
Upregulation of IL-21 Receptor on B Cells and IL-21 Secretion
Distinguishes Novel 2009 H1N1 Vaccine Responders from
Nonresponders among HIV-Infected Persons on Combination
Antiretroviral Therapy

Suresh Pallikkuth*, Sudheesh Pilakka Kanthikeel*, Sandra Y. Silva*, Margaret Fischl†,
Rajendra Pahwa‡, and Savita Pahwa*

*Department of Microbiology and Immunology, University of Miami Miller School of Medicine,
Miami, FL 33136
†AIDS Clinical Research Unit, Department of Medicine, University of Miami Miller School of
Medicine, Miami, FL 33136
‡Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136

Abstract
Mechanisms underlying failure of novel 2009 H1N1 influenza vaccine-induced Ab responses in
HIV-infected persons are poorly understood. This study prospectively evaluated 16 HIV-infected
patients on combination antiretroviral therapy and eight healthy controls (HC) who received a
single 15 μg dose of nonadjuvanted novel 2009 H1N1 influenza vaccine during the 2009 H1N1
epidemic. Peripheral blood was collected at baseline (T0) and at 7 d (T1) and 28 d (T2)
postvaccination for evaluation of immune responses. Prevaccination hemagglutination inhibition
Ab titer was <1:20 in all except one study participant. At T2, all HC and 8 out of 16 patients
(50%) developed a vaccine-induced Ab titer of ≥1:40. Vaccine responder (R) and vaccine
nonresponder patients were comparable at T0 in age, CD4 counts, virus load, and B cell
immunophenotypic characteristics. At T2, HC and R patients developed an expansion of
phenotypic and functional memory B cells and ex vivo H1N1-stimulated IgG Ab-secreting cells in
an ELISPOT assay. The memory B cell response was preceded by a significant expansion of
plasmablasts and spontaneous H1N1-specific Ab-secreting cells at T1. At T2, HC and R patients
also exhibited significant increases in serum IL-21 levels and in the frequency and mean
fluorescence intensity of IL-21R–expressing B cells, which correlated with serum H1N1 Ab titers.
Vaccine nonresponder patients failed to develop the above-described vaccine-induced
immunologic responses. The novel association of novel 2009 H1N1 vaccine-induced Ab
responses with IL-21/IL-21R upregulation and with development of memory B cells and
plasmablasts has implications for future research in vaccine design.
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Vaccination is the most effective way to reduce the morbidity and mortality of influenza. In
June of 2009, the World Health Organization declared a pandemic of a novel influenza A
“novel 2009 H1N1” virus of swine origin, which resulted in an estimated 57 million cases in
the United States from April 2009 to January 2010 (1). The 2009 influenza pandemic was
considered to be especially dangerous because the influenza A novel 2009 H1N1 virus
represented a novel strain caused by antigenic shift, unlike the yearly changes in the
seasonal influenza virus resulting from antigenic drift. As this H1N1 strain was last
associated with the 1918 influenza pandemic, people born after 1930 (i.e., in the age group
<65 y) were most likely to lack pre-existing immunity (2–6) and to be more susceptible to
the virus than people older than 65 y. The Centers for Disease Control recommended
priority novel 2009 H1N1 influenza virus vaccination for selected populations that were
considered to be at greatest risk of infection, including those with immunocompromised
immune systems such as HIV-infected people (7).

Humoral immunity against influenza viruses is a good predictor of protection against
infection (8). For the novel 2009 H1N1 influenza vaccine, an Ab titer of >1:40
hemagglutination inhibition units or a 4-fold increase from baseline is considered as being
protective (9). Following the recommended single 15 μg dose of nonadjuvanted novel 2009
H1N1 vaccine, seroconversion with development of protective Ab titers has been reported to
occur in 95% of the general population (6). Surprisingly, among HIV-infected individuals
without pre-existing immunity to H1N1 virus, only 60% developed protective Ab titers
following vaccination, even though they were well controlled for their HIV status (10). In
this context, although greater expansion of memory B cells has been noted with adjuvanted
H1N1 vaccines, their success in improving seroconversion rates has been variable (11–13).
The mechanism underlying the poor serologic response to novel 2009 H1N1 vaccines in
HIV-infected patients is not well understood.

