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Abstract

S-nitrosoglutathione reductase (GSNOR) reduces the nitric oxide (NO) adduct S-nitrosoglutathione (GSNO), an

essential reservoir for NO bioactivity. In plants, GSNOR has been found to be important in resistance to bacterial and

fungal pathogens, but whether it is also involved in plant–herbivore interactions was not known. Using a virus-

induced gene silencing (VIGS) system, the activity of GSNOR in a wild tobacco species, Nicotiana attenuata, was

knocked down and the function of GSNOR in defence against the insect herbivore Manduca sexta was examined.

Silencing GSNOR decreased the herbivory-induced accumulation of jasmonic acid (JA) and ethylene, two important

phytohormones regulating plant defence levels, without compromising the activity of two mitogen-activated protein

kinases (MAPKs), salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK). Decreased
activity of trypsin proteinase inhibitors (TPIs) were detected in GSNOR-silenced plants after simulated M. sexta

feeding and bioassays indicated that GSNOR-silenced plants have elevated susceptibility to M. sexta attack.

Furthermore, GSNOR is required for methyl jasmonate (MeJA)-induced accumulation of defence-related secondary

metabolites (TPI, caffeoylputrescine, and diterpene glycosides) but is not needed for the transcriptional regulation of

JAZ3 (jasmonate ZIM-domain 3) and TD (threonine deaminase), indicating that GSNOR mediates certain but not all

jasmonate-inducible responses. This work highlights the important role of GSNOR in plant resistance to herbivory

and jasmonate signalling and suggests the potential involvement of NO in plant–herbivore interactions. Our data

also suggest that GSNOR could be a target of genetic modification for improving crop resistance to herbivores.
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S-nitrosoglutathione reductase (GSNOR), secondary metabolites, trypsin proteinase inhibitor.

Introduction

Plants are constantly challenged by various environmental

stresses, such as herbivore attacks, pathogen infections,
unfavourable temperatures, drought, and UV-B radiation.

Accordingly, plants have evolved to cope with these stresses

using sophisticated defence systems, which include receptors

and sensors, highly complex regulatory networks, com-

pounds and proteins that directly or indirectly protect

plants from these unfavourable conditions (Mittler, 2006;

Chen, 2008; Dodds and Rathjen, 2010; Wu and Baldwin,

2010).
Herbivores, especially insects, pose a great challenge for

plant survival. Accordingly, plants have developed her-

bivory-specific defence systems to perceive herbivore

attacks and deploy defence responses to optimize their

fitness (Heil and Baldwin, 2002; Howe and Jander, 2008;

Wu and Baldwin, 2010). Herbivory-induced defence
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responses have been intensively studied in Nicotiana

attenuata, a native annual plant of the semi-arid deserts

which ranges from northwest Mexico, east to the Great

Basin and north to southern Canada (Baldwin, 2001;

Kessler and Baldwin, 2002). Feeding of Manduca sexta,

a specialist herbivore for N. attenuata, or the application

of M. sexta larval oral secretions (OS) on wounded leaves

activates signalling cascades that involve the activation of
the mitogen-activated protein kinases (MAPKs), salicylic

acid-induced protein kinase (SIPK) and wound-induced

protein kinase (WIPK), and bursts of jasmonic acid (JA),

JA-isoleucine conjugate (JA-Ile), salicylic acid (SA), and

ethylene (Kang et al., 2006; Von Dahl et al., 2007; Wu

et al., 2007).

Many studies in Arabidopsis, tomato, and N. attenuata

have demonstrated the critical roles of JA biosynthesis and
signalling for herbivory-induced defences (McConn et al.,

1997; Halitschke and Baldwin, 2003; Li et al., 2004, 2005;

Paschold et al., 2007). Importantly, JA-Ile, but not JA,

activates most of the JA-induced responses (Staswick and

Tiryaki, 2004). JAZs (jasmonate ZIM-domain proteins)

form complexes with MYC2, the major activator of

JA-induced transcriptional responses, and thus inhibit

the activity of MYC2. Binding of JA-Ile to the COI1
(coronatine insensitive1) receptor facilitates the degrada-

tion of the JAZs by the SCF(COI1) ubiquitin ligase-

mediated pathway and, in turn, releases MYC2 which

activates downstream responses (Chini et al., 2007; Thines

et al., 2007). In N. attenuata, several compounds have been

identified to be important for direct defence against

herbivores. These include trypsin proteinase inhibitors

(NaTPIs) (Zavala and Baldwin, 2004; Zavala et al., 2004),
nicotine (Steppuhn et al., 2004), diterpene glycosides

(DTGs) (Jassbi et al., 2008; Heiling et al., 2010), and the

phenylpropanoid–polyamine conjugate caffeoylputrescine

(CP) (Kaur et al., 2010). Silencing the JA-Ile receptor

COI1 greatly impairs the accumulation of these metabo-

lites and dramatically attenuates N. attenuata’s resistance

against M. sexta attack in the greenhouse and in nature

(Paschold et al., 2007). The function of SA in resistance to
chewing insects remains largely elusive (Wu and Baldwin,

2010), although in some plant–herbivore interactions, SA

appears to suppress JA accumulation (Diezel et al., 2009).

