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Abstract
Although the ultimate aim of neuroscientific enquiry is to gain an understanding of the brain and
how its workings relate to the mind, the majority of current efforts are largely focused on small
questions using increasingly detailed data. However, it might be possible to successfully address
the larger question of mind–brain mechanisms if the cumulative findings from these
neuroscientific studies are coupled with complementary approaches from physics and philosophy.
The brain, we argue, can be understood as a complex system or network, in which mental states
emerge from the interaction between multiple physical and functional levels. Achieving further
conceptual progress will crucially depend on broad-scale discussions regarding the properties of
cognition and the tools that are currently available or must be developed in order to study mind–
brain mechanisms.

The state of the mind–brain dilemma
The human mind is a complex phenomenon built on the physical scaffolding of the brain [1–
3], which neuroscientific investigation continues to examine in great detail. However, the
nature of the relationship between the mind and the brain is far from understood [4]. In this
article we argue that recent advances in complex systems theory (see Glossary) might
provide crucial new insights into this problem. We first examine what is presently known
about the complexity of the brain and review recent applications of complex network theory
to the study of brain connectivity [2,3] (Box 1 and Figure 1). We then discuss the
philosophical concept of emergence as a potential framework for the investigation of mind–
brain mechanisms. We delineate currently available investigative tools for the examination
of this problem, from quantitative statistical physics to qualitative metaphors, and discuss
their relative advantages and limitations. Finally, we highlight crucial areas where further
work is necessary to achieve progress, including both detailed modeling and large-scale
theoretical frameworks.

Box 1

Complex network theory
Complex network theory draws from advances in statistical physics, mathematics,
computer science and the social sciences to provide a principled framework in which to
examine complex systems that are composed of unique components and display
nontrivial component-to-component relations. This framework has been applied to
systems as varied as metabolic networks, food webs, gene–gene interactions, social
networks and more recently the human brain.
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The simplest application of the theory to these systems is in the use of mathematical
graph theory to describe the statistical properties of the system’s connectivity, which can
provide important insights into underlying organizational principles. The graphical
properties of systems can be directly related to characteristics of the system’s function
and to external constraints that might have shaped the system’s growth, development and
operation. Graphical models can be extended to create more complicated models in
which simple connectivity maps are supplemented with additional information on the
characteristics of individual components, functional algorithms and so on. An additional
important avenue of inquiry is the construction of generative models of network
organization that can shed light on the structural predictors of altered function, for
example in disease states.

Complex network theory is particularly applicable to the study of the human brain - a
complex system on multiple scales of space and time that can be decomposed into
subcomponents and the interactions between them. In addition to applicability, the
framework is generalizable across neuroimaging modalities and provides results that can
be intuitively interpreted in relation to large bodies of previous neuroscientific and
theoretical work [79]. Importantly, graphical properties of human brain networks have
been directly linked to system function through correlations with behavioral and
cognitive variables including verbal fluency, IQ and working memory accuracy [30].
Altered function, such as that present in disease states, has also been correlated with
underlying structure in clinical states as diverse as schizophrenia and Alzheimer’s disease
[80].

Complementary avenues of inquiry have uncovered evidence that metabolic properties of
the brain can be mapped to network organization [81] suggesting energetic constraints on
underlying architecture. These results are consistent with recent work characterizing the
physical embedding of brain network organization into the 3-dimensional space of the
skull- a process that seems to have been done in a cost-efficient manner characteristic of
other highly constrained physical systems [7].

In summary, there exists a wealth of emerging evidence that complex network theory,
applied to neuroimaging data, can uniquely facilitate neuroscientific inquiry.

Complexity and multiscale organization
A first step in understanding mind–brain mechanisms is to characterize what is known about
the structure of the brain and its organizing principles. The brain is a complex temporally
and spatially multiscale structure that gives rise to elaborate molecular, cellular, and
neuronal phenomena [3] that together form the physical and biological basis of cognition.
Furthermore, the structure within any given scale is organized into modules – for example
anatomically or functionally defined cortical regions – that form the basis of cognitive
functions that are optimally adaptable to perturbations in the external environment.

