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BACKGROUND: Yolk sac tumours (YSTs) and germinomas are the two major pure histological subtypes of germ cell tumours. To date,
the role of DNA methylation in the aetiology of this class of tumour has only been analysed in adult testicular forms and with respect
to only a few genes.
METHODS: A bank of paediatric tumours was analysed for global methylation of LINE-1 repeat elements and global methylation of
regulatory elements using GoldenGate methylation arrays.
RESULTS: Both germinomas and YSTs exhibited significant global hypomethylation of LINE-1 elements. However, in germinomas,
methylation of gene regulatory regions differed little from control samples, whereas YSTs exhibited increased methylation at a large
proportion of the loci tested, showing a ‘methylator’ phenotype, including silencing of genes associated with Caspase-8-dependent
apoptosis. Furthermore, we found that the methylator phenotype of YSTs was coincident with higher levels of expression of the
DNA methyltransferase, DNA (cytosine-5)-methyltransferase 3B, suggesting a mechanism underlying the phenotype.
CONCLUSION: Epigenetic silencing of a large number of potential tumour suppressor genes in YSTs might explain why they exhibit a
more aggressive natural history than germinomas and silencing of genes associated with Caspase-8-dependent cell death might
explain the relative resistance of YSTs to conventional therapy.
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Changes in DNA methylation have been thought to have a role in
cancer aetiology for many years (Feinberg and Vogelstein, 1983;
Feinberg and Tycko, 2004). Although hypomethylation of repeti-
tive elements has been shown in a range of cancer types, there is
little evidence for hypomethylation of gene regulatory sequences
(De Smet and Loriot, 2010). By contrast, analysis of many
individual tumour suppressor genes has shown their repression
by promoter hypermethylation in cancers to be commonplace.
More recently, where global analyses have been applied, all classes
of tumour analysed have shown high levels of methylation of many
genes, suggesting that this is a widespread event in cancer
development (Martin-Subero et al, 2009; Richter et al, 2009).
Indeed, specific subgroups of colon cancer and glioma have been
shown to exhibit a ‘methylator’ phenotype (Toyota et al, 1999;
Weisenberger et al, 2006; Shen et al, 2007; Noushmehr et al, 2010).

Children’s cancers develop over a very short time scale, many
within the first few years and even perinatally. Unlike cancers in
adults, this would not seem to provide time for a series of

carcinogenically driven mutations to arise. Dysregulation of gene
expression due to changes in global methylation through a defect
in the methylation machinery provides a plausible alternative
mechanism for the development of these childhood cancers.

Paediatric germ cell tumours (GCTs) are a particularly unusual
group of cancers. They arise not only in the tissues where germ
cells would normally reside, the gonads, but also in extragonadal
sites, primarily the base of the spine (sacrococcygeal tumours), the
thorax (mediastinal tumours) and in the ventral midline of the
brain. In addition, they exhibit strikingly different histological
subtypes that parallel the forms seen in adults, classified as
seminomatous or non-seminomatous. The seminomatous tumours
are uniform tumours resembling those found in adult testes with a
similarity to germ cell progenitors (in extragonadal sites, and
throughout this report, referred to as ‘germinomas’). Non-
seminomatous tumours represent several morphologically distinct
subtypes, of which yolk sac tumours (YSTs) are the major class in
children and which are therefore included in this study. In general,
YSTs are relatively more aggressive and resistant to therapy than
seminomatous tumours (Murray et al, 2010). Despite these
differences, all GCTs are believed to share a common lineage, as
both histological subtypes can exist in the same tumour
(Looijenga, 2009) and primary seminomatous tumours can recur
as non-seminomatous tumours (Wong et al, 2010).
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Like other paediatric tumours, GCTs may exhibit relatively few
cytogenetic abnormalities and the teratoma subtype, for example,
exhibits little or no cytogenetic damage (Rickert, 1999; Mostert
et al, 2000; Veltman et al, 2003; Oosterhuis and Looijenga, 2005).
Hence, in cases where DNA damage is not the primary cause of
dysregulated gene expression, then it must be disrupted by another
mechanism, for which DNA methylation is a strong candidate. For
this reason, analysing the methylation status of the genome is of
particular importance to our understanding of this class of
tumour.

To date, DNA methylation has only been analySed with respect
to a small group of genes in adult testicular GCTs (Koul et al, 2002,
2004; Smith-Sorensen et al, 2002; Honorio et al, 2003; Manton
et al, 2005; Lind et al, 2006, 2007), which revealed the methylation
of nine known tumour suppressor genes in a large number of
tumours. However, no analysis has been carried out to determine if
changes in methylation are seen in paediatric cases or in
extragonadal GCTs.