Compared with JA, the gaseous hormone ethylene seems

to play a minor role (Wu and Baldwin, 2010): ethylene

potentiates JA-inducible proteinase inhibitors in tomato

(O’Donnell et al., 1996) and reduces M. sexta herbivory-

induced nicotine accumulation in N. attenuata (Kahl et al.,
2000; Von Dahl et al., 2007).

Emerging evidence has revealed other small molecules in

the regulatory networks in plant–herbivore interactions

(Wu and Baldwin, 2009, 2010). In tomato, reactive oxygen

species (ROS) are important for the transcript accumula-

tion of several herbivore-resistant genes (Orozco-Cardenas

et al., 2001; Sagi et al., 2004). Moreover, nitric oxide (NO),

one of the reactive nitrogen species (RNS), seems to be
also involved in herbivore defences. Wounding induces NO

production in marine macroalgae (Ross et al., 2006) and in

Arabidopsis epidermal cells (Huang et al., 2004). NO

negatively regulates proteinase inhibitor transcript levels

after wounding, systemin, oligosaccharides, and JA treat-

ment (Orozco-Cardenas and Ryan, 2002). NO is highly

diffusible and reactive and it readily nitrosylates cysteine

(S-nitrosylation) and tyrosine (tyrosine nitration) residues

in various proteins (Lindermayr et al., 2005; Besson-Bard

et al., 2008). Importantly, S-nitrosylation has been consid-
ered to be an important prototypic, redox-based, post-

translational protein modification (Stamler et al., 2001;

Wang et al., 2006). However, how NO regulates plant

resistance to biotic stresses is still unknown, and very

likely protein S-nitrosylation by NO plays a critical role

(Feechan et al., 2005; Lindermayr et al., 2005; Grennan,

2007).

Although a bona fide NO synthase has yet to been
identified in higher plants, at least three genes are associated

with NO levels: NOA1 (nitric oxide associated1), NR (nitrate

reductase), and GSNOR (S-nitrosoglutathione reductase)

(Besson-Bard et al., 2008; Wilson et al., 2008). Unlike NOA

and NR, which are positively associated with NO levels in

plants (Yamasaki and Sakihama, 2000; Guo et al., 2003),

GSNOR is located in a NO removal pathway: NO rapidly

reacts with glutathione and forms S-nitrosylated glutathione
(GSNO), and GSNO is further metabolized into the oxidized

glutathione disulphide (GSSG) and NH3 by GSNOR

(Wilson et al., 2008). Consistent with the biochemical

property of GSNOR, the Arabidopsis gsnor mutant exhibits

elevated NO levels, stunted growth, impaired flower

development, and compromised thermotolerance (Lee et al.,

2008). Apart from its role in plant development and

interaction with abiotic environmental factors, GSNOR also
positively controls plant immunity to Pseudomonas syringae

pv. tomato DC3000, Blumeria graminis (powdery mildew),

and Hyaloperonospora parasitica (downy mildew) (Feechan

et al., 2005). By contrast, compared with the wild type,

Arabidopsis antisense GSNOR plants are less susceptible to

Peronospora parasitica Noco2 (oomycete) (Rusterucci et al.,

2007).

Although the function of GSNOR in plant–pathogen
interactions has been explored, its role in plant defence

against herbivores was unknown. A reverse genetic ap-

proach was used here to investigate the function of GSNOR

in N. attenuata’s inducible defence against the specialist

herbivore M. sexta. Virus-induced gene silencing (VIGS)

was used to knock down the transcripts of NaGSNOR, and

traits important in herbivore resistance were examined. It

was found that silencing NaGSNOR attenuates wounding-
and simulated herbivory-induced levels of phytohormones

that regulate plant resistance levels and, accordingly,

decreased accumulation of the defensive compound NaTPI

was detected in NaGSNOR-silenced plants. Moreover,

many, but not all jasmonate-inducible responses are com-

promised in NaGSNOR-silenced plants, indicating the

involvement of NaGSNOR in transducing certain jasmonate-

induced responses. Taken together, our data highlight the
important role of NaGSNOR in plant defence against

herbivores.
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Materials and methods

Plant growth, plant treatment, and herbivore performance assay

Seeds of N. attenuata Torr. Ex Watts were from a line that had
been inbred for 30 generations. Germination and plant cultivation
followed Krügel et al. (2002). Plants were transferred into 1.0 l
pots 20 d after germination on Petri dishes, and were grown in
a climate chamber at 22 �C and under 65% humidity. Light (16 h
d�1) was provided by Philips Sun-T Agro 400 sodium lights
(Philips, Turnhout, Belgium). Herbivory was simulated by wound-
ing the rosette sink–source transition leaves of N. attenuata with
a pattern wheel and immediately applying 20 ll of 1/5 diluted oral
secretions (OS) (W+OS) from M. sexta to the puncture wounds;
plants whose puncture wounds were treated with 20 ll of water
(W+W) were used for comparison. For treatment with methyl
jasmonate (MJ), MJ was dissolved in heat-liquefied lanolin (5 mg
m�1) and 20 ll of MJ-lanolin paste was applied to the basal part
of a leaf; leaves treated with 20 ll of pure lanolin served as
controls. All samples were immediately frozen in liquid nitrogen
after harvesting and stored at –80 �C until analyses. Neonate
M. sexta larvae from laboratory colonies were placed on plants
(one larvae per plant, 30 replicated plants), and the larval masses
were measured on days 4, 9, and 14.

