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Maternal euthyroidism during pregnancy is crucial for normal development and, in particular, neurodevelopment of the foetus.
Up to 3.5 percent of pregnant women suffer from hypothyroidism. Industrial use of various chemicals—endocrine disrupting
chemicals (EDCs)—has been shown to cause almost constant exposure of humans with possible harmful influence on health
and hormone regulation. EDCs may affect thyroid hormone homeostasis by different mechanisms, and though the effect of each
chemical seems scarce, the added effects may cause inappropriate consequences on, for example, foetal neurodevelopment. This
paper focuses on thyroid hormone influence on foetal development in relation to the chemicals suspected of thyroid disrupting
properties with possible interactions with maternal thyroid homeostasis. Knowledge of the effects is expected to impact the general

debate on the use of these chemicals. However, more studies are needed to elucidate the issue, since human studies are scarce.

1. Introduction

Maintaining maternal euthyroidism during pregnancy is im-
portant for growth and development, in particular neurode-
velopment of the foetus. Even subtle changes in thyroid func-
tion of the pregnant woman can cause detrimental effects
for the foetus [1-5]. In the first trimester, the foetus relies
solely on the thyroid hormones thyroxine (T4) and tri-
iodothyronine (T3) and iodine from the mother. Later in
pregnancy and during lactation, maternal thyroid hormones
still contribute significantly to foetal thyroid homeostasis [6—
8]. Worldwide, both overt and subclinical hypothyroidism
are frequent among fertile women [9-14]. Prior maternal
thyroid diseases as well as iodine and selenium deficiencies
are known risk factors for hypothyroidism.

Abundant industrial and household use of various
chemicals—called endocrine disrupting chemicals (EDCs)—
expose humans with potential harmful influences on health
and hormone regulation. As recently reviewed, several of
these EDCs have been found to have thyroid disrupting prop-
erties as well [15-17]. Probably each chemical has limited

thyroid disruptive effects at environmental exposure doses.
However, the combined influence of several chemicals
through different pathways of thyroid hormone synthesis
and action may have significant impact on both maternal
and foetal thyroid function [18, 19] and, thus, a potential to
compromise foetal development and maturation.

This paper will focus on the influence of thyroid hor-
mones on foetal development in relation to the chemicals
suspected to have thyroid disrupting properties. Knowledge
on these effects is expected to impact international debate on
the general use of these chemicals.

2. Maternal and Foetal Thyroid Status
during Pregnancy

The main task of the thyroid gland is to generate the neces-
sary quantity of thyroid hormone to meet the demands of the
organism. The mechanisms involved in thyroid homeostasis
are shown in Figure 1. Each step of thyroid hormone me-
tabolism is crucial for normal function. Maternal thyroid
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FIGURrE 1: The complex mechanisms of regulation of thyroid hormone homeostasis and the possible mechanism of action of the thyroid
disrupting chemicals. The thyroid and the thyroid hormones, tri-iodothyronine (T3) and thyroxine (T4), participate with the hypothalamus,
secreting thyrotropin releasing hormone (TRH), and pituitary, secreting thyrotropin (TSH) in a classical feedback controlled loop. Iodide is
transported into the cell by the sodium-iodine symporter (NIS) and oxidized by thyroid peroxidase (TPO). TPO also catalyzes the iodination
of thyrosine residues on thyroglobulin (Tg). All processes in the cell are stimulated by binding of TSH to the TSH receptor (TSH-R). In the
circulation, thyroid hormones are bound to thyroxine-binding globulin (TBG), albumin and prealbumin, and in some cases transthyretin
(TTR). T4 is deiodinated by deiodinases in the liver and target tissues. In the target cells, T3 binds to nuclear thyroid hormone receptor (TR),
and with the retinoid X receptor, it binds at specific sequences at the DNA string, forming the thyroid hormone response elements (TRE). In
the liver, thyroid hormones are metabolized by UDP-glucuronyl transferase (UDPGT), and finally, the metabolites are excreted in the urine.
(1) Inhibition of iodine uptake in the cells by inhibition of NIS: perchlorate, thiocyanate, nitrate, and phthalates. (2) TPO inhibition: NP and
isoflavones. (3) Inhibition of TSH-R: DDT and PCB. (4) Binding to transport proteins: PCB, phthalates, phenol, flame retardants, and HCB.
(5) Cellular uptake of thyroid hormones: phthalates and chlordanes. (6) Binding to thyroid hormone receptor and affecting gene expression:
PCB, phenols, flame retardants, BPA and HCB. (7) Inhibition of deiodinases: Styrenes and UV-filters, (8) Activation of hepatic UDPGT:
dioxins and pesticides, (9) Inhibition of the hypothalamo-pituitary-thyroid axis: lead. (10) Excretion/clearance of thyroid hormones: PCB,
dioxin, phenols, flame retardants, HCB, and BPA.