Spatial and temporal scaling
In the spatial domain alone, the brain displays similar organization at multiple resolutions
(Figure 2). In addition to the spatial distributions of molecules inside neuronal and non-
neuronal cells, the cells themselves are heterogeneously distributed throughout the brain [5].
Minicolumns - vertical columns through the cortical layers of the brain -contain on average
100 neurons, are roughly 30 microns in diameter and form the anatomical basis of columns,
subareas (e.g. V1), areas (e.g. visual cortex), lobes (e.g. the occipital lobe), and thereby the
complete cerebral cortex. Not only is the structural distribution of components
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heterogeneous within the cortex, but recent evidence also suggests that so, in fact, is the
connectivity between those components [6–8].

Temporal scaling is evident across the inherent rhythms of brain activity [9–11] that vary in
frequency and relate to different cognitive capacities. The highest frequency gamma band
(>30 Hz) is thought to be necessary for the cognitive binding of information from disparate
sensory and cognitive modalities [12] whereas the beta (12–30 Hz), alpha (8–12 Hz),
gamma (4–8 Hz), theta (2–4 Hz) and delta (1–2 Hz) bands each modulate other distinct yet
complementary functions [13]. A broad range of temporal scales also characterizes human
cognitive functions. For example, the pattern of neuronal connections in the brain changes
with learning and memory through the process of synaptic plasticity on both short (seconds
to minutes) and long (hours to days to months) timescales [14]. In addition to synapses
between neurons, connections between large swaths of cortex can also be altered by learning
and memory processes (e.g. after long-term training in a motor skill such as juggling) as
indicated by white matter fiber structure measured by diffusion imaging [15]. Furthermore,
functional [16], structural [17] and connectivity [18,19] signatures of short-term
development and longer-term aging are evident, supporting the view that brain organization
dynamically changes over multiple temporal and spatial scales.

Modularity
Although this hierarchy of scales characterizes brain organization both functionally and
structurally in both time and space, organization within a single scale also displays a
nontrivial ‘nearly decomposable’ [20] or modular nature (Figure 3). That is, the entire brain
system can be decomposed into subsystems or modules. In the temporal domain, example
modules might be short- and long-term memory whereas in the spatial domain anatomical
modules are present in cortical minicolumns or columns. Importantly, each of these modules
is composed of elements that are more highly connected to other elements within the same
module than to elements in other modules, thereby providing a compartmentalization that
reduces the interdependence of modules and enhances robustness [21,22]. Combined with
the principle of hierarchy, modularity allows for a formation of complex architectures
composed of subsystems within subsystems within subsystems that facilitate a high degree
of functional specificity.

In addition to enhancing robustness and specificity, modularity facilitates behavioral
adaptation [21] because each module can both function and change its function without
adversely perturbing the remainder of the system. The principle of modularity, by reducing
constraints on change [21,23,24], therefore forms the structural basis on which subsystems
can evolve and adapt [25] in a highly variable environment [26]. Although a limited
conception of modularity of function has influenced neuroscientific thought since the early
years of phrenology [27], the more contemporary understanding admits the nonarbitrary,
non-random, nonhomogenous nature of the brain as evidenced by soft boundaries between
coherently operating groups of cortical and subcortical brain regions such as the motor
network and the visual network.

One particular experimental approach has recently highlighted the modular nature of cortical
function, and that is resting state functional magnetic resonance imaging (fMRI) where
spontaneous low frequency fluctuations of the blood-oxygen-level dependent (BOLD) signal
in specific groups of brain regions are more highly correlated with one another than to
fluctuations of regions in other groups [28]. These spatially specific modules have
temporally dynamic interconnections both within and between themselves and include the
control, visual, auditory, default mode, dorsal attention and sensorimotor networks [29].
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More formal descriptions of modular architecture have become possible with the recent
application of complex network theory to neuroimaging data [30], which has provided direct
evidence for both functional [31] and structural [7,8,32] hierarchical modularity of human
brain connectivity [33,34]. Within these modular structures, brain regions perform distinct
roles either as hubs of high connectivity or as provincial nodes of local processing. This
stratification of regional roles is in fact evident in both structural [6] and functional [35]
connectivity networks and might have neurophysiological correlates: each region of the
brain is differentially energetically active, sustaining varying amounts of synapse
development and redevelopment or plasticity [36].