Cloning of NaGSNOR, virus-induced gene-silencing, and Southern

blotting analysis

No GSNOR sequences from Nicotiana spp. were deposited in the
GenBank; therefore an Arabidopsis AtGSNOR (At5g43940) se-
quence was used to blast against the TIGR Plant Transcript
Assemblies (http://plantta.jcvi.org/). A 1.48 kb tobacco NtGSNOR
sequence was found (Plant TA Accession: TA13797_4097). The
partial sequence of NaGSNOR was amplified from N. attenuata
cDNA by PCR with primer pair NaGNSOR-1 (5#-GAACCCAA-
CAAGCCTCTGGT-3#) and NaGSNOR-2 (5#-CATCCACCTT-
GATTTCCTTCT-3#), which were designed according to the
sequence of NtGSNOR. The amplified fragment was cloned into
the pJET1.2 vector (Fermentas, St Leon-Rot, Germany) and
sequenced.
A 326 bp fragment of NaGSNOR was cloned into the pTV00

vector to generate the pTV–NaGSNOR construct, which was
then transformed into Agrobacterium tumefaciens (Ratcliff et al.,
2001). Virus-induced gene silencing was done according to Saedler
and Baldwin (2004). The initiation of silencing was visually
monitored using phytoene desaturase (NaPDS)-silenced plants,
which showed a photo-bleaching phenotype about 2 weeks after
inoculation with A. tumefaciens carrying pTV-NaPDS (Saedler
and Baldwin, 2004).
The restriction enzymes EcoRI, HindIII, EcoRV, and XbaI were

used to digest DNA of N. attenuata. Five micrograms of digested
DNA were separated on a 1% agarose gel and then were further
blotted on to a nylon membrane. Hybridization was performed
according to Wu et al. (2006) using a probe prepared by PCR
amplification of a partial NaGSNOR sequence with the primer
pair NaGSNOR-F1 (5#-CCTCTGGTGATCGAGGATGT-3#)
and NaGSNOR-R1 (5#-TCTCCTGGCTGAACCTCAGT-3#).

Quantitative real-time PCR (qRT-PCR)

TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was used to
extract RNA. cDNA samples were synthesized from 500 ng of
total RNA using the Superscript II reverse transcriptase (Invitro-
gen). qRT-PCR analyses were performed on a Stratagene
MX3005P (Agilent Technologies, Santa Clara, CA, USA) using
qPCR SYBR Green kits (Eurogentec, Seraing, Belgium). An
N. attenuata actin gene NaActin was used to normalize the
variation of cDNA concentrations. All qRT-PCR experiments
were performed using five biological replicates. The sequences of
primer pairs are listed in Supplementary Table S1 at JXB online.

GSNOR activity assay

GSNOR activity was measured spectrophotometrically at 340 nm
using a modified method as described in Sakamoto et al. (2002). In
brief, approximately 30 mg of ground leaf tissue were extracted
with 300 ll of 50 mM HEPES buffer (pH 8) containing 20%
glycerol, 10 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 1 mM
benzamidine, and 1 mM e-aminocaproic acid. The samples were
centrifuged at 4 �C, 16 000 g for 15 min and the supernatants were
further desalted using protein desalting spin columns (Thermo
Fischer Scientific, Rockford, IL, USA). Protein concentrations
were determined and 30 ll of desalted protein samples containing
about 70–120 lg of proteins were added to 300 ll of assay mix [20
mM TRIS-HCl (pH 8), 0.2 mM NADH, and 0.5 mM EDTA]. The
NADH decomposition without GSNO was observed for 75 s. The
enzymatic reaction was started by adding 10 ll of a GSNO
solution into the assay mix to achieve a final GSNO concentration
of 400 lM. The resulting GSNOR activity was expressed as nmol
NADH degraded min�1 mg�1 protein.

In-gel kinase activity assay

Each protein sample was extracted from pooled leaves from
five replicated plants. About 100 mg of leaf tissue were resuspended
in 300 ll of extraction buffer [100 mM HEPES pH 7.5, 5 mM
EDTA, 5 mM EGTA, 10 mM Na3VO4, 10 mM NaF, 50 mM
b-glycerolphosphate, 1 mM phenylmethylsulphonyl fluoride, 10%
glycerol, one proteinase inhibitor cocktail tablet per 10 ml extraction
buffer (Roche, Mannheim, Germany)]. Samples were centrifuged
at 4 �C, 13 000 g for 20 min and the supernatants were transferred to
fresh tubes. Protein concentrations were measured using the Bio-Rad
Protein Assay Dye Reagent (Bio-Rad, Hercules, CA, USA) with
BSA (Sigma-Aldrich, Hamburg, Germany) as a standard. Ten
micrograms of total protein from each sample were used for in-gel
kinase activity assay according to a procedure described by Zhang
and Klessig (1997). The image of in-gel kinase activity assays were
obtained on a phosphorimager (FLA-3000 phosphor imager system,
Fuji Photo Film, Stamford, CT, USA). The same amount of each
sample was run on a duplicated gel without the kinase substrate
myelin basic protein and the gel was stained with the GelCode Blue
Safe Stain reagent (Thermo Fisher Scientific).