In the generation of a primary Ab response to a vaccine, naive (N) B cells activated by the
vaccine Ag are required to undergo a process of maturation, differentiation, and proliferation
to generate Ab-secreting cells (ASC), memory B cells (14), and long-lived plasma cells (15).
This process is regulated by cooperative interactions of B cell-intrinsic and extrinsic factors
that are dependent upon a variety of accessory ligand–receptor interactions (16–18). IL-21 is
a pleiotropic cytokine secreted almost exclusively by CD4 T cells and is known to play a
major role in development of B cells and to promote Ab production (19–23). N human B
cells are efficiently induced to secrete Ig via IL-21 following cognate T–B interaction (24).
Recently, expression of the IL-21R on B cells was shown to be critical for development of
memory B cells (25). HIV-infected persons are known to exhibit phenotypic and functional
B cell defects, which are only partially corrected with potent combination antiretroviral
therapy (26–28). Memory B cell deficiency may persist in these patients, resulting in poor
responses to influenza virus vaccination (29–31), but the underlying mechanisms have not
been elucidated. There is also accumulating evidence for impaired Ag-specific IL-21
secretion by CD4 T cells in progressive HIV infection (32–34). Based on the above
observations and the high failure rates of the novel 2009 H1N1 vaccine in HIV-infected
people, we hypothesized that defects in the IL-21/IL-21R pathway could prevent a
successful serologic response to the vaccine. In the current study, we examined the
relationship of the cytokine IL-21 and of its receptor expression on B cells to novel 2009
H1N1 vaccine responses in HIV-infected patients and healthy controls (HC). We observed
that the HIV-infected vaccine responder (R) patients and HC were clearly distinguishable
from vaccine nonresponder (NR) patients by their cellular immune responses and
upregulation of IL-21/IL-21R expression. Notably, the findings imply that the IL-21/IL-21R
pathway is likely to be playing an important role in generating serologic responses to the
novel 2009 H1N1 vaccine.
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Materials and Methods
Patient characteristics and response to vaccination

During the 2009–2010 influenza season, HIV-infected persons in the special immunology
clinic at University of Miami who agreed to be vaccinated against novel 2009 H1N1
influenza virus as standard of care were invited to participate in a prospective study to
evaluate immune responses to the vaccine. A single i.m. dose (15 μg; 0.5 ml) of inactivated
monovalent A/California/07/2009 H1N1 vaccine (Novartis Vaccines and Diagnostics) was
given to vaccine recipients. Data are presented for 16 patients who were on potent
combination antiretroviral therapy (cART), had plasma virus load of <400 copies/ml, and
completed follow-up visits on days 7 and 28 postvaccination. Eight HIV uninfected persons
who were given the same vaccine served as HC. Characteristics of the study population are
shown in Table I. Prevaccine H1N1 Ab titers were <1:20 in all study participants except one
HC (identification number 027) who had a titer of 1:40. Postvaccination, H1N1 Ab titers of
>1:40 on day 28 or a 4-fold increase from baseline were considered as protective (9). At 4
wk postvaccination, 8 of 16 (50%) patients developed Ab titers of >1:40 (median, 480;
range, 80–2560) and were designated as H1N1 R patients. Eight patients had H1N1 Ab titers
of ≤1:20 U at T2 and were designated as H1N1 vaccine nonresponders (NR). At T0, mean
age and frequencies of CD20+ B cells were statistically equivalent among the patient groups
and HC; CD4 and CD8 T cell counts and plasma HIV RNA were not different between the
patient groups. All HC developed protective H1N1 Ab titers (median, 720; range, 80–
20,480). The study was approved by the institutional review board of the University of
Miami.

mAbs
CD3 amcyan, CD20 allophycocyanin cyanin-7 (Cy7), CD20 allophycocyanin, CD10 PE-
Cy7, CD21 PE-Cy5, CD27 Verizon 450, CD27 Alexa Fluor 700, Ki67 FITC, and IL-21R
allophycocyanin were purchased from BD Biosciences (San Jose, CA). Isotype Abs used
were IgG1-Alexa 700, IgG1–PE-Cy7, IgG1–PE-Cy5, and IgG1 allophycocyanin.

Reagents
Reagents used were 1× PBS, penicillin (100 U/ml), and streptomycin (100 mg/ml) (Cellgro,
Manassas, VA); RPMI 1640 and L-glutamine (200 mM) (Life Technologies, Grand Island,
NY); heat-inactivated FBS (Hyclone, Logan, UT); Ficoll Paque (GE Healthcare
Biosciences, Uppsala, Sweden); BSA, DMSO, and Staphylococcus aureus Cowan strain
(SAC) (Sigma-Aldrich, St. Louis, MO); Cytofix/Cytoperm, Perm Wash buffer, and 3-
amino-9-ethylcarbazole (BD Biosciences, San Jose, CA); goat anti-human IgG, HRP-
conjugated streptavidin, and biotinylated goat anti-human IgG, Fcγ fragment specific
(Jackson ImmunoResearch Laboratories, West Grove, PA); multiscreen HA 96-well plate
for ELISPOT (Millipore, Billerica, MA); violet amine reactive viability dye (Molecular
Probes, Invitrogen, Eugene, OR); paraformaldehyde (Electron Microscopy Sciences,
Hatfield, PA); cell-culture plates (Costar, Corning, NY); recombinant human IL-21 (R&D
Systems, Minneapolis, MN); and IL-21 ELISA kit (eBioscience, San Diego, CA).