status is subject to substantial pregnancy-related physio-
logical changes. Importantly, maternal thyroid hormone is
metabolized by or crosses the placenta to reach the foetus
[20]. In the placenta, the inner ring placental deiodinase
inactivates most of the maternal T4 to reverse T3 (1T3),
securing a minimal but highly significant supply of thyroid
hormones to the foetus [20, 21], which further demands an
increased thyroid hormone production by the mother.

The foetal thyroid function is established in the 11th
week after conception [6]. However, the production and
secretion of foetal thyroid hormones do not reach notable
levels until midgestation [6]. Even at term, up to 30% of
the foetal thyroid hormones are of maternal origin [22], and

during the remaining part of pregnancy and lactation, the
foetus and neonate are strongly dependent on the maternal
thyroid gland.

3. Influence of Maternal Thyroid Disease on
Foetal Development

The estimated prevalence of overt and subclinical hypothy-
roidism in pregnancy is 0.5% and 3%, respectively. Thyroid
autoantibodies are found in 5%-15% of women of child-
bearing age [9-14]. The estimated high prevalence of thyroid
disease in pregnant women has spurred a debate of whether
screening of all pregnant women, instead of only targeted
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case-finding, should be advised. In recent studies, 50% to
80% of the pregnant women with possible hypothyroidism
would be missed if only high-risk cases were examined [23,
24], but screening of all pregnant women is not yet agreed
upon in international scientific associations [25].

At least 50% of the offspring of women with free T4
(fT4) levels below the normal 10th percentile had delayed
neurobehavioral development [2, 3, 26]. Even mild-to-
moderate iodine deficiency during first trimester caused an
intelligence quotient (IQ) 10-15 points below the normal
mean and 11 of 16 children born to mothers with low iodine
intake presented attention deficit hyperactivity disorders
[27]. Iodine deficiency is the most frequent cause of maternal
hypothyroxinaemia and a potentially preventable cause of
mental retardation in children.

4. Endocrine Disrupting Chemicals and
the Thyroid Gland

In recent years, numerous chemicals have been shown to
interfere at different levels of thyroid hormone regulation
and function (Figure 1). Most chemicals have not yet been
sufficiently evaluated in humans. Yet, a number of detrimen-
tal effects on human thyroid function are suspected from a
variety of chemicals, and a review of available evidence on
this issue will be focused upon in the following.

4.1. Perchlorate. Perchlorate is a persistent ubiquitous chem-
ical used worldwide in nitrate fertilizers, fireworks, road flare,
matches, airbag inflation systems, and as oxidizers in solid
propellants for rockets and missiles. Perchlorate appears in
drinking water, milk, wine, beer, and lettuce, but also a nat-
ural perchlorate background of atmospheric origin exists
[28]. Perchlorate has previously been used in the treatment
of hyperthyroidism [29] due to its potent competitive inhi-
bition of thyroid iodine uptake through the sodium-iodine
symporter (NIS) [30]. However, the thyroid disrupting effect
of perchlorate is dose dependent. Thus, occupational or
environmental exposures of perchlorate have been associated
with a reduction in thyroid iodine uptake [31-33] but with-
out direct effects on thyroid function or volume except
in a study of women with urinary iodine excretion below
100 ug/L in whom TSH was increased and TT4 was found
reduced [34], and these findings are further supported by
findings of an interaction of perchlorate and thiocyanate
on thyroid status in smoking women with low iodine
intake [35] (Table 1). A study of euthyroid and hypothyroid
pregnant women from Cardiff in Wales and Turin in Italy
found perchlorate in all urine samples and low iodine
excretion from all the pregnant women, but no correlation
was found between perchlorate levels and thyroid function
parameters [36]. Likewise, in pregnant women and their
neonates, perchlorate in drinking water did not influence
thyroid hormone levels [37, 38], and no correlations were
found between urinary perchlorate concentrations and T4
or thyroid stimulating hormone (TSH), respectively, during
first trimester in mildly hypothyroid women. lodine is
secreted into breast milk through NIS, and one study found

that the highest concentrations of perchlorate in breast milk
were associated with lower iodine concentrations [39], while
others found no obvious correlations [40].