Quantification of JA, JA-Ile, SA, ethylene, and direct defence

metabolites

Five biological replicates were used for quantification of JA, JA-
Ile, and ethylene. For JA and JA-Ile analysis, about 100 mg of
frozen and briefly crushed leaf tissue were added to 2 ml
Eppendorf tubes containing 1 g of ceramic beads (MP Biomed-
icals, Illkirch, France). After adding 1 ml of ethyl acetate which
contained 200 ng of JA[D2], 40 ng of JA-[13C6]Ile, and 40 ng of
SA[D4] as internal standards, the tissue was homogenized on
a Geno/Grinder 2000 at 1700 strokes min�1 for 2 min (SPEX
CertiPrep, Metuchen, New Jersey, USA). After 10 min centrifuga-
tion at 4 �C and 13 000 g, the supernatants were transferred to
fresh tubes and completely dried on a vacuum dryer (Eppendorf,
Hamburg, Germany). The pellets were extracted with 500 ll of
70% (v/v) methanol, and samples were cleared with another
centrifugation step. An HPLC-MS/MS (Varian, Palo Alto, CA,
USA) was used to analyse the concentration of JA and JA-Ile in
the supernatants. For ethylene quantification, five leaves were
untreated as controls or were treated with W+OS and, after
recording their fresh mass, they were immediately sealed in a 250
ml three-neck round bottom flask for 4 h under light. The ethylene
contents in the flasks were measured on a photoacoustic laser
spectrometer (INVIVO, Sankt Augustin, Germany) by comparing
sample ethylene peak areas with peak areas generated by an
ethylene standard (Von Dahl et al., 2007). Five replicates were
done for ethylene measurements.
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For analyses of TPI activity, leaves were ground in liquid
nitrogen and ;200 mg of leaf tissue were used for protein
extraction and quantification of TPI activity (Jongsma et al.,
1994). Contents of nicotine, diterpene glycosides, and caffeoylpu-
trescine were analysed on an HPLC as described in Keinanen et al.
(2001).

Results

Herbivory but not wounding transiently reduces the
activity of NaGSNOR

A fragment of NaGSNOR [GenBank: HQ830156] with 967

bp was cloned from the N. attenuata cDNA pool. The

deduced NaGSNOR partial protein sequence showed 98%

and 92% similarity to tomato (Solanum lycopersicum)

SlGSNOR [GenBank: ADB43258] and Arabidopsis AtGS-
NOR1 [GenBank: NP_199207] (Martı́nez et al., 1996),

respectively (see Supplementary Fig. S1 at JXB online). In

the Arabidopsis genome, AtGSNOR1 is a single gene

(Martı́nez et al., 1996). Similarly, Southern blotting analysis

indicated that NaGSNOR has only one copy in N. attenuata

(see Supplementary Fig. S2 at JXB online).

Wounding and chemical components such as fatty-acid

amino-acid conjugates (FACs) in the OS of herbivores,
which are introduced into wounds during feeding, induce

a myriad of reactions on transcriptomic, proteomic, and

metabolomic levels (Howe and Jander, 2008; Wu and

Baldwin, 2010). The transcript and protein levels of

AtGSNOR in Arabidopsis are down-regulated after

wounding (Diaz et al., 2003). To examine whether

M. sexta herbivory leads to altered NaGSNOR transcript

accumulation and NaGSNOR activity in N. attenuata,
rosette leaves of N. attenuata were wounded with a pattern

wheel and 20 ll of M. sexta larval oral secretions (OS)

were immediately applied to wounds (W+OS); this treat-

ment effectively mimics herbivory of M. sexta (Halitschke

et al., 2001). For comparison, mechanical wounding was

done by applying 20 ll of water to wounds (W+W).

Initially, NaGSNOR transcripts were slightly reduced 30

min after both treatments (W+W, W+OS), but regained
the levels seen in non-treated plants by 3 h (Fig. 1A).

However, 6 h after W+W and W+OS treatment,

NaGSNOR transcript levels increased 2.2-fold and 4.3-fold

compared with those in non-treated plants. It was next

examined whether the activity of NaGSNOR is regulated

by wounding and simulated herbivory. After W+W

treatment, no obvious changes of NaGSNOR activity were

found (Fig. 1B). W+OS treatment suppressed up to 30% of
the NaGSNOR activity by 1 h; however, the activity

regained the levels found in non-treated plants by 1.5 h

and showed no changes even after 6 h (Fig. 1B), suggesting

that herbivory (probably the OS of M. sexta) but not

wounding, specifically and transiently reduces the activity

Fig. 1. NaGSNOR transcript accumulation and enzyme activity after wounding and simulated herbivory. Transition leaves of N. attenuata

rosette plants were wounded with a pattern wheel, and were subsequently treated with 20 ll of water (W+W) or 20 ll of M. sexta oral

secretions (W+OS). Samples were harvested after the indicated times. (A) Transcript levels (mean 6SE) of NaGSNOR were measured

with qPCR. (B) Activity (mean 6SE) of NaGSNOR. Stars indicate significantly different levels between treated and non-treated samples

(Student’s t test; *P <0.05; ***P <0.001; n¼5).

Fig. 2. NaGSNOR-VIGS plants have highly diminished transcript

levels of NaGSNOR and strongly reduced GSNOR activity.

N. attenuata plants were infiltrated with Agrobacterium carrying

pTV00 or a pTV-NaGSNOR to generate EV and NaGSNOR-VIGS

plants, respectively. (A) Transcript levels (mean 6SE) of NaGSNOR

and (B) GSNOR activity (mean 6SE) were determined in EV and

NaGSNOR-VIGS plants. Stars indicate significantly different levels

between EV and NaGSNOR-VIGS plants (Student’s t test;

***P <0.001; n¼5).
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of NaGSNOR. In addition, transcript levels of NaGSNOR

after wounding and herbivory do not correlate with the

activity levels of NaGSNOR.