Processing of blood samples
Peripheral venous blood, 30 ml, was collected immediately before vaccination (T0) and on
days 7 (T1) and 28 (T2) postvaccination in heparinized vacutainer tubes after obtaining
written informed consent from the participants. PBMC were isolated by density gradient
isolation (35) using Ficoll Paque and processed fresh for immunophenotyping; remaining
PBMC were cryopreserved in 10% DMSO and 90% FCS in liquid nitrogen. Serum samples
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were stored at −80°C. Hemagglutination inhibition Ab titers against H1N1 were performed
at Bioqual (Rockville, MD) in T0 and T2 serum samples using virus and turkey RBC (10).

B cell characterization by flow cytometry
Total and maturational subsets of B cells were determined in HC and patients based on
phenotypic characteristics described by Moir and Fauci (reviewed in Ref. 26). Freshly
isolated PBMC (1 × 106 cells) obtained from blood samples at T0, T1, and T2 were stained
with Abs against surface Ags using CD3, CD20, CD10, CD21, CD27, or isotype control
Abs. Intracellular staining with Ki67 was performed in fixed permeabilized cells for
evaluating cell proliferation. Samples were acquired on an LSRII flow cytometer (BD
Biosciences) with collection of 200,000–500,000 events and were analyzed using FlowJo
software (version 8.8.6; Tree Star). Flow cytometry analysis was performed after proper
instrument setting, calibration, and compensation (36, 37). The gating scheme for
identification of the B cell maturation subsets is shown in Fig. 1. Appropriate isotype control
Abs were used at each step in gating of different B cell subsets to minimize effects due to
nonspecific staining. The live cells (violet amine reactive viability dye negative) were first
gated for CD3−CD20+ and CD3−CD20− subsets and sequentially on CD21, CD27, and
CD10 to identify the B cell maturation subsets. The CD3−CD20+ B cells were gated into
CD21hi and CD21lo/neg cells, each subset divided into CD27+ and CD27− subpopulation,
and further characterized on the basis of CD10 expression. The CD3−CD20+CD21hi B cells
were designated as resting memory (RM; CD27+CD10−), late transitional (LT;
CD27−CD10+), and N (CD27−CD10−) subsets. The CD3−CD20+CD21lo/neg B cells were
designated as activated mature differentiated (AM; CD27+CD10−), early transitional (ET;
CD27−CD10+), and exhausted tissue-like (ETL; CD27− CD10−) subsets. The CD3−CD20−
subset was divided into CD21− or CD21lo cells based on isotype Ab staining. The CD21lo

cells were gated for CD27+CD10− cells and further characterized based on expression of
Ki67 as short-lived plasmablasts (SPB; Ki67+) as described (26, 38). Frequencies of B cell
subpopulations were calculated as percentages of the total B cells, identified in this study as
CD3−CD20+ plus CD3−CD20− CD21+ lymphocytes. The various B cell populations were
further investigated for frequency and median fluorescence intensity (MFI) for IL-21R based
on isotype Ab staining (39).

ELISPOT assays for memory and effector H1N1 IgG ASC
Cryopreserved PBMC from different time points were thawed, rested overnight, and
analyzed for ASC by ELISPOT using the method described by Kyu et al. (40). For analysis
of memory B cells, 1 × 106 PBMC/ml from T0 and T2 were cultured for 5 d at 37°C in the
presence or absence of 5 μg/ml H1N1 vaccine Ag. SAC, 1/10,000 dilution, was used as a
positive control. In some experiments, exogenous cytokine IL-21, 50 ng/ml, was added to
cultures together with H1N1 Ag at culture initiation. On day 5 of culture, cells were washed,
and 100,000 cells/well were plated in triplicate for 5 h at 37°C in anti-IgG–coated ELISPOT
plates. Thereafter, the plates were sequentially washed and incubated at room temperature
for 1 h first with 100 μl/well biotinylated goat anti-human IgG (1:5000 dilution) followed by
100 μl/well streptavidin-HRP (1:5000 dilution). Plates were washed and developed using 3-
amino-9-ethylcarbazole substrate (41, 42). Spots representing H1N1 Ag-stimulated IgG-
secreting ASC were enumerated using an automated ELISPOT reader (Immunospot version
2.08; Cellular Technologies), and values in unstimulated wells were subtracted from those in
test wells (41). IgG-secreting cells were expressed as ASC/106 B cells.

For analysis of effector cell responses, spontaneous H1N1-specific ASC (43) were
determined in rested cryopreserved PBMC samples from T0, T1, and T2 without ex vivo Ag
stimulation. Cells were washed and plated in triplicate for 6 h at 37°C at 100,000 cells/well
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in H1N1 Ag-coated (5 μg/ml) ELISPOT plates. Plates were washed and processed as
described above for determining frequency of ASC/106 B cells.