Anatomically, this organizational principle of hierarchical modularity is thought to be
compatible with an evolutionary pressure for the minimization of energy consumption in
developing and maintaining wiring [7,37]. In fact the large majority of the energy budget in
the human brain is used for the function of synapses [38]. The physicality of wiring
constraints is also compatible with the inherent spatiality of the observed connectivity:
regions close together in physical space interact strongly [39] whereas long-range
anatomical connections or functional interactions connect disparate modules [7,8,32]. In
fact, the folding of the cortical sheet as well as its placement on the outside of the brain
allows the complex wiring diagram of the brain to contain short-range energetically efficient
connections [40]. In light of the physical geometry of the brain and its connections, an
interesting complementary avenue of research will be to study the inherent metric geometry
of the brain’s connectivity (independent of physical constraints) as measured by for example
topological network curvature [41]: a description of the inherently curved space in which a
network’s organization exists.

Relationship between structure and function
Mounting evidence suggests that the physical constraints on the anatomical organization of
the human brain constrain its function. For example, two regions of the brain that are
coherently active (functionally connected) with one another are often connected by a direct
white matter pathway [6,42]. The Human Connectome Project
(http://www.humanconnectomeproject.org/) [43] parallels similar efforts in the mouse
[44,45], worm [39] and fly [46,47] in its attempt to comprehensively map the wiring
diagram of the human brain at increasing levels of spatial resolution Figure 4). Importantly,
this and similar efforts in future will need to be supplemented by investigations into
neuromodulatory networks acting in parallel with structural connectivity networks or wiring
diagrams but which are independent predictors of brain function [48].

The mapping of neuronal connectomes from many species represents an extensive effort in
data collection and will require significant advances in data acquisition [49], processing [50]
and neuroinformatics [51]. The resulting wiring diagrams, however, can be very useful for
exploratory analysis to characterize the organizational principles underlying structural
connectivity (e.g. [6,8]) or to test specific hypotheses about the structural underpinnings of
function [52]. However, although the functional interpretation of the connectome is
potentially immensely powerful it is also fraught with caveats. It is plausible that structural
connectivity might enable us to predict function but it is not yet clear how to make that
prediction. Efforts to this end are complicated by an inherent functional degeneracy that
might facilitate robustness and adaptability [53]: the brain performs many (degenerate)
functions on the identical anatomical substrate. Furthermore, the cortex is characterized by
multipotentiality: anatomical structures specific to vision in the seeing adult might develop
into auditory processing units in the early blind [54]. These characteristics of the human
brain suggest that anatomical connectivity alone does not uniquely specify the global
functionality of a circuit or brain system. Rather structure–function mappings are many-to-
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many and inherently degenerate because they depend on both network interactions and
context. Therefore, although a one-to-one relationship between structure and function might
be inconsistent with our current understanding of the brain, a more complicated emergence
of function from multiscale structure is plausible [55].

Emergence
Multiscale organization is one hallmark of complex systems and provides the structural
basis for another defining phenomenon; this is the concept of emergence in which the
behavior, function and/or other properties of the system (e.g. consciousness or the subjective
features of consciousness – qualia) are more than the sum of the system’s parts at any
particular level or across levels [4]. In fact, such system properties can emerge from
complex patterns of underlying subsystems.

Perhaps most simply, emergence – of consciousness or otherwise – in the human brain can
be thought of as characterizing the interaction between two broad levels: the mind and the
physical brain. To visualize this dichotomy, imagine that you are walking with Leibniz
through a mill [56]. Consider that you can blow the mill up in size such that all components
are magnified and you can walk among them. All that you find are mechanical components
that push against each other but there is little if any trace of the function of the whole mill
represented at this level. This analogy points to an important disconnect in the mind–brain
interface: although the material components of the physical brain might be highly
decomposable, mental properties seem to be fundamentally indivisible [4].