Silencing NaGSNOR impairs herbivory-induced
accumulation of JA and ethylene

RNAi-based gene silencing was first used to generate

plants stably silenced in NaGSNOR. However, all plants of

the T1 generation that were well silenced in NaGSNOR

showed highly stunted growth, reduced apical dominance,

epinastic leaves, and finally aborted all flower buds. Thus,

a virus-induced gene silencing (VIGS) approach was used

to determine the role of NaGSNOR in the response of
N. attenuata to wounding and M. sexta feeding. A pTV-

NaGSNOR construct was prepared by inserting a partial

NaGSNOR coding sequence into the pTV00 vector (Ratcliff

et al., 2001; Saedler and Baldwin, 2004). N. attenuata plants

inoculated with Agrobacterium carrying pTV-NaGSNOR

and empty vector (pTV00) formed NaGSNOR-VIGS and

EV plants respectively. VIGS efficiently reduced the tran-

script levels of NaGSNOR in NaGSNOR-VIGS to about 3%

Fig. 3. Wounding- and simulated herbivory-induced levels of phytohormones in EV and NaGSNOR-VIGS plants. EV and

NaGSNOR-VIGS plants were wounded with a pattern wheel and were subsequently treated with 20 ll of water (W+W) or 20 ll of

M. sexta oral secretions (OS) (W+OS). (A) JA, (B) JA-Ile, and (C) SA contents (mean 6SE) were measured on a HPLC-MS/MS.

(D) Ethylene (mean 6SE) emitted from non-treated (Cont) and W+OS-treated EV and NaGSNOR-VIGS plants. Stars indicate significantly

different levels between EV and NaGSNOR-VIGS plants (Student’s t test; *P <0.05; ***P <0.001; n¼5).
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of those in EV (Fig. 2A). Furthermore, the activity of

NaGSNOR was 90% reduced in these plants (Fig. 2B).

Consistent with the growth phenotype of Arabidopsis gsnor

mutant (Lee et al., 2008), the rosette sizes of NaGSNOR-

VIGS were slightly smaller than those of EV plants (see

Supplementary Fig. S3 at JXB online) and in the elongated

stage, NaGSNOR-VIGS plants exhibited stunted stalks,

a reduced number of flower buds, and epinastic leaves. All

experiments were done at the rosette stage.

Given the central roles of phytohormones in regulating

plant resistance to herbivores, it was determined whether

NaGSNOR modulates wounding- and simulated herbivory-

induced levels of JA/JA-Ile and ethylene. EV and NaGS-

NOR-VIGS plants were treated either with W+W or W+OS

and JA contents were analysed in samples collected 30, 60,
and 90 min after treatments. In EV plants, compared with

W+W, W+OS elicited 2-fold higher levels of JA by 1 h,

indicating that N. attenuata recognized herbivore elicitors,

FACs, in M. sexta OS and accumulated high contents of

JA; by contrast, JA contents in NaGSNOR-VIGS plants

were about half those found in EV plants (Fig. 3A).

Similarly, NaGSNOR-VIGS plants challenged with W+W

also showed a reduced JA accumulation (Fig. 3A). The JA-
Ile levels also showed a tendency to be decreased in

NaGSNOR-VIGS plants after W+W and W+OS treatment

(Fig. 3B). Due to the antagonistic nature between the JA

and salicylic acid (SA) signalling pathway, it is possible that

the suppressed JA levels in NaGSNOR-VIGS resulted from

high SA contents in these plants (Pieterse et al., 2009).

When untreated, statistically no significantly different levels

of SA were detected between EV and NaGSNOR-VIGS
(P¼0.16), although NaGSNOR-silenced plants tended to

Fig. 4. Silencing NaGSNOR does not impair wounding- and

simulated herbivory-induced MAPK activity in N. attenuata. EV and

NaGSNOR-VIGS plants were wounded with a pattern wheel and

were subsequently applied with 20 ll of water (W+W) or 20 ll of

M. sexta oral secretions (OS) (W+OS). Samples were harvested

after the indicated times. An in-gel kinase activity assay (upper

panel) was performed to detect the activity of SIPK and WIPK.

Replicated samples were run on a SDS-PAGE gel, and this gel

was thereafter stained with Coomassie Brilliant Blue (CBB) for

visualization of equal loading (lower panel).

Fig. 5. Accumulation of herbivore defense-related secondary metabolites in EV and NaGSNOR-VIGS plants. Leaves of EV and

NaGSNOR-VIGS plants were wounded with a pattern wheel, and were thereafter applied with 20 ll of water (W+W) or 20 ll of M. sexta

oral secretions (W+OS). The activity of NaTPI (A), contents of caffeoylputrescine (CP) (B), diterpene glycosides (DTGs) (C), and nicotine

(D) (mean 6SE) were determined in EV and NaGSNOR-VIGS plants 3 d after treatments; non-treated plants served as controls (Cont).

Star indicates significantly different levels between EV and NaGSNOR-VIGS plants (Student’s t test; *P <0.05; n¼5).