ELISA assays for serum levels IL-21
The concentrations of IL-21 were determined in serum samples using a commercial ELISA
kit (eBioscience) as previously described (44). Plates were coated with 100 μl capture Ab
(1:250 dilution) for 12 h at 4°C, washed five times with wash buffer (PBS plus 0.05%
Tween 20), and blocked with assay diluents (1:5 dilution) for 1 h. Thereafter, standards, 100
μl/well, and serum, 100 μl/well, were added in duplicate and plates left overnight at 4°C.
Plates were washed five times, and 100 μl/well detection Ab (biotin-labeled, 1:250 dilution
in assay diluent) was added at room temperature for 1 h. Plates were washed again followed
by addition of 100 μl enzyme conjugate (avidin-GRP, 1:250 dilution in assay diluent) at
room temperature for 30 min and 100 μl substrate for 15 min. The reaction was stopped by
adding 50 μl stop solution (2 N H2SO4), and plates were read at 450 nm. Enzyme activities
were determined at an OD of 450 nm. Mean values of serum IL-21 were reported as
picograms per milliliter. Lower limit of detection of IL-21 was 31 pg/ml.

Statistical analyses
Statistical analyses were performed using GraphPad Prism software (version 4.01;
GraphPad). We used a general linear mixed-models procedure to perform a repeated-
measures ANOVA with one between-subjects factor (groups) and one within-subjects factor
(time). Contrasts were used to test for significant differences between groups and times.
Correlation between variables was determined either by Pearson correlation or linear
regression analysis. The p values <0.05 were considered significant.

Results
Expansions of memory B cells and plasmablasts occur post-novel 2009 H1N1 vaccination
in seroconverters

HIV-infected persons are known to manifest alterations in B cell maturation subsets, which
are partially reversed when they are treated with potent cART (38, 45). Frequencies of B cell
maturation subsets were determined in patients and HC in PBMC based on the gating
scheme (Fig. 1) described in Materials and Methods and are depicted in Fig. 2 and
Supplemental Fig. 1. A composite of all B cell maturation subsets at T0 and T2 is shown in
Fig. 2A. Frequencies of B cell maturation subsets in patients differed from HC as has been
previously described (38, 45), but there was no obvious difference between vaccine
responder and nonresponder patients. At T0, frequencies of RM B cells were reduced in
patients and were >2.5-fold higher in HC compared with R and NR patients (Fig. 2B).

At T2, however, the R and NR patients had widely divergent cellular responses, with
expansions of RM and SPB in R patients but not in NR patients. A significant expansion of
RM B cells from baseline was noted at T2, and this occurred in HC and R patients but not in
NR patients. Expansion of the RM B cells was correlated with the H1N1Ab titer in patients
(Fig. 2C) and also in HC at T2 (r = 0.53, p = 0.02; not shown). Responses of R patients
resembled HC but did not always exhibit the same magnitude of response. Frequencies of
AM B cells were not significantly different among study groups at T0, and all showed
expansions at T2 (Fig. 2D). A notable characteristic of B cells in influenza vaccinees is the
rapid expansion of plasmablasts within 1 wk, and this has been primarily associated with the
response of memory B cells (43, 46, 47). In the current study, frequencies of the SPB, which
were equivalent at T0 among study groups, showed an increase of ≥3-fold at T1 (day 7
postvaccination) in HC and in R patients but not in NR patients, followed by a downward
trend toward baseline by T2 in all (Fig. 2E). The H1N1 Ab titers at T2 correlated with
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frequency SPB at T1 in patients (Fig. 2F) and also in HC (r = −0.78, p = 0.004; data not
shown). As expected, LT B cells (Supplemental Fig. 1C) were decreased at T2
postvaccination in HC and R patients, and N B cells (Supplemental Fig. 1D) showed a
decrease in HC, as both these subsets constitute developmental intermediates for generation
of human mature B cells (48). Patients had greater frequencies of ET (Supplemental Fig. 1B)
and ETL B cells (Supplemental Fig. 1G) than HC at T0, and these subsets did not change
following vaccination. Except for SPB, no other B cell subset was altered at T1 in relation to
T0 (not shown).

Serum IL-21 and frequency of IL-21R+ B cells are selectively increased at T2 in vaccine
responders