Although emergence can be conceptualized most broadly as occurring between the two
levels of the mind and the brain, emergence might be a more fundamental property of the
human brain system occurring between multiple physical and functional levels [57]. This
idea represents a fundamental paradigm shift away from the so-called reductionism
perspective in which the strongest explanatory power lies at the lowest level of
investigation: that is, system phenomena are explained by breaking or reducing the system
down into molecules, atoms, particles and then subparticles. However, biological systems
such as the brain are fundamentally nonreducible in the sense that nonfundamental
components have significant causal power: causation seems to occur both upwards and
downwards between multiple levels (either neighboring or distant) of the system [58]
creating a complementarity or mutually constraining environment of mental and physical
functions [59]. This nonreducibility of the brain might be predicated on its inherent
organization, which is not a simple sum of the parts with which it is organized.
Nonfundamental causality, unlike correlation or determinism [60], allows for mutual
manipulability over levels and multiple realizability of system function. It also provides a
framework in which to place human responsibility [61] and relate neuroscientific advances
to ethics and law [59,62], a process that poses significant difficulties in the context of
deterministic reductionism.

The study of altered minds is perhaps one of the greatest tools currently available to assess
the mind–brain interface and the characteristics of emergence. Indeed, some of the strongest
lines of evidence for nonfundamental causality in the human brain come from psychiatry,
for example in the treatment of clinical depression. The most effective therapy for
depression combines the administration of Selective serotonin reuptake inhibitors (SSRIs)
(pharmacotherapy, i.e. molecular intervention) and cognitive behavioral therapy
(psychotherapeutic, i.e. mental intervention). Interestingly, evidence suggests that neither
intervention alone is as effective as the two interventions together [63]. These results
support the view that intervention at the phenomenological level of thought processes and
beliefs is an appropriate co-solution of an inherently neurophysiological abnormality.
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Finally, these properties of emergence and causation are inherent to complex systems that
show multiscale organization. In addition to emergence and multiscale structure, however,
complex systems often display so-called ‘threshold behavior’: a phenomenon studied for
example in the context of the behavior of finite automata [64]. Von Neumann noted that
simple machines might generate simpler machines. However, at a given threshold of
complexity, a machine might generate a machine as complex as itself. Furthermore, above
that threshold, a machine might generate another machine more complex than itself. The
human brain is an example of a machine that can generate a plethora of other machines with
functions other (and possibly more complicated) than its own. Human-made machines can
see farther, can hear more sounds and can compute more swiftly than their makers,
suggesting that human brains display a critical level of complexity consistent with their
emergent functions.

Types of emergence
Understanding the brain depends significantly on understanding its emergent properties.
What type of emergence characterizes the brain system? Are different types of emergence
present between different levels of the multiscale system? When is the interaction between
levels simply correlational and when is it causal?

In describing emergence, several different categories are often used including substance (a
baby emerges from a mother), conjunction (two parts can perform a different function than
either part separately), property (wetness is not a property of a molecule but of a group of
molecules), structural (three lines make a triangle), functional (letters form words) and real
(a cell is alive unlike the molecules of which it is made) emergence. The mind emerges from
the brain in a way that is arguably unlike any of these weak types of emergence. The mind–
brain emergence therefore requires a tailored definition. Mental states emerge from physical
states by strong emergence, that is in a nonreducible and highly dependent manner: mental
properties do not exist or change unless physical properties exist or change.

Measurement of emergence
Empirical measurement of the mind–brain continuum might be beneficial in characterizing
mind–brain emergence. Neuroimaging tools such as fMRI provide coarse-grained statistical
evidence for relationships between (indirect) measurements of physical and mental states
[28,42]. However, in most cases, these studies provide information about correlations
between mental and physical states but do not necessarily provide insight into the underlying
emergent phenomena.

The interpretation of results from this experimental line of inquiry is complicated by the fact
that it is not yet understood whether the mapping from mind states to brain states is one-to-
one (one mind state corresponds to one brain state), or – like genotypes and phenotypes – is
one-to-many (one brain state corresponds to many mental states or vice versa). Without such
a map, there is no way to know how a human traverses mind-space as it passes through brain
states.