4610 | Wünsche et al.

http://jxb.oxfordjournals.org/cgi/content/full/err171/DC1


have 35% more SA levels than did EV (Fig. 3C). After

W+W and W+OS treatment, compared with EV, NaGS-

NOR-VIGS also exhibited a tendency of having maximally

50% and 30% higher SA levels (P >0.09 and 0.16,

respectively) (Fig. 3C). Wounding does not increase ethyl-

ene emission from N. attenuata (Von Dahl et al., 2007),

hence ethylene emissions were measured in control and

W+OS-treated plants. After W+OS, NaGSNOR-VIGS

exhibited about 43% reduced ethylene emission compared

to EV (Fig. 3D).

Thus, it was inferred that NaGSNOR is required for
wounding- and herbivory-induced accumulation of JA and

herbivory-elicited biosynthesis of ethylene in N. attenuata.

NaGSNOR-VIGS plants do not have altered activity of
SIPK and WIPK

In N. attenuata, SIPK and WIPK are required for wound-

ing- and herbivory-induced JA and ethylene biosynthesis

(Wu et al., 2007). Using an in-gel kinase activity assay,
SIPK and WIPK activity was determined in EV and

NaGSNOR-VIGS plants 0, 10, 30, and 60 min after W+W

and W+OS treatment (Fig. 4). In EV plants, W+W and

W+OS rapidly activated SIPK and compared with W+W,

W+OS elicited higher levels of SIPK activity. Low WIPK

activity was only detected in W+OS-induced samples.

Importantly, EV and NaGSNOR-VIGS plants showed

similar levels of SIPK and WIPK activity at all times

Fig. 6. Silencing NaGSNOR in N. attenuata compromises plant

resistance to insect herbivore, M. sexta. Neonate M. sexta larvae

were placed on rosette-staged EV and NaGSNOR-VIGS plants and

larval masses (mean 6SE) were measured after 4, 9, and 14 d.

Stars indicate significantly different larval masses between those fed

on EV and on NaGSNOR-VIGS plants (Student’s t test; *, P <0.05;

***P <0.001; n¼30).

Fig. 7. Herbivore defence-related secondary metabolites in EV and NaGSNOR-VIGS plants after methyl jasmonate treatment. EV and

NaGSNOR-VIGS plants were applied with lanolin pastes (20 ll) containing 5 mg ml�1 methyl jasmonate (MJ) or pastes of pure lanolin

(Lan) (20 ll) for comparisons. The activity of NaTPI (A), contents of caffeoylputrescine (CP) (B), diterpene glycosides (DTGs) (C), and

nicotine (D) (mean 6SE) were determined in EV and NaGSNOR-VIGS plants 3 d after treatments. Stars indicate significantly different

levels between EV and NaGSNOR-VIGS plants (Student’s t test; *P <0.05; n¼5).
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(Fig. 4). Therefore, the decreased JA and ethylene levels in

wounding- and herbivory-induced NaGSNOR-VIGS were

not due to impaired MAPK activation.

Wounding- and herbivory-induced NaTPI activity levels
are compromised in NaGSNOR-VIGS plants

TPIs are important anti-herbivore compounds in solana-

ceous plants, including N. attenuata (Ryan, 1989; Haq

et al., 2004; Zavala et al., 2004). To determine the function

of NaGSNOR in regulating the response to wounding and

herbivory, defence metabolites were determined in EV
and NaGSNOR-VIGS plants 3 d after W+W or W+OS.

NaTPI activity was not inducible after W+W and W+OS

treatment in NaGSNOR-VIGS, whereas W+OS treatment

elicited a 3.3-fold increase in EV plants (Fig. 5A). VIGS

requires growing plants under reduced temperatures,

which significantly influences secondary metabolism and

can selectively alter the amount of particular secondary

metabolites in plant tissue (Kaplan et al., 2004; Shohael
et al., 2006). This might be the reason why the concen-

trations of other known JA-inducible secondary metabo-

lites (CP, DTGs, and nicotine) did not increase after

wounding and simulated herbivory treatment, even in EV

plants (Fig. 5B, C, D).

To evaluate the resistance levels of NaGSNOR-silenced

plants against M. sexta attack, bioassays were performed.

Neonate M. sexta larvae were grown for 14 d on EV and
NaGSNOR-VIGS plants and their masses were recorded on

days 4, 9, and 14. Average final larval mass on EV plants

(102 mg) was only 54% of the mean mass of those reared on

NaGSNOR-VIGS plants (186 mg) (Fig. 6), indicating that

NaGSNOR is required for N. attenuata’s defence against

M. sexta.

NaGSNOR-VIGS plants have altered methyl jasmonate-
induced responses

Changing NO levels by supplying NO donors to tomato

leaves strongly suppresses transcript levels and activity of

proteinase inhibitors, whereas levels of several other JA-

inducible transcripts are not altered (Orozco-Cardenas and

Ryan, 2002). Therefore, it was determined if silencing

NaGSNOR also compromises the accumulation of NaTPI

transcript levels, and other JA-inducible genes and secondary
metabolites.

Methyl jasmonate (MJ) in 20 ll of lanolin (5 lg ll�1) was

applied to plants, and plants treated with 20 ll of pure

lanolin were used as controls. Defence metabolites (NaTPI,

CP, and DTG) were measured 3 d after these treatments.