In support of the hypothesis that the IL-21R/IL-21 axis was involved in the development of
Ab responses to the novel 2009 H1N1 vaccine, we noted that serum IL-21 levels increased
from T0 to T2 in HC and R but not in NR patients (Fig. 3A). To further ascertain the role of
IL-21/IL-21R in vaccine responses, we examined the IL-21R expression on total B cells and
in B cell maturation subsets. The pattern of IL-21R expression in B cells of HC and patients
(Fig. 3B, 3C) suggests that an increase in IL-21R was an important correlate of H1N1 Ab
response. At T0, frequencies of IL-21R in total B cells were comparable between R and NR,
but were higher in HC than either patient group, whereas MFI of IL-21R was equivalent
among HC (30.7 ± 10.3), R patients (36.2 ± 15.9), and NR patients (24.6 ± 14.3). At T2,
there was an increase in frequencies of IL-21R+ B cells in HC and R patients with increases
in MFI (156.9 ± 35.5 and 103.1 ± 32.5, respectively), but not in NR patients (MFI 36.9 ±
11.4). A direct correlation was observed between H1N1 Ab titer and IL21R+ B cells at T2
(Fig. 3D). Among B cell subsets at T0 (Fig. 3E), frequencies of IL-21R+ cells were highest
in the LT subset and lowest in AM B cells and were significantly higher in HC in LT and
RM subsets than both R and NR patients and also in N B cells of HC in comparison with NR
patients. At T2, however, the IL-21R–expressing cells increased (Supplemental Fig. 2), and
H1N1 Ab titer was correlated with IL-21R–expressing LT, N, and memory B cells in
patients as well as HC (not shown). No differences were noted in IL-21R+ AM B cells
among study groups, and no change occurred in frequencies of IL-21R+ B cells or their
subsets at T1.

H1N1 vaccine responders mount ASC responses at T1 and T2
Next, we aimed to determine if the serum Ab responses were correlated with functional
responses of memory B cells and plasmablasts in ELISPOT assays for ASC in
cryopreserved PBMC. As a measure of functional plasmablasts, spontaneous (unstimulated
ex vivo) H1N1-specific ASC responses were detected at T1 (Fig. 4A), in concurrence with
increase in phenotypic SPB and were noted to occur only in HC and R patients, with 1.5-
fold higher ASC in HC. These responses were short-lived and were close to baseline at T2.
An expansion of spontaneous H1N1-specific ASC at T1 did not occur in NR patients.

Functional memory B cells were analyzed by determining IgG ASC after ex vivo
stimulation of PBMC with H1N1 Ag for 5 d. The H1N1 Ag-stimulated IgG ASC response
occurred at T2 in R patients and in HC but not in NR patients (Fig. 4B). The IgG ASC
response at T2 in HC was greater than R patients. At T2, serum H1N1 Ab titers correlated
with H1N1-stimulated IgG ASC in patients (Fig. 4C) and in HC (r = 0.53, p = 0.02, data not
shown). ASC responses to SAC were equivalent at T0 in R and NR patients but significantly
lower than in HC (Fig. 4D) and did not change from T0 at T1 or T2 (not shown).
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H1N1-stimulated IgG-secreting cells are differentially influenced by exogenous addition of
cytokines IL-21 to PBMC cultures

As described earlier, memory B cell responses determined by ex vivo H1N1 vaccine Ag-
stimulated IgG ASC response failed to show an increase in NR patients from T0 to T2 (Fig.
4B). Based on the observed increase in the T2 serum IL-21 levels in R versus NR patients,
we investigated if exogenous IL-21 supplementation at culture initiation would influence the
H1N1-stimulated IgG ASC responses, particularly in NR patients at T2 (Fig. 5).
Supplementation of cultures with exogenous IL-21 selectively enhanced Ag stimulated IgG-
secreting cells only of HC and R patients, but failed to do so in NR patients.

Discussion
Influenza is a serious threat to the HIV-infected population and can cause significant
morbidity. During the 2009 H1N1 influenza pandemic, the HIV-infected populations in our
clinics were offered priority vaccination with a nonadjuvanted inactive novel 2009 H1N1
vaccine. The 2009 H1N1 vaccine Ag was novel for the age bracket of our study population,
and a majority of recipients were seronegative for this vaccine at the time of vaccination. In
agreement with published data (10), a large proportion of patients on cART failed to
seroconvert despite good virologic control and CD4 reconstitution. This study was
conducted to understand why 2009 H1N1 vaccination did not always engage the immune
system efficiently in this patient population. We made the novel observation that R patients
uniquely upregulated IL-21R on B cells and increased their serum IL-21 levels following
vaccination. Notably, serum H1N1 Ab titers were correlated with vaccine-induced changes
in phenotypic and functional memory B cells, plasmablasts, and IL-21R expression on B
cells.

Typically, Ag-induced activation, proliferation, and differentiation of N B cells at the site of
immunization and draining lymph nodes generates plasmablasts in the germinal centers
followed by their migration to bone marrow, where they develop into plasma cells for
secretion of serum Ab. Migration of B cells to sites such as the respiratory tract where they
secrete mucosal Abs including IgA has been described for parenteral influenza vaccines (17,
49–51). Memory B cells are generated, poised to respond by activation and proliferation
following re-exposure to the same Ag. Indeed, following H1N1 vaccination, we noted
phenotypic and functional evidence for expansions of peripheral memory B cells at T2 in R
patients and HC but not in NR patients. In the current study, all patients were on cART, and
the observed Ab or B cell responses did not correlate with CD4 T cell counts; thus, the
deficiencies in memory B cells cannot be attributed to a quantitative loss of total CD4 T
cells previously described in HIV-infected patients (30). There was, however, evidence for
qualitative T cell dysfunction in vaccine NR based on analysis of serum IL-21 levels, which
may have contributed to the failure of maturation and expansion of ASC.