4.2. Thiocyanate and Nitrate. Thiocyanate and nitrate are
less potent inhibitors of NIS than perchlorate [30] but, ni-
trate may decrease iodine absorption from the intestine [47].

Thiocyanate is present in a number of vegetables such
as cabbage, broccoli, Brussels sprouts, rapeseed and mustard
seed, cassava, radishes, spinach and tomatoes but also in
milk. In many tropical countries, cassava as staple food
is a major ingredient in the daily food supply. In iodine-
deficient regions, food with high concentrations of thio-
cyanate contributes significantly to goitre development [438,
49]. However, in industrialized societies, the main source
of thiocyanate is cigarette smoke [48]. Although this has
well-known detrimental effects on the thyroid function of
neonates and breastfed babies, it is beyond the scope of this
paper.

Nitrate is found in several food items either occurring
naturally, as in green leafy vegetables, or added as a preserva-
tive in cubed meats and other food and is also generated from
the decomposition of organic materials. Inorganic nitrates
are used as fertilizers, which may contaminate drinking
water supplies, groundwater, and soil. Finally, the intestinal
flora causes an endogenous formation of nitrate. Population
studies on nitrate exposure through drinking water have
found increased thyroid volume and slightly reduced thyroid
function [50], but the isolated effect of nitrate has been
difficult to assess due to concomitant iodine deficiency [51,
52]. But low levels of nitrate intake did not influence thyroid
volume in adults despite of previous iodine deficiency [53].

4.3. Polychlorinated Biphenyls (PCBs). PCBs are still in use
though several of them have been banned for decades in
many countries. PCBs and their hydroxylated metabolites are
biologically active, highly persistent compounds accumulat-
ing in lipid tissues, and structurally very close to T4 [54].
Many studies have been performed on the thyroid disturbing
effects of PCBs, but results are conflicting (Table 2). PCBs
may interfere with thyroid hormone homeostasis in several
ways (Figure 1): by binding to transthyretin (TTR) [55],
by affecting the expression of thyroid hormone-responsive
genes, and by antagonizing the complexes from the thyroid
hormone responsive elements (TRE) [56, 57]. Perinatal ex-
posure may be most important in humans. Negative corre-
lations have been demonstrated between PCBs in maternal
blood during pregnancy and maternal thyroid hormones,
and positive correlations have been described between PCBs
and TSH [58]. As thyroid hormones in humans are mainly
bound to thyroid hormone-binding globulin (TBG), the
reduction in total T4 (TT4) and total T3 (TT3) could be
explained by a reduced TBG level, whereas this would not
necessarily affect free hormone levels [59]. In cord blood,
a positive correlation of PCB and TSH of the child and a
negative correlation with maternal TT3 and TT4 were found
[60]. PCBs in cord blood have generally not demonstrated
associations to T3 and T4 levels of the child [58, 61-65],
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TasLE 1: Thyroid-disrupting properties of perchlorate in human studies on pregnant women, neonates, infants, adolescents, and adults and
the effect of perchlorate on iodine contents in breast milk.

Year Author N Subjects Effect Reference
2005 Tellez et al. 185 Early pregnant women No effect [38]
135 Late pregnant women No effect
162 Newborns No effect
2010 Pearce et al. 1641 Pregnant women No effect [36]
2000 Brechner et al. 1542 Newborns tTSH [41]
2000 Lietal. 23000 Newborns No effect [42]
2007 Amitai et al. 1156 Newborns No effect [37]
2000 Crump et al. 9784 Newborns I'TSH otherwise no effect [43]
162 Schoolchildren No effect
2006 Blount et al. 350 Todine deficient women | TT4 tTSH [34]
697 Todine sufficient women 1TSH
Men No effect
2000 Lawrence et al. 9 Healthy volunteers No effect [33]
| thyroid radioiodine up-take
2002 Greer et al. 8 Healthy volunteers | thyroid radioiodine up-take (32]
2006 Braverman et al. 13 Healthy volunteers No effect [44]
1998 Gibbs et al. 119 Occupationally exposed No effect [45]
1999 Lamm et al. 58 Occupationally exposed No effect [46]
2005 Braverman et al. 29 Occupationally exposed | thyroid radioiodine up-take [31]
2005 Kirk et al. 36 Lactating women | Todine in breast milk [39]
2007 Pearce et al. 57 Lactating women No effect on iodine in breast milk [40]

N: number, TSH: thyrotropin, TT3: total tri-iodothyronine, TT4: total thyroxine, fT3: free Tri-iodothyronine, fT4: free thyroxine, and TBG: thyroid hormone-

binding globulin.

except in a recent study finding higher TSH and lower T4 in
infants of mothers with high levels of PCB in breast milk [66,
67]. Yet, not all studies found associations between infant
thyroid hormone levels and PCB exposure [63-65, 68], and
in a study of a prenatal boys exposed to high PCB levels, the
thyroid function was comparable to that of the control group
[69].