When treated with lanolin, NaGSNOR-VIGS plants

exhibited 1-fold higher levels of NaTPI activity than did

EV plants (Fig. 7A). After MJ application, NaTPI activity
levels increased 9.5-fold in EV plants, while only 1.7-fold in

NaGSNOR-VIGS (Fig. 7A). Similarly, MJ application

highly increased the levels of CP and DTGs in EV, but

NaGSNOR-VIGS plants had only about 30% and 50% of

the CP and DTG contents found in EV plants (Fig. 7B, C).

Probably due to the relatively low growing temperatures,

neither MJ treatment nor silencing NaGSNOR altered the

levels of nicotine in any plants (Fig. 7D).

In addition, the transcript levels of several JA-inducible
genes were examined. Consistent with the attenuated

NaTPI activity in NaGSNOR-silenced plants, MJ treatment

induced 4-fold higher NaTPI transcript levels in EV plants

than in NaGSNOR-VIGS plants (Fig. 8A). Although

compared with those in EV plants, somewhat lower and

higher transcript levels of NaJAZ3 (jasmonate ZIM-domain

3) and NaTD (threonine deaminase) were found in control

plants, after MJ treatment, transcript levels of NaJAZ3 and

Fig. 8. Transcript levels of NaTPI, NaJAZ3, and NaTD in methyl

jasmonate-treated EV and NaGSNOR-VIGS plants. EV and NaGS-

NOR-VIGS plants were applied with lanolin pastes (20 ll) contain-

ing 5 mg ml�1 methyl jasmonate (MJ), or pastes of pure lanolin

(Lan) (20 ll) for comparison. The transcript levels of NaTPI (A),

NaJAZ3 (B), and NaTD (C) (mean 6SE) were determined in EV and

NaGSNOR-VIGS plants 8 h after treatments. Stars indicate

significantly different levels between EV and NaGSNOR-VIGS

plants (Student’s t test; *P <0.05; n¼5).
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NaTD were the same in NaGSNOR-VIGS and EV plants

(Fig. 8B, C).

Therefore, it was inferred that NaGSNOR is required for

certain, but not all, JA-induced responses in N. attenuata.

Discussion

GSNORs have structural features that are highly conserved

in bacteria, animals, and plants (Martı́nez et al., 1996;

Fliegmann and Sandermann, 1997; Liu et al., 2001). In

mice, silencing GSNOR leads to increased damage in the

lymphatic and liver tissue after being challenged with

bacterial endotoxin (Liu et al., 2004). Arabidopsis AtGS-
NOR1 is a positive regulator of plant immunity against

phytopathogens (Feechan et al., 2005). It is shown here

that in N. attenuata, NaGSNOR plays an essential role in

wounding responses and plant defence against the specialist

insect herbivore, M. sexta.

NO rapidly reacts with glutathione and forms GSNO;

in addition, it modifies cysteine and tyrosine residues in

proteins and therefore forms nitrosylated cysteine and
tyrosine. Consistent with the biochemical function of

GSNOR, GSNOR–/– mutant mice have high S-nitrosothiol

(SNO) haemoglobin levels in red blood cells, which is

probably associated with increased NO levels (Liu et al.,

2004). Similarly, the Arabidopsis gsnor mutant also exhibits

greatly elevated levels of NO, nitrate, SNO, and N-nitroso

species (Feechan et al., 2005; Lee et al., 2008). Many

proteins, especially those involved in signal transduction,
are targets of nitrosylation (Lindermayr et al., 2005;

Grennan, 2007; Besson-Bard et al., 2008). In agreement

with this, NaGSNOR is required for wounding- and

simulated herbivory-induced accumulation of phytohor-

mones (JA/JA-Ile and ethylene) and NaGSNOR is also

important for certain responses induced by JA, including

the accumulation of defence-related secondary metabolites,

suggesting its role in transducing certain aspects of JA
signalling.

In plants, JA plays a central role in defence against

herbivore stress (Kessler et al., 2004; Howe and Jander,

2008; Wu and Baldwin, 2010). Although almost all the

enzymes involved in JA biosynthesis have been identified in

various plant species (Wasternack, 2007), little is known

about how JA biosynthesis is regulated. Our data indicated

that NaGSNOR is positively associated with the levels of
wounding- and herbivory-induced JA in N. attenuata.

However, how NaGSNOR is involved in the regulation of

JA homeostasis remains elusive. It is possible that NaGS-

NOR-silenced plants over-accumulate GSNO (a source of

NO) which may nitrosylate certain JA biosynthetic enzymes

and thus decrease their activity. At least one enzyme in the

oxylipin pathway for JA biosynthesis, allene oxide cyclase

(AOC), has been identified to be a nitrosylation target
(Romero-Puertas et al., 2008). Studies in many plant species

demonstrated that SA suppresses the accumulation of JA

(Spoel et al., 2003; Diezel et al., 2009; Pieterse et al., 2009),

and that NPR1 (non-expresser of PR genes1) is important

for the suppression effect of SA on JA accumulation and

signalling (Spoel et al., 2003). Importantly, NPR1 is also

nitrosylated in planta and nitrosylation is important for the

homeostasis of NPR1 (Tada et al., 2008). Recently,

Lindermayr et al. (2010) demonstrated that GSNO nitro-

sylates both NPR1 and TGA1, an important transcription

factor that activates transcription of PR (pathogenesis-

related) genes after binding of NPR1; furthermore, trans-

location of NPR1 to the nucleus, which is required for the
activation of NPR1-induced responses, requires NO. There-

fore, in addition to the tendency of increased SA levels in

NaGSNOR-silenced plants, which may have some effect on

the suppression of JA production (Pieterse et al., 2009),

there was speculation that the likely elevated levels of

GSNO may increase nitrosylation of NPR1 and thereby

enhance NPR1 activity, which, in turn, promotes the

suppression of JA accumulation by SA. This hypothesis
needs to be examined further.