Increases in serum IL-21 at T2 were noted selectively in the R patients and HC in this study
and occurred concomitantly with increase in frequency and MFI of IL-21R+ B cells,
suggesting that responsiveness to IL-21 was important for the Ab response. As IL-21 is
produced mainly from CD4 cells, in particular from T follicular helper cells (52),
reconstitution of this subset of CD4 T cells with cART in HIV-infected patients may be
critically important for restoring B cell function. Morita et al. (24) recently reported that
specific CXCR5+CD4+ T cell subsets in peripheral blood represent T follicular cell
counterparts and induce Ig production by B cells through secretion of IL-21. We found that
frequency of peripheral CD4+CXCR5+ cells increased from T0 to T2 in R patients and HC
(S.Y. Silva, S. Pallikkuth, S. Kanthikeel, M. Fischl, R. Pahwa, and S. Pahwa, manuscript in
preparation). Thus, it is quite possible that these CD4 T cells are involved in regulation of
vaccine-induced Ab responses, and a deficiency in this subset is not readily apparent in total
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CD4 T cell analysis because of its low frequency in peripheral blood. A deficiency of HIV-
specific IL-21–secreting CD4 T cells following ex vivo activation has in fact been described
in HIV infection (32–34). The importance of IL-21 in HIV infection has been attributed
mainly to its role in augmenting antiviral properties of CD8 T cells (34, 53), and recently,
IL-21 was shown to be more highly expressed in CD4 T cells of HIV-infected elite
controllers versus progressors (32, 33). Our data suggest that IL-21 may also play an
important role in regulating B cell differentiation to generate novel 2009 H1N1 influenza
vaccine-stimulated memory B cells and that failure to upregulate IL-21/IL-21R could
constitute a critical defect, leading to impaired vaccine-induced Ab responses in HIV-
infected patients.

Upregulation of IL-21R on B cells (including LT, N, and memory subsets) was strongly
correlated with the ability to make a serologic response to novel 2009 H1N1 vaccine.
Activation of B cells is known to upregulate IL-21R (54), which is highly expressed in
immature and N B cells. Whether the activation-induced IL-21R upregulation occurred
solely via a B cell-intrinsic mechanism or if IL-21 was involved in upregulation of IL-21R
on B cells is not known. In CD4 T cells, IL-21 is clearly known to exercise amplification of
its receptor (55). If a similar scenario were true for B cells, failure of IL-21R amplification
by IL-21 could be a cause for the impaired IL-21R upregulation in B cells of NR patients.
Preliminary observations made with PBMC of healthy donors suggest that ex vivo culture
with IL-21 can result in increased frequencies and MFI of IL-21R expression in total B cells
and in RM, LT, and N B cell subsets. Intrinsic B cell defects in IL-21R expression cannot be
ruled out, as baseline frequencies of IL-21R–expressing total B cells and IL-21R+ LT and
RM B cell subsets were reduced in patients despite equivalent serum IL-21 levels among
patients and HC at T0. Regardless of the underlying mechanism, failure to upregulate
IL-21R was a distinguishing feature of NR vaccine recipients. Collectively, the data for
IL-21/IL-21R upregulation and the associated expansion of memory B cells in R patients
suggest that this ligand–receptor pair was contributing to the regulation of B cell
differentiation to generate novel 2009 H1N1 influenza vaccine-stimulated memory B cells
and that failure to upregulate IL-21/IL-21R could be an underlying mechanism for impaired
vaccine-induced Ab responses in HIV-infected patients. This contention is supported by
other studies in which upregulation of IL-21/IL-21R were shown to be critical for memory B
cell generation (20, 25, 56, 57). IL-21 signals through the common γ-chain receptor subunit
of the IL-21R to phosphorylate STAT3 signaling molecules in a sustained manner in human
B cells. STAT3 activation induces B cell maturation with expression of plasma cell genes,
phenotypic plasma cell formation, and Ab secretion (20, 58, 59). Defects in IL-21 signaling
can impair B cell responses to protein Ags, resulting in poor germinal center persistence and
function, impaired transition into memory B cells, poor affinity maturation, and absence of
Ig class switching (56, 57). Recently, it was shown that IL-21R knockout mice fail to
develop Ag-specific memory B cells and plasma cells and have severely compromised
secondary immune responses (25). The addition of exogenous IL-21 to cultures of H1N1-
stimulated memory B cells resulted in significant enhancement of ASC responses only in R
patients and HC. The inability of IL-21 to enhance memory B cell responses ex vivo in NR
patients could partially be a consequence of the decreased frequency of IL-21R–expressing
memory B cells in addition to a reduced memory pool size. Moreover, the increased
frequency of B cells with the exhausted phenotype in NR patients may render them
unresponsive to helper signals.