Bidirectional causation and complementarity
Emergence is characterized by a higher-level phenomenon stemming from a lower system
level; that is, emergence is upward. However, an important property of the brain, as opposed
to some other complex systems, is that emergent phenomena can feedback to lower levels,
causing lower level changes through what is called downward causation. The combination
of upward emergence and downward causation suggests a simple bidirectionality or more
nuanced mutual complementarity [59] that adds to the complexity of the system, and
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underscores the fact that the emergence of mental properties cannot be understood using
fundamental reductionism.

Defining causation for the mind–brain system, however, might not be simple. The mind–
brain interface might be characterized by complex conditional causation in which causes are
neither necessary nor sufficient under all circumstances. The lighting of a match can serve as
an example. The strike of a match does often light a match. However, it is not necessarily a
sufficient cause for the lighting of the match (e.g. the match was wet) and neither is it a
necessary cause (e.g. there are other ways to light a match). Furthermore, it is important to
describe cause and effect at the right level of generality and to determine which levels of
data are pertinent. Because a high-level causal phenomenon can be realized in many
different ways, the range of realizers that can lead to the same or similar effects must be
determined. Clarifying these variables might enable a better understanding of causation and
complementarity between the mind and the body, and potentially might facilitate the
formulation of experiments for testing such inter-level causal relations.

Investigative tools
Although it is important to philosophically define emergence, the question of how the mind
and the brain relate to one another is one for which there are few quantitative tools and
researchers often turn to simple intuitive metaphors. To date, efforts have touched on the
theoretical application of physics and complexity theory, the construction of physical
models, and the development of both technical and social metaphors. However, relatively
neglected areas of inquiry that might prove highly fruitful include the analysis of
evolutionary pressures on brain development and the construction of detailed multiscale
multidisciplinary theories and models that coalesce current distributed patterns of
knowledge.

Fields
Initial work has capitalized on principles derived from several branches of classical physics
in which a common quantitative definition of emergence is related to the concept of phase
transitions: thresholds above which the system displays a new characteristic behavior. A
classic example from statistical physics is the Ising model that although having little to do
with neurons and everything to do with electron spins, has served as a scientific metaphor
for the mind–brain phenomenon.

However, to establish more than a metaphor might require inherently new physics to deal
with functional (thought) states of aggregate systems. Complementary advances in the
newer fields of complexity science and network theory might also shed light on the
emergence debate. Importantly, complexity theory attempts to provide a compact
representation of the dynamics of an aggregate adaptive system by collapsing the system’s
many degrees of freedom into only those necessary for a description of the principal
dynamics. Complex systems that can be distilled in this way are relatively robust to
environmental perturbations. Network theory, by contrast, provides a new framework in
which to study the organizational structure of complex systems made up of many interacting
parts and can therefore be thought of as an extension of statistical physics. Recent
applications of network theory have focused on descriptive statistics of the brain’s structural
and functional organization [30], which can provide insight into the fundamental principles
of mind-brain phenomena.

Additional insights (Box 2) will need to be provided by dynamic network models of brain
development and function that can be linked to underlying cellular mechanisms such as
synaptogenesis, proliferation, pruning, retraction and absorption. These network models

Bassett and Gazzaniga Page 7

Trends Cogn Sci. Author manuscript; available in PMC 2011 September 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



could vary from the simple and stylized to the multiscale and complex [65]. In both
exploratory and model-based investigations, empirical results are necessarily compared to
stated null models that are often based on purely random organizational structure and
function. However, the development of more nuanced null models in future will provide the
basis for specific hypothesis testing of neurophysiological mechanisms of brain and
behavior.

Box 2

Crucial frontiers

Structure–function

To understand mind–brain mechanisms it is necessary to characterize relations between
multiple levels of the multiscale human brain system, including the interactions between
temporal scales [55,69] and the relationship between the anatomical organization and
cognitive function [42,65]. Complex network theory provides one important context in
which to address this question: connectivity at the anatomical level can be directly and
mathematically compared to connectivity at the functional level [82], and consistent
organizational principles can be identified.