Compared with JA biosynthesis, ethylene production

requires fewer enzymes. Methionine is converted to

S-adenosylmethionine (S-AdoMet) by S-AdoMet synth-

ases (SAMSs), and the conversion of S-AdoMet to

1-aminocyclopropane-1-carboxylic acid (ACC) is mediated

by ACC synthases (ACSs). ACOs (ACC oxidases) further

catalyse the oxidation of ACC to form ethylene (Wang
et al., 2002). Among these key enzymes, SAMSs (also

methionine adenosyltransferases, MATs) are targets of

nitrosylation (Lindermayr et al., 2005), and an in vitro assay

suggested that nitrosylation of certain SAMS inhibits its

activity (Lindermayr et al., 2006). Consistent with this

scenario, in NaGSNOR-silenced plants, herbivory-induced

ethylene emissions are greatly compromised. Whether

silencing NaGSNOR alters the activity of other ethylene
biosynthetic enzymes (ACSs and ACOs) also requires

further study.

In N. attenuata, SIPK and WIPK are regulators of

wounding- and herbivory-induced biosynthesis of JA (Wu

et al., 2007). Moreover, activation of SIPK in N. attenuata

and its homologue (AtMPK6) in Arabidopsis is required for

50% of the ethylene emitted after herbivory and pathogen

elicitor (flagellin) elicitation (Liu and Zhang, 2004; Wu
et al., 2007). However, kinase activity assays revealed either

that NaGSNOR modulates the levels of JA and ethylene in

a MAPK-independent manner or that NaGSNOR func-

tions downstream of MAPKs.

Supplying excised tomato leaves with NO donors

strongly inhibits JA-induced proteinase inhibitor expression

and activity; however, JA-induced transcript levels of

several signalling pathway-related genes are not altered
(Orozco-Cardenas and Ryan, 2002). Similarly, NaGSNOR

appears to be important for some but not all JA-induced

responses: after MJ treatment, NaGSNOR activity is re-

quired for sufficient up-regulation of the genes that are

involved in the biosynthesis of NaTPI, CP, and DTGs, but

is not important for the transcriptional regulation of

NaJAZ3 and NaTD. It is very unlikely that silencing

NaGSNOR compromises the activity of the JA-Ile receptor,
COI1, or the activity of the SCF(COI1) complex, given that

at least two JA-inducible genes, NaJAZ3 and NaTD, have
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similar levels of transcripts in EV and NaGSNOR-VIGS

plants after MJ induction. This also ruled out the possibility

that NaGSNOR-VIGS plants have decreased activity of MJ

esterase, which releases JA from the inactive MJ (JA is

further converted to JA-Ile and therefore activate jasmo-

nate-induced responses) (Wu et al., 2008). In addition to its

function in suppression of JA accumulation, NPR1 also

plays a critical role in mediating the antagonism between
SA and JA signalling (Pieterse et al., 2009). Whether

NaGSNOR-deficient plants have enhanced NPR1 activity

and therefore have elevated inhibition of certain JA-induced

responses by SA needs to be examined.

After wounding, Arabidopsis GSNOR exhibits reduced

abundance of both transcripts and protein (Diaz et al., 2003),

and this is congruent with increased NO levels induced by

wounding (Huang et al., 2004). Recently, wounding was also
found to attenuate the activity of GSNOR in sunflower

seedlings (Chaki et al., 2011). Although wounding does not

alter the activity of NaGSNOR in N. attenuata, simulated

herbivory induces a transient decline. These data suggest that

compared with mechanical wounding, herbivory not only

specifically modifies transcript levels of various genes, the

abundance of proteins and secondary metabolites, but also

the status of protein posttranslational modification (e.g.
nitrosylation and phosphorylation) in plant cells (Foyer and

Noctor, 2005; Moreau et al., 2010). Given that diminishing

the activity of NaGSNOR using gene silencing compromises

plant resistance to M. sexta, the rapid reduction and

subsequent regaining of NaGSNOR activity after herbivory

implies that a transient decrease of NaGSNOR activity is

required for the optimum induction of herbivory-specific

defence reactions, which involves a reconfiguration of the
protein nitrosylation status. Given the positive association

between GSNOR activity and plant defence levels, it is

proposed that GSNOR could, potentially, be a target of

genetic modification for improving insect resistance in crops.

Supplementary data

Supplementary data can be found at JXB online.

Supplementary Fig. S1. Alignment of protein sequences
of GSNOR in Nicotiana attenuata, Solanum lycopersicum,

and Arabidopsis thaliana.

Supplementary Fig. S2. Southern blotting analysis of

NaGSNOR in N. attenuata.

Supplementary Fig. S3. Morphology of EV and NaGS-

NOR-VIGS plants.

Supplementary Table S1. Primer pairs used for qRT-

PCR.

Acknowledgements

We thank Dr Klaus Gase, Thomas Hahn, Susan Kutsch-

bach, and Antje Wissgott for sequencing and preparation of

the VIGS construct, Dr Tamara Krügel, Andreas Weber,
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