To analyse methylation in a cohort of paediatric GCTs, we
adopted two approaches. Firstly, we analysed the methylation
status of the LINE-1 repetitive elements that are dispersed
throughout the genome and have been shown to reflect the
general methylation status of intergenic DNA. Secondly, we also
used GoldenGate methylation arrays (Illumina, San Diego, CA,
USA) to assess the methylation status of more than 800 genes.
These experiments revealed a striking difference in methylation
between YSTs and germinomas, which occurred irrespective of
anatomical location, sex or age. This makes YSTs a very unusual
histological class of tumour in which the great majority exhibit a
highly methylated state, setting them apart from other types of
cancer in which DNA methylation has been analysed to date. Our
study identified a large number of potentially important methyla-
tion events that could contribute to the tumour’s pathogenesis,
among which the methylation of several genes correlated well with
their expression levels between the two groups of tumours. Most
notable among these were genes associated with the extrinsic
pathway of apoptosis. Finally, we found that the ‘methylator’
phenotype in YST correlated with increased expression of DNA
(cytosine-5)-methyltransferase 3B (DNMT3B).

MATERIALS AND METHODS

Combination of bisulphite and restriction analysis

LINE1 PCR was carried out according to Yang et al (2004) using
30 ng of bisulphite converted (EZ DNA methylation kit, Zymo
Research, Irvine, CA, USA) genomic DNA and Platinum Taq
(Invitrogen, Paisley, UK), with 100 nM of FAM-labelled forward
primer and 100 nM reverse primer. Polymerase chain reaction
products were then digested with Hinf1 restriction enzyme (NEB,
Hitchin, UK). Digested products were analysed by gel electro-
phoresis and GeneScan (Applied Biosystems, Foster City, CA,
USA). Primers sequences are shown in Supplementary information
and Supplementary Table 3.

Methylation microarray analysis

Methylation array analysis was performed at the Wellcome Trust
Centre for Human Genetics, University of Oxford, using the
Illumina GoldenGate Cancer Panel I assay http://www.illumina.
com/pages.ilmn?ID¼ 193/, according to the manufacturer’s
instructions. The assay reports methylation values at 1505 loci
mapping to 807 genes previously associated with DNA methylation
and/or cancer.

Quality control was carried out using Beadstudio v.3.2 methyla-
tion module (Illumina) and the R package, beadarray (Dunning

et al, 2007), which enabled the identification and exclusion of
potentially confounding spatial artefacts. Samples failing quality
control were removed from subsequent analyses. After background
signal normalisation, the assay reported b-values for each
measured probe, with values ranging from zero (unmethylated)
to one (methylated) (Bibikova et al, 2006).

Cluster analysis and identification of differentially
methylated loci

Bootstrapped hierarchical clustering was performed using the R
package pvclust (Suzuki and Shimodaira, 2006), using Euclidean
distance, average agglomeration and 10 000 replications. Sub-
groups with an approximate unbiased P-value of o0.05 were
significant. The observed clustering patterns were assessed using
principal component analysis and k means analysis. The optimal
number of clusters for k means analysis was assessed using Scree
plots. Differentially methylated loci between subgroups were
identified using Mann–Whitney U-tests, with a P-valueo0.05
after Benjamini–Hochberg false discovery rate correction
(Benjamini and Hochberg, 1995) for multiple testing, with an
additional filter that the average change in b between subgroups be
40.2. This was increased to 40.34 for comparison between
tumour subtypes.

PCR and pyrosequencing

Polymerase chain reaction was carried out on bisulphite converted
genomic DNA using Platinum Taq polymerase (Invitrogen).
Polymerase chain reaction cycling conditions were 941C for
10 min, followed by 45 cycles of 941C for 60 s, 551C for 60 s and
721C for 40 s, with a final 5 min extension at 72oC. The biotin-
labelled strand of the amplicon was isolated and pyrosequencing
carried out using sequencing primers at the Genome Centre,
Queen Mary University of London, London, UK. Primers
sequences are shown in Supplementary information and Supple-
mentary Table 3.

Reverse transcription – PCR analysis

First-strand cDNA synthesis was performed using random primers
(Promega, Southampton, UK) with SuperScript III Reverse
Transcriptase (Invitrogen). Polymerase chain reaction was carried
out using 0.04 Uml�1 Kapa Taq (GRI, Essex, UK). Minus RT
controls were routinely performed. Primers sequences are shown
in Supplementary information and Supplementary Table 3.

RESULTS

Global