An expansion of plasmablasts on day 7 postvaccination was another benchmark of
successful vaccination in this study. Integrated signals from a wide spectrum of sources
regulate the ability of B cells to differentiate into pathways resulting in generation of SPB
and memory cells (18, 59). A rapid expansion SPB originating from memory cells is
regulated largely by innate immune factors (60, 61). On day 7 post-seasonal influenza
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vaccination, healthy donors have been shown to manifest an expanded functional
plasmablast population originating largely from Ag-responsive memory B cells (30, 43, 46,
47) that constitute ~6% of peripheral B cells (43). Surprisingly, in R patients in our study,
we observed a similar kinetic and frequency of SPB, the presumed source of spontaneous
H1N1 ASC detected at T1 in the ELISPOT assay. Although we cannot exclude the
contribution of cross-reactive memory B cells (3, 46) to the SPB pool, it is more likely that
SPB resulted from expansion of unprimed B cells (62), rather than pre-existing Ag-specific
memory cells. It is interesting that the IL-21R knockout mice who manifested severe deficits
in memory B cells and recall Ab responses also had a poor early primary immune response
(25). We contend that the IL-21R–IL-21 interaction contributes in some measure to the
expansion of SPB from IL-21R+ immature and N B cells in a primary immune response, in
addition to the well-established role of IL-21/IL-21R signaling in the development of long-
lived memory cells.

The results of our studies point to the need to define the molecular basis of the observed
immunologic defects in efforts toward optimization of vaccination strategies for influenza
viruses. Vaccine-induced transcriptional regulation of B cell survival, proliferation,
differentiation, class switch, and somatic mutation need further study. Levels of activation-
induced cytidine de-aminase, important for regulating class switch, were recently found to
be deficient in ex vivo influenza vaccine-stimulated B cells in aging humans (63) who are
known to have poor Ab responses to influenza vaccines and have poor in vitro B cell
differentiation responses (64). Given the prevailing notion that the immune system in HIV
infection undergoes premature immune senescence (65–67), this line of investigation is
worthwhile. We also recognize the need to conduct more precise studies in purified cell
populations to address critical aspects of B cell maturation in the NR patients and to evaluate
the role of innate factors such as BAFF and a proliferation-inducing ligand, which are
important in B cell maturation and differentiation (16, 60, 68–70) (S. Pallikkuth, S. Pilaka
Kanthikee, S.Y. Silva, M. Fischl, R. Pahwa, and S. Pahwa, manuscript in preparation). It is
of interest that a combination of IL-21 and BAFF in the absence of further costimulation is
capable of inducing differentiation of memory B cells that reside in the marginal zone region
of the human spleen (71).

The major limitation of this pilot study is the small sample size and its effect on data
interpretation. The small sample size may have masked greater differences between HC and
patients and between the two patient groups. To maximize the impact of the study, we
ensured that patients were virologically controlled on cART, randomly selected prior to
vaccination before knowing the vaccination outcome, and studied prospectively. Despite the
sample size and gender distribution limitations, differences between R and NR patients as
indicated in Table I are quite remarkable. Not only did the proportion who failed to
seroconvert closely match the published data (10, 12, 13), but also distinct and significant
differences in immune responses were identified that set the NR apart from R patients and
also revealed subtle differences between R patients and HC. The IL-21/IL-21R upregulation
was associated with expansion of phenotypic and functional memory B cells, which,
together with expansion of SPB with effector function, stood out as key indicators of
successful vaccine-induced activation of the immune system. Future studies to evaluate
IL-21/IL-21R screens to predict responsiveness to influenza vaccines at the level of
individual patients may be worthwhile. These studies point to the need for continuing
investigations to examine the cumulative signaling elements that control B cell
differentiation in response to vaccines for insight into improving immunization strategies for
immune deficient patients against influenza viruses.

Pallikkuth et al. Page 9

J Immunol. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
This work was supported by National Institutes of Health Grant A1077501 (to S.P.) and a specialty laboratory grant
from the International Maternal, Pediatric and Adolescent AIDS Clinical Trials Group. Overall support for
International Maternal, Pediatric and Adolescent AIDS Clinical Trials Group was provided by the National Institute
of Allergy and Infectious Diseases (U01 AI068632), the Eunice Kennedy Shriver National Institute of Child Health
and Human Development, and the National Institute of Mental Health (AI068632).

We thank the Laboratory Sciences Core of the Developmental Center for AIDS Research for facilitating conduct of
the flow cytometry studies and Dr. Kristopher L. Arheart of the Clinical Sciences Core for providing statistical
input. We also thank Drs. Wasif Khan, Bonnie Blomberg, and Daniela Frasca of the Department of Microbiology
and Immunology for helpful discussions and the patients for participation in this study.