In several studies of humans of all ages from high
PCB-exposed areas, blood PCB concentrations correlated
negatively to circulating thyroid hormone levels [76, 79, 80,
83] and positively to TSH [74], while others could not find
such associations [78, 81]. Increased thyroid volume has also
been found more often in a PCB-polluted area with the
largest volumes among subjects with the highest levels of
PCB [82].

4.4. Dioxin. Dioxins are highly toxic, lipophilic, widely used,
and persistent environmental pollutants from industrial
burning processes or production of herbicides, detectable
in samples from humans and wildlife populations though
banned for years in many countries. The most toxic pro-
totype is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and
the toxic equivalent of all other dioxins is measured against
this. In particular, the metabolites show a high degree of
structural similarity to T4 and are the most biologically
active. Dioxins have been found to decrease the level of
circulating thyroid hormones in rats [85-87], and mixtures

of dioxin-like compounds were even found to reduce levels
of T4 in an additive manner [88]. Given to pregnant rats,
a single dose of TCDD was transferred to the pups via
placenta and during lactation [89] and resulted in a dose-
dependent decrease of T4 and fT4 with a concomitant
increase in TSH [86, 87]. High exposure with TCDD of US
war veterans of the Vietnam war resulted in significantly
increased TSH [90]. In children, no associations between
placental dioxins and thyroid hormones were found at the
age of 2 years, but after 5 years, T3 was significantly higher in
the highly exposed individuals in utero [91]. But as recently
reviewed, so far, no clear and significant correlation between
background exposure to dioxins and thyroid function during
development has been found [92].

4.5. Phthalates. Phthalates are widely used chemicals mainly
to improve the flexibility of materials such as plastic and
have been widely used in medical products, food handling
and storage products, electrical devices, toys, and in non-
polyvinylchloride applications such as paints, lacquers, and
cosmetics. Phthalates can leach, migrate, or evaporate into
indoor air and atmosphere, foods, and liquids and have
become ubiquitous. Consequently, humans are constantly
exposed by oral, inhalation, and dermal routes [93]. Unfor-
tunately, certain vulnerable groups may be massively exposed
to phthalates, such as hospitalized neonates in whom urinary
excretion of phthalates was shown to correlate with exposure
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TasLE 2: Thyroid-disrupting properties of polychlorinated biphenyls in human studies on pregnant women, neonates, infants, adolescents,

and adults.
Year Author N Subjects Effect Reference
1994 Koopman-Esseboom et al. 105 Pregnant women L' TT3 | TT4 [62]
105 Infants 1TSH at 2 weeks and 3 months
2005 Takser et al. 101 Pregnant women ' TT3 1TSH [58]
92 Cord blood No effect
2008 Wilhelm et al. 165 Pregnant women No effect [65]
127 Cord blood No effect
2009 Alvarez-Pedrerol et al. 1090 Pregnant women ITT31fT4 [70]
2009 Dallaire et al. 120 Pregnant women T3 [71]
95 Cord blood I'TBG! fT4
130 Infants, 7 months old No effect
2000 Longnecker et al. 160 Cord blood No effect [63]
2005 Wang et al. 118 Cord blood IT31T4 [72]
2008 Dallaire et al. 670 Cord blood I'TBG [68]
2008 Herbstman et al. 289 Cord blood, ITT41fT4 [67]
265 Neonatal blood spot** ITT4
2007 Chevrier et al. 285 Newborns tTSH [66]
2001 Matsuura et al. 337 Breastfed infants* No effect [64]
2003 Ribas-Fito et al. 98 Infants Trend toward 1 TSH [61]
2010 Darnerud et al. 150 Infants I TT3 [73]
1999 Osius et al. 320 Children | fT3 1TSH [74]
2000 Steuerwald et al. 182 Children No effect [60]
2008 Alvarez-Pedrerol. 259 Children ITT31fT4 [75]
2005 Hsu et al. 60 Boys No effect [69]
2008 Schell et al. 232 Adolescents | fT41TSH [76]
2001 Sala et al. 192 Adults Trend toward 1 TSH (77]
2001 Hagmar et al. 110 Adult men No effect [78]
2001 Hagmar et al. 182 Adult women ' TT3 [79]
2001 Persky et al. 229 Adults Female: | T4,FTL. Men | T3-uptake [80]
2003 Bloom et al. 66 Adults No effect [81]
2003 Langer et al. 101 Adults tthyroid volume (82]
2004 Schell et al. 115 Adults | fT41 T4 1 TSH
2007 Tyruk et al. 2445 Adults I'TT4, in older persons! TSH [83]
2008 Abdelouahab et al. 211 Adults Female ! T3; men | T4 1TSH [84]
2009 Dallaire et al. 623 Adults I TT3, I'TBG (59]