Statics to dynamics

Although recent applications of complex network theory to neuroimaging data have
provided unique insights into brain structure and function, the majority of studies to date
have focused on representing the brain system as a static network. A crucial advance in
this area will require an assessment of dynamic changes in that architecture with
cognitive function (e.g. see [83] for a potential mathematical framework to assess
dynamic changes in modular organization and [84] for a recent application in the context
of human learning).

Dynamical systems theory

To complement a focus on an understanding of the underlying topological architecture of
cortical systems provided by complex network theory, it is important to characterize the
function of the brain on this architecture as a dynamical system [65,85]. For example,
recent work in this area has suggested that the brain functions as an optimal controller
[86] that uses feedforward modeling [87,88] for precise motor control [89].

Metaphors
In addition to the development of theoretical models, there is a need to identify principles
that are shared across systems as well as those that are unique to a given system. In this
context, we often turn to both biological and nonbiological metaphors of the brain.

For example, large-scale physical models can be constructed that attempt to mimic brain
organization or structure. Such efforts might range from the construction of a computer
whose connections mimic those of the brain (e.g. neuromorphic computing [66]), to the
construction of a robot whose behavior mimics that of a human. In both cases, the
instantiation of current hypotheses regarding mind–brain mechanisms can be directly tested
for realistic behaviors. For example, the recent dynamical systems engineering of a brain-
inspired robot with a continuous sensory motor flow experience highlighted several
fundamental organizational principles necessary for complex motor behaviors [67]. To
produce behavioral complexity, the system required a hierarchically modular architecture in
which each module operated at a different time scale, sparsity of connections between
neurons and between modules, and feedback loops to allow learning to occur. The
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distributed architecture also allows for impressive generalizability, where the robot can
respond to commands it has not heard before if they are made up of isolated concepts with
which it is familiar [68]. Importantly, these properties are consistent with current
understanding of human brain structure and the role of cross-frequency couplings of
neuronal oscillations [69], and therefore support current hypotheses regarding brain–
behavior mechanisms.

The concept that emergence of complex behaviors might occur through the interaction of
multiple temporal scales is one that, perhaps unsurprisingly, is not confined to neuroscience.
Recent work characterizing power structures in animal societies suggests that emergence or
the development of aggregates is a direct consequence of temporally dependent system
uncertainty which, in social systems can be based on misaligned interests [70]. The social
system in these animals is composed of an interaction network, a fight network and a
submissive–dominant signal network that change on short-, medium- and long-temporal
scales respectively. The submissive–dominant signal given by an animal to other animals
reduces uncertainty in the social system, defines that animal’s place in the emergent power
structure, and therefore allows for logical tuning and adaptation of the system [71]. The fact
that this signal occurs over longer time scales allows for the decision to create that signal to
be based on a long history or memory of animal–animal interactions; by contrast, decisions
based on faster variables might only increase system uncertainty and thereby decrease both
predictive and adaptive power. Some neurophysiological evidence for the emergence of
slow time scales from faster time scales does exist: for example when V1 is recruited, retinal
response times might occur at 40 Hz, whereas when higher order association areas are
recruited responses might drop to 5 Hz. Further, given the implications of low-frequency
oscillations in BOLD signal, it is plausible that slower time scales are important for the
understanding of cognitive function and control. However, further work is necessary to
elucidate the possible convergence between these two disparate systems.

Historically, many non-neurophysiological systems have been used as explanatory
metaphors for the brain, perhaps the most recent examples of which are the computer and
the Internet [72]. The mind–brain dualism has been simply likened to the relation between
software and hardware in a computer system. Due to recent advances in diffusion weighted
imaging, the large-scale wiring diagram of the human brain has been estimated and its
organizational structure has been directly compared to that of computer chips, specifically
very large-scale integrated circuits [7]. Striking similarities are evident, suggesting that both
technological innovation and natural selection have discovered similar solutions to the
problems of wiring efficiency in information processing systems.

