MAP),
Salmonella enterica Typhimurium (STM), and a Salmonella mutant (isogenic AsipA,
SopABDE?2). A bovine ligated ileal loop biological model was established to capture the host
gene expression response at multiple time points post infection. New methods based on
Dynamic Bayesian Network (DBN) machine learning were employed to conduct a
comparative pathogenicity analysis of 219 signaling and metabolic pathways and 1620 Gene
Ontology (GO) categories that defined the host's biosignatures to each infectious condition.
Through this DBN computational approach, the method identified significantly perturbed
pathways and GO category groups of genes that define the pathogenicity signatures of the
infectious agent. Our preliminary results provide deeper understanding of the overall
complexity of host innate immune response as well as the identification of host gene
perturbations that defines unique host temporal biosignature responses to each pathogen.
The application of advanced computational methods for developing interactome models
based on DBNs has proven to be instrumental in elucidating novel host responses and
improved functional biological insight into the host defensive mechanisms. Evaluating the
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unique differences in pathway and GO perturbations across pathogen conditions facilitated
the identification of plausible host-pathogen interaction mechanisms. Accordingly, a
systems biology approach to study molecular pathway gene expression profiles of host
cellular responses to microbial pathogens holds great promise as a methodology to identify,
model and predict the overall dynamics of the host-pathogen interactome. Thus, we propose
that such an approach will have direct application to the rational design of brucellosis,
salmonellosis and other vaccines for zoonotic diseases where application of veterinary
vaccines directly impact disease transmission in animal populations and indirectly
transmission of zoonoses to human populations.

Vaccination of reservoir species, including domestic animals, when efficacious vaccines are
available, offer significant advantages to combating zoonoses. When appropriate
biopreparedness, management strategies and contingency plans are linked with 1) protective
rationally designed vaccines against zoonoses, 2) effective predictive disease modeling and
3) deployable field implementation policies, control and prevention of serious zoonotic
diseases of man and animals become more achievable.
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Arc weight correlation table showing highly correlated (positive weights) or anti-correlated gene-gene

Table 1

relationships (negative weights) learned from the model training.

Arc label  Gene start Normalized arc weight ~ Gene end Relation type

1 SOSs1 0.372 GRB2 Binding

2 FGF1 0.306 FGFR2 Activation

3 IL1B 0.271 IL1R2 Activation

4 TRAF2 0.241 FLNA Binding
FGF1 0.234 FGFR4 Activation
MAPK4 0.204 PLA2G12B Activation
MAPKS8IP1 0.202 MAP4K1 Binding
DUSP4 0.173 MAPK3 Inhibition
MAPK4 0.185 MAP2K1IP1 Binding
DUSP4 0.178 MAPK®6 Inhibition
MAPK6 0.176 RPS6KA3 Phosphorylation
MAPK12 0.173 TP53 Phosphorylation
MAP3K7IP1 0.092 MAPK12 Phosphorylation
CASP9 -0.008 PAK1 Phosphorylation
CASP7 -0.123 MAP4K1 Phosphorylation
RASGRP4 -0.175 RRAS2 Activation
MAPK12 -0.184 RPS6KA5 Phosphorylation
MAPK1 -0.191 YWHAZ Activation

5 DUSP4 -0.199 MAPK4 Inhibition

6 PRKACB -0.209 RAP1B Activation

Page 20

The arc label column with numbers 1-6 correspond to the arcs labeled in Fig. 4. Arcs define a relationship between a starting gene (parent) and an

ending gene (child).
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Table 2
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MAPKZ1 gene interactions pairs that have significant correlated or anit-correlated relationships determined by

interrogating the MAPK Signaling pathway model.

Gene start  Normalized correlation weight  Gene end Gene end description Relation
MAPK1 0.132 PLA2G12A  Phospholipase A2, group XIIA Activation
MAPK1 -0.13 PLA2G1B Phospholipase A2, group IB (pancreas) Activation
MAPK1 0.137 PLA2G12B Phospholipase A2, group XIIB Activation
MAPK1 -0.167 YWHAZ Tyrosine3-monooxygenase/tryptophan 5-monooxygenase  Activation
activation protein, zeta polypeptide
MAPK1 0.134 PLA2G4A Phospholipase A2, group IVA (cytosolic, calcium- Activation
dependent)
MAPK1 -0.176 MKNK1 MAP kinase interacting serine/threonine kinase 1 Phosphorylation
MAPK1 0.137 MAPT Microtubule-associated protein tau Activation
MAPK1 —-0.122 MAP2K1IP1  Mitogen-activated protein kinase kinase 1 interacting Binding
protein 1
MAPK1 -0.114 MKNK2 MAP kinase interacting serine/threonine kinase 2 Phosphorylation
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