PCBs were measured in blood unless otherwise stated. * PCBs measured in breast milk. **neonatal blood spot at day 18 postpartum. N: number, TSH:
thyrotropin, TT3: total tri-iodothyronine, TT4: total thyroxine, fT3 free Tri-iodothyronine, fT4: free thyroxine, FTI: free T4 index, and TBG: thyroid hormone-

binding globulin.

to medical devices [94]. However, a followup of adolescents
exposed to high concentrations of phthalates in the neonatal
period showed normal thyroid hormones [95]. On the other
hand, men recruited from a fertility clinic [96] and pregnant
women [97] demonstrated a negative association between
phthalates and fT4 and T3, respectively.

We studied 845 children aged 4-9 years with determina-
tion of urinary concentrations of 12 phthalate metabolites
and serum levels of TSH, thyroid hormones, and insulin-
like growth factor-I (IGF-I) [98]. Our study showed a neg-
ative association between urinary phthalate concentrations
and thyroid hormones, IGF-I and growth of the children,
respectively. Although our study was not designed to reveal

the mechanism of action, the overall coherent negative as-
sociations may suggest causative negative roles of phthalate
exposures for child health.

4.6. Triclosan and Bisphenol A. The exact thyroid disturbing
mechanisms of these chemicals are not known, but triclosan,
and bisphenol A (BPA) share structural similarities with
thyroid hormones and may bind to and interact with the
thyroid hormone receptor (TR). Phenols bind competitively
to TTR, [99, 100] and act as a T3 antagonist [101, 102].

BPA is used to manufacture polycarbonate and several
hard plastic products such as compact discs, food can linings,
adhesives, powder paints, dental sealants, and clear plastic



bottles which means that humans are ubiquitously exposed
to BPA [103, 104]. BPA is rapidly glucuronidated in humans
and rodents.

Phenols were found to bind competitively to TTR, possi-
bly with a very strong binding affinity [99, 100], but a recent
study found that the concentrations of BPA usually found
in humans is probably not high enough to interfere with
T4 transport [105]. Finally, T3-mediated gene activation
through TRal and TR was dose-dependently suppressed
by, BPA and the expression of T3- suppressed genes was
up-regulated by BPA [101, 102]. In pregnant rats, BPA was
associated with a significant increase of TT4 in the pups 15
days postpartum [106].

Triclosan in an antibacterial and antifungal agent used in
products for personal hygiene and household cleaning agents
but also in plastics and fabrics. Though found in human
urine [107] and breast milk [108], so far, no epidemiological
studies have been published on the influence of triclosan on
thyroid hormone homeostasis. A small intervention study
[109] could not demonstrate changes in CYP3A4-activity or
peripheral thyroid hormone levels after triclosan exposure
through toothpaste. However, in vitro studies suggest that
higher exposure levels may activate human pregnane x
receptor, which upregulates the activity of CYP3A4 [110].
In rats, gestational exposure to triclosan lowered T4 in the
pregnant animal and transitorily in the pups at postnatal day
4 (111, 112].

4.7. Isoflavones. Isoflavones, naturally occurring phytoestro-
gens, are mainly found in soy and grain products [113].
Isoflavones inhibit thyroid peroxidase (TPO) function and
thereby thyroid hormone production [114]. Iodine insuffi-
cient children fed on soy products risk development of goitre
and hypothyroidism [115]. As reviewed by Messina and
Redmond several studies have been performed in humans
to explore the thyroid disrupting effect of isoflavones, but
only one study from Japan of healthy volunteers fed for 1-
3 months with soy beans reported increased TSH though
within the normal reference interval and increased thyroid
volume. But other studies could not reveal such relationships
[116].