Although the majority of metaphors have been drawn from systems that are constructed (e.g.
robots, computers, the Internet and social systems), it is possible that some important
insights can only be gleaned by examining the system that is doing the constructing. That is,
to understand brains it might be necessary to understand the evolutionary forces of natural
selection and the environment [73]. Recalling Von Neumann’s observations [64] (see
above), it is plausible that these forces are at least as complicated as the brain itself. In fact,
mounting evidence supports the combined notions that the brain’s development is in part a
form of selection dynamic (e.g. neural Darwinism), whereas selection itself is a form of
development (e.g. niche construction) [74]. The complexity of these evolutionary forces can
be synthesized with the intuitive simplicity of natural selection by viewing evolution in
essence as the selection of construction rules. In this case, selection must be complex
enough to discriminate among the products of these rules.

One area of evolutionary theory that might be particularly useful in understanding the
human brain is multilevel selection theory [75] that seeks to explain how payoffs to
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members of a fused aggregate can overcome the advantage of fissioning into independent
replicators. A canonical example is the evolution of multicellular life and the subsequent
emergence of specialized cell types many of which have forfeited the ability to replicate. It
has been hypothesized that major transitions of this sort are associated with novel
mechanisms for storing and transmitting information. Increasingly inclusive ‘levels’ are able
to capture and then transmit information that grows nonlinearly in the number of individual
components. In this way, higher levels can offset the replicative cost of social living. It is
reasonable, therefore, that one way to understand the brain – one of the most complex
multicellular structures in biology – is in terms of a nonlinear increase in the efficiency of
information processing. The amount of adaptive information available to cells in which
subpopulations specialize in sensing, integration and mobility is expected to vastly outweigh
the information available to individual cells having to accumulate information
independently. A better understanding of the sequence of selective pressures leading to these
advantages will lead to an improved understanding of the functional role of a brain and its
relationship to an information-rich environment.

Models and theory
Despite the usefulness of theoretical and physical metaphors of the brain, the drawing of
links between disparate systems has its limitations and confounds. These are perhaps most
troubling at the more detailed, less lofty levels of description. The field of neuroscience is
flooded with highly detailed data produced by a plethora of different measurement
techniques all measuring the same system. Although researchers often point to studies using
other measurement streams, spatial resolutions, subsystems, species or animals models to
support their own results, the empirical compatibility of these data is often tenuous. It is
difficult to parse whether it is the same phenomenon that is measured, but with different
tools, or a different phenomenon altogether. This predicament stems from the fact that the
relations between present technologies or the data that they provide are not well understood,
and is further exacerbated by the lack of detailed neurophysiological models that combine
data and results from many experimental modalities [76], investigators and scientific
communities. For example in the study of visual plasticity a software modeling environment
could be developed in which information from single unit physiology, informed by
molecular pathways and anatomical connectivity derived from tract tracing or diffusion
imaging, could be used to predict the expected BOLD response. In a multidimensional
endeavor of this size it might not be clear at the outset what the lowest relevant level of data
should be; what is imperative is that connections exist between levels to provide a means of
quantifying whether results are consistent with standards of the field and collective
understanding. Similarly, issues of neuroinformatics [51], storage, computational power and
resources, and common standards will become increasingly important but do not negate the
necessity of modeling itself. The success of such an endeavor (similar to that of the Large
Hadron Collider or the Human Genome Project) will depend on consistent collaborative
efforts between diverse investigators to a degree previously unforeseen in the field of
neuroscience [77].

Although extensive detailed neurophysiological models will be important for further
understanding of the brain, perhaps an even more pressing issue is the lack of computational
theoretical neuroscience. The majority of work being performed in the field falls largely
within the confines of data analysis. However, until consistent insightful theories are posited
for the many larger-scale questions of mind–brain mechanisms, progress will be limited.
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Concluding remarks
Neuroscience desperately needs a stronger theoretical framework to solve the problems that
it has taken on for itself. Complexity science has been posited as a potentially powerful
explanation for a broad range of emergent phenomena in human neuroscience [78].
However, it is still unclear whether or not a program could be articulated that would develop
new tools for understanding the nervous system by considering its inherent complexities. Is
it possible to answer the questions discussed in this article? Are current tools the right ones?
Is it necessary to draw from other quantitative fields or consider other metaphors? What
theories need to be developed to guide further research? While many questions remain
unanswered, the next few years will likely see a revolution in the study of the mind-brain
interface as tools from mathematics and complex systems, which have as yet only brushed
the surface, take hold of the field of neuroscience.
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Glossary