Abbreviations used in this article

AM activated mature differentiated

ASC Ab-secreting cell

cART combination antiretroviral therapy

Cy7 cyanin-7

ET early transitional

ETL exhausted tissue-like
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FIGURE 1.
Characterization of B cell subsets and plasmablasts by flow cytometry. Fresh PBMC (1 ×
106 cells) were stained with surface Abs to CD20, CD21, CD10, and CD27, and intracellular
staining for Ki67 was performed on fixed permeabilized cells. Lymphocytes were gated
based on forward and side scatter. CD3−CD20+ cells were gated into CD21hi and CD21lo/neg

cells and further divided based on the expression of CD27 and CD10 as ET
(CD21lo/negCD27−CD10+), LT (CD21hiCD27−CD10+), N (CD21hiCD27−CD10−), RM
(CD21hiCD27+CD10−), AM (CD21lo/negCD27+CD10−), and ETL
(CD21lo/negCD27−CD10−) subsets. Gated CD3−CD20−CD21lo cells were characterized as
SPB (CD10−CD27+Ki67+).
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FIGURE 2.
Changes in B cell subsets and plasmablasts in healthy controls and HIV-infected patients
post-H1N1 vaccination: fresh PBMC (1 × 106 cells) was stained with Abs for B cell subset
and plasmablast characterization (CD20, CD21, CD10, CD27, Ki67). The percentages of
cells in each B cell subpopulation were determined in healthy controls and HIV-infected
patients before (T0), 7 d (T1), and 28 d (T2) after H1N1 vaccination. Data are shown for T0
and T2, as there was no difference in the subpopulations at T1 compared with T0. A,
Composite of frequency of all B cell subsets at T0 and T2 in eight HC, eight R, and eight
NR patients. Frequencies of individual subsets are shown as box plots: RM (B), AM (D),
and SPB (E). Box plots include median with 25th and 75th percentile borders, and error bars
represent 10th and 90th percentiles. C, Correlation of RM B cells at T2. F, Correlation of
SPB at T1 with H1N1 Ab titer in HIV-infected patients. Stars indicate the level of
significance. ★p < 0.05, ★★p < 0.01, ★★★p < 0.001.
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FIGURE 3.
Serum IL-21 levels and IL-21R expression in B lymphocyte subsets in HC and HIV-infected
patients pre- and post-H1N1 vaccination: serum levels of IL-21 were measured by ELISA
(A). Fresh PBMC (1 × 106 cells) were stained with surface markers for B cell subset
characterization (CD20, CD21, CD10, CD27) and for IL-21R. Total B cells and various B
cell subsets were analyzed at baseline (T0), 7 d (T1), and 28 d (T2) postvaccination for
IL-21R by flow cytometry. Data are shown for T0 and T2 as no changes were noted at T1
compared with T0. B, Representative histograms showing frequencies and MFI (in
parentheses) of IL-21R expression in total B cells of eight HC, eight HIV-infected H1N1 Ab
responders, and eight HIV-infected H1N1 Ab nonresponders at T0 (gray) and T2 (black)
compared with isotype controls (filled). C, Box plots are shown to illustrate frequency of
IL21R expression in total B cells. D, Correlation of H1N1 Ab titer with percentage of
IL21R+ B cells at T2 in HIV-infected patients. E, Frequency of IL21R expression B cell
subsets at baseline. Box plots include median with 25th and 75th percentile borders, and
error bars represent 10th and 90th percentiles. Stars indicate the level of significance. ★p <
0.05, ★★p < 0.01, ★★★p < 0.001.
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FIGURE 4.
H1N1-specific ASC in healthy controls and HIV-infected patients pre- and post-H1N1
vaccination: ASC response was measured by ELI-SPOT in HC and HIV-infected patients.
Box plots include median with 25th and 75th percentile borders, and error bars represent
10th and 90th percentiles. Spontaneous H1N1-specific ASC/106 B cells (A), IgG-producing
ASC following ex vivo stimulation with H1N1 Ag (B), and IgG-producing ASC following
ex vivo stimulation with SAC at baseline (C). D, Correlation between serum H1N1 Ab titer
and H1N1-stimulated IgG ASC at T2 in PBMC of HIV-infected individuals. Stars indicate
the level of significance. ★p < 0.05, ★★p < 0.01, ★★★p < 0.001.
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FIGURE 5.
H1N1 Ag-stimulated IgG responses in HC and HIV-infected patients pre- and post-H1N1
vaccination: H1N1 vaccine Ag-stimulated IgG ASC with and without exogenous IL-21 at
T0 and T2. Box plots include median with 25th and 75th percentile borders, and error bars
represent 10th and 90th percentiles. Stars indicate the level of significance. ★p < 0.05, ★★p <
0.01, ★★★p < 0.001.
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