4.8. Brominated Flame Retardants. Flame retardants consti-
tute a group of chemicals such as tetrabromobisphenol A
(TBBPA), a halogenated derivative of BPA and polybromi-
nated biphenyls. These chemicals are found in different
products such as plastic paints and synthetic textiles and are
often used in electrical devices such as televisions, computers,
copying machines, video displays, and laser printers. These
chemicals are structurally more similar to T4 than PCBs and
bind competitively to TTR [99]. In general, flame retardants
are found to reduce thyroid hormone levels. A recently
published study of pregnant women showed a negative asso-
ciation between serum levels of brominated flame retardants
and TSH [117]. A newer study of recreational fish consumers
reported a negative association between concentrations of
some congeners in serum and serum levels of T3 and TSH
and a positive relationship with T4 [118]. This was confirmed
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by others [78] but not all [119], and in a smaller study of
12 mother-infant pairs, maternal brominated flame retar-
dants levels were not significantly correlated to thyroid
hormone levels in cord blood [120].

4.9. Pesticides. Pesticides constitute a large and very inho-
mogeneous group of chemicals, which differ significantly
in their chemical and physical properties and, thus, their
ability to be either detoxified in vivo or to bioaccumulate
in lipid-rich tissue. It is beyond the scope of the paper
to give a comprehensive overview about potential thyroid
disrupting effects. Many of the organochlorine pesticides are
persistent with long environmental half-lives, and therefore,
humans are continuously exposed though many pesticides
have been banned for years in many countries while still
in use in others. Dichlorodiphenyltrichloroethane (DDT),
hexachlorobenzene (HCB), and nonylphenol (NP) are
among the most examined. Metabolites of HCB are used
as a biocide and wood preservative in the timber industry
and as antifungal agent in the leather industry. NP is an
industrial additive used in detergents, plastics, and pesticides.
In humans, an enlarged thyroid was found after accidental
exposure to HCB [121], and studies have found negative
associations between HCB and T4 [77, 81] or T3 [58] but
not TSH or free thyroid hormone levels [77]. In newborns,
pentachlorphenol (PCP) in cord blood but not HCB [58] was
negatively correlated to T3, fT4 and TBG [122], and thus may
potentially impair neurodevelopment. Also, other pesticides
seem to posses thyroid disrupting properties [123-127].

4.10. Others. Ultraviolet (UV) filters also called sunscreens,
that is, benzophenone, 4-methylbenzylidene camphor and 3-
benzylidene camphor, comprise a group of chemicals used to
absorb and dissipate UV irradiation in cosmetic products,
not only sun lotions, to enhance product longevity and
quality. So far, only animal and in vitro studies have indicated
that UV filters may disrupt thyroid hormone homeostasis.

Parabens are commonly used as preservatives in food,
cosmetics and pharmaceutical products. In vitro methyl-
paraben dose-dependently inhibited iodine organification
and thus seemed to have a weak intrinsic antithyroid effect
[128], but human studies are lacking.

The industrial use of perfluorinated chemicals (PFC)
is increasing in products such as stain- and oil-resistant
coatings for example, food packaging for fast food, as well
as in floor polishes and insecticide formulations. PFCs are
extremely persistent in the environment. Women with high
levels of PFCs were treated more often for thyroid disease
than controls [129], and in employees from a PFC factory,
PECs displayed a negative association to fT'4 [130].

Styrene is an industrial chemical widely used in the
production of plastics, resins, and polyesters. Humans are
exposed by low-level contamination in food items, but the
exposure is most abundant through inhalation of tobacco
smoke, automobile exhaust, and vapors from building
materials [131]. Occupational styrene exposure resulted in
thyroid disrupting effects: there was a positive correlation
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between exposure time and thyroid volume and a posi-
tive correlation between urinary concentrations of styrene
metabolites and f T4 or fT4/fT3 ratios without a correlation
to TSH. This indicated an inhibition of the conversion of T4
to T3 [132].

Exposure to lead is typically from cigarette smoke or
gasoline, but also workers in the mining, smelting, re-
fining, battery manufacturing, soldering, electrical wiring,
and ceramic glazing industries are at risk of occupational
exposure. Lead may cause a toxic effect on the central part of
the hypothalamic-pituitary-thyroid axis [133, 134], but the
mechanism is not yet known and effects on the selenium
metabolism is also possible. In lead-exposed children, an
impaired release of TSH has been reported [135], but another
study found unchanged T4 levels after lead exposure [136].

Studies in occupational lead exposed workers indicates
induction of secondary hypothyroidism; one study found
low T4 and fT4 and inappropriately normal TSH [137] and
in auto repair workers, a negative correlation between blood
lead levels and fT4 was found, but TSH, T3, and thyroid
volume were comparable to unexposed controls [133]. In
another group of petrol pump workers or mechanics, TSH
was increased compared to the unexposed controls, and T3
declined by longer exposure, but T4 levels were unchanged
[134]. These findings are in contrast to the evaluation of
subacute and cumulative effects in lead smelter workers,
where no thyroidal effects were shown [138].

Lithium is widely used in the treatment of bipolar men-
tal disorders and has known influences on thyroid function
[139], and lithium is used in the manufacturing of button
and rechargeable batteries, ceramics, and glass. Recently,
lithium has been found in ground and drinking water in
Argentina, where the urine lithium concentration corre-
sponded to a daily lithium intake of 2-30 mg [140]. Exposure
to lithium in drinking water and other sources seem to
suppress thyroid function as urinary lithium was found to
correlate negatively with T4 and positively with TSH [141].

5. Discussion

As discussed above, several groups of EDCs may have thyroid
disrupting potential, but only perchlorate and PCBs have
been studied in more detail in humans. Perchlorate reduced
expectedly thyroid iodine uptake, but so far, no significant
effects on circulating thyroid hormones have been found
after exposure to environmental levels of either perchlorate,
thiocyanate, or nitrite. Most of the other chemicals have still
only been studied in animal models, sporadically, in high
doses in volunteers or after occupational or accidental expo-
sure, and results are conflicting. However, all the mentioned
chemicals can theoretically have thyroid disrupting proper-
ties and consequently further studies are needed to clarify
the mechanisms and the general consequences of constant
environmental exposure to lower doses. Although thyroid
disrupting properties were not documented for all chemicals,
especially vulnerable groups like pregnant women, foetuses
and children of all ages may be more sensitive because of
pregnancy- and growth-related added stress on the thyroid

gland, in particular for people living in iodine insufficient
areas. Most human studies are performed in groups like
healthy volunteers, occupationally exposed individuals, or
persons living in certain areas and do not include all thyroid
relevant factors as life style, preexisting thyroid disease, age
groups, or exposure to other EDCs. However, exposure
during the foetal and neonatal period is of much concern, as
it is a very vulnerable point in central nervous system devel-
opment, especially in preterm children. Only few studies of
the chemicals in question have addressed the issue of health
effects on the offspring of exposed subjects. Yet, many of the
potential thyroid disrupting chemicals accumulate both in
nature and in exposed individuals and may have a negative
influence on maternal thyroid function during pregnancy
with consequent risk of impaired neurodevelopment of the
foetus. While significant exposure to all these chemicals are
suspected to affect human thyroid homeostasis, the effects
of environmental exposure still remain to be confirmed in
humans and, in particular, in vulnerable groups.

Epidemiological studies have reported that pre- and
perinatal exposure to PCBs is associated with poorer neu-
rodevelopment in neonates, toddlers and school-age children
[142-147]. The influence of PCBs on thyroid function has
been suggested as a reasonable explanation for the results
although this was not evaluated in detail. PCB correlated
negatively to fT4 in pregnant women [148], and therefore,
even exposure at background levels could possible disturb
foetal development.

The subjects in human epidemiological studies have
always been exposed to many different compounds through
different time periods, and it is, therefore, difficult to isolate
specific effects of chemicals and their metabolites on func-
tions of the human organism, which is an obvious caveat in
concluding from such studies [59].

Some studies have been performed in people more in-
tensively exposed due to either occupation, residency in/near
contaminated areas [74, 90, 149, 150], accidents [151], or
fish consumption [78, 79, 152, 153], but other studies have
focused on general population exposures [58, 83, 96]. There
may, thus, be several reasons for the divergence in findings.
One explanation could be current low exposure after reduc-
tion of allowed limits and, therefore, current unmeasurable
levels of a chemical that once was present and exerted
an effect. Conflicting results may also reflect that findings
depend on the choice of biomarkers, detection methods of
the examined EDCs, and sample material, for example, in
maternal blood, breast milk, cord blood, or child blood.
Furthermore the sex of the foetus, comorbidities, and med-
ication as well as a possible influence from combined effects
of other EDCs may influence study outcomes [72]. Even in
adult populations, there are probably both age and gender
differences in responses in an adult population [83].

Given that most of the mentioned chemicals have subtle
influences on the thyroid axis, in many cases within the nor-
mal reference interval, the question is whether or not such
subtle changes in, for example, maternal thyroid function
can eventually compromise foetal neurological development.
The relationship between T4 and TSH is very unique to each



human [154], and the variations within each person are
much smaller than the variation within a population [155,
156], which is also the case during pregnancy [157, 158].
Comparison with more or less well-defined population-
based reference ranges is probably quite irrelevant consid-
ering the discrepancy between these large ranges compared
to the much narrower intraindividual variations in thyroid
hormone levels [155, 156]. In addition, no first-trimester-
specific reference ranges for T4 analog assays currently exist,
available commercial analog fT4 assays are unreliable in
pregnant women, and fT4 levels are often over- or under-
estimated. In these cases, TT4 and free thyroid hormones
indexes are more reliable [159]. Consequently, minor, yet
real, changes in thyroid hormone levels due to EDC exposure
in small human studies may easily be camouflaged by the
broad interindividual variation. As human exposure is life-
long, starting during pregnancy and cumulative for persis-
tent chemicals, it is not possible to design human studies
evaluating thyroid function within an individual before and
after exposure. Even small intervention studies, like the
study with triclosan [109], are performed on a preexisting
background of chemical exposure to many other compounds
simultaneously.

Despite this individuality of the thyroid function vari-
ables, the levels of TSH and thyroid hormones vary greatly
during the early stages of life. TSH increases dramatically
immediately after birth peaking at 30 minutes, followed by
an increase in T4 and T3, where after all hormone levels de-
crease. Thyroid hormones measured in newborns may be
affected by intrapartum stress [67] and even by use of iodine
containing antiseptics [160]. Thus, estimation of any influ-
ence of thyroid disrupting chemicals on TSH and thyroid
hormones during pregnancy, neonatal period, or early child-
hood should, therefore, allow for exact age as a critical con-
founder.

A possible influence of thyroid hormone-induced me-
tabolism and elimination processes of EDCs, such as detox-
ification in the liver and kidneys, has not been extensively
investigated, and further studies should be performed. Other
confounding factors in interpretation of the many results
include population-specific level of selenium and iodine,
since deficiency of these two substances may render the
thyroid system more prone to be affected by EDCs. In
addition, exposure to EDCs may cause only transient changes
in thyroid hormone levels, which cannot be traced afterwards
but, nevertheless, may leave permanent effects on the central
nervous system if occurring during a developmentally critical
phase. Furthermore, measurement of peripheral thyroid
hormone concentrations may not reflect a chemical effect on
the full thyroid homeostasis (Figure 1). As outlined in this
paper, various chemicals may have different and antagonistic
or synergistic effects on the thyroid axis. Such effects have
also been found in studies of chemicals disrupting reproduc-
tion [18, 19].

Finally, it is not possible in association studies to distin-
guish whether EDCs could act by direct toxic effects or by in-
direct mechanisms via disrupting the thyroid function. More
mechanistic studies are, therefore, warranted in the future.
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6. Conclusions

The influence of environmental thyroid disrupting chemicals
on maternal thyroid function and consequently on foetal
development in humans is still difficult to estimate for several
reasons. However, for some of the chemicals, in particular
perchlorate and PCBs, evidence is emerging that thyroid
function is indeed affected by their exposure, and they there-
fore potentially possess a damaging effect on foetal devel-
opment. However, many individual factors including the
narrow individual set point for thyroid function, interactions
with other environmental factors such as exposure to sev-
eral EDCs, and deficiency of iodine and/or selenium may
interfere with study results and thereby complicate con-
clusions. Furthermore, it is still not clear which specific
cognitive functions in childhood, and consequently which
methods of testing, would be the most representative when
evaluating permanent effects of thyroid dysfunction during
development. Further research in this particular field is
necessary to ensure optimal health, growth and development
of the foetus, but also for subsequent general thyroid health
in children and adults. So, while most available evidence
indicates detrimental effects of many EDCs on human thy-
roid function, thereby potentially affecting pregnant women
and consequently foetal development, astonishingly few
studies can substantiate this suspicion. Since this may appear
to be extremely important for foetal neurodevelopment, re-
searchers in the field should be strongly encouraged to con-
tinue the efforts to elucidate the mechanisms in order to
be able to prevent damage. This may be so much more
important since both populations in iodine deficient areas
but also in iodine sufficient areas, with high prevalence of
autoimmune hypothyroidism in women of the childbearing
age, have an increased susceptibility to the thyroid disrupting
properties of EDCs. The complexity of the field and the
scarcity of current publications should spur researchers
to perform large-scale studies including all relevant con-
founders, thus hopefully allowing for evidence-based regu-
lations and recommendations.
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