Complex network
theory

a modeling framework that defines a complex system in terms of
its subcomponents and their interactions, which together form a
network

Complex system a system whose overall behavior can be characterized as more than
the sum of its parts

Connectome a complete connectivity map of a system. In neuroscience, the
structural connectome is defined by the anatomical connections
between subunits of the brain whereas the functional connectome is
defined by the functional relations between those subunits

Emergence the manner in which complex phenomena arise from a collection of
relatively simple interactions between system components

Ising model a historically important mathematical model of a phenomenon in
physics known as ferromagnetism that displays several
characteristics of complex systems including phase transitions and
the emergence of collective phenomena

Modularity a property of a system that can be decomposed into subcomponents
or ‘modules’, which can perform unique functions and can adapt or
evolve to external demands

Nonfundamental
causality

the concept that parts of a system that are not its smallest parts (i.e.
nonfundamental) can have significant causal power in terms of
system function, facilitating mutual manipulability between
multiple levels of the system and multiple realizability of system
function

Reductionism in philosophy, a view that a complex system can be modeled and
understood simply by reducing the examination to a study of the
system’s constituent parts
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Scaling the term scaling indicates a similarity of some organizational
structure of phenomenon across multiple scales of a system. Spatial
scaling therefore indicates that a principle or phenomenon is
consistently displayed at multiple spatial resolutions. Temporal
scaling indicates that a principle or phenomenon is consistently
displayed at multiple temporal resolutions

Wiring diagram a map of the hard-wired connectivity of a system. In neuroscience,
the term is usually used to refer to the map of connections (e.g.
synapses) between neurons specifically but can also be used to
refer to the map of larger scale white matter connections between
brain regions
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Figure 1. Brain graph construction
One of the recent applications of complex network theory in neuroscience has been in the
creation of brain graphs from neuroimaging data [30,79,80]. In this process, brain regions
are represented by nodes in a graph and connections between those regions, whether
anatomical (using diffusion imaging) or functional (using fMRI, electroencephalography or
magnetoelectroencephalography), are represented by edges between those nodes. In this way
a graph can be constructed that characterizes the entire brain system according to its
components (nodes) and their relations with one another (edges).
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Figure 2.
Spatial scaling indicates that an organizational principle characterizes the structure of the
human cortex over multiple spatial scales. An example of spatial scaling is the mathematical
principle of network hierarchy [8]. Hierarchical structure is defined as a relation between
network nodes whereby hubs (or highly connected nodes) are connected to nodes that are
not otherwise connected to one another; in other words, the neighbors of a hub are not
clustered together. This structure facilitates global communication and is thought to play a
role in the modular organization of connectivity in the cortex [33,78]. Hierarchical network
structure is consistently displayed at increasing spatial resolutions in which the brain is
parcellated into more and more regions of interest (ROIs).
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Figure 3. Modularity
The general concept of modularity is that the components of a system can be categorized
according to their functions. Components that subserve a similar function are said to belong
to a single module, whereas components that subserve a second function are said to belong
to another module. Modularity can also be defined mathematically in terms of network
organization [30,33,70]. Nodes that share many common links are said to belong to a
module, whereas nodes that do not share many links are likely to be assigned to different
modules. The categorization of nodes into partitions is a process known as ‘community
detection’ because – rather appropriately – it detects communities or modules composed of
highly connected nodes and delineates the boundaries between those communities. This
categorization procedure is an important current area of network science research.
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Figure 4. Wiring diagram of Caenorhabditis elegans
The wiring diagram of the nematode worm, C. elegans, is composed of nodes (neurons) and
connections between those nodes (electrical and chemical synapses). The worm is known to
contain 302 neurons and here only a small fraction of the connections known to exist
between these neurons are displayed (the full connectivity would be too dense to visualize
clearly in this way). The color of each node represents the number of connections emanating
from that node (red indicating many and blue indicating few). The analysis of wiring
diagrams can be used to assess important organizational principles of biological system
structure and might provide insight into system function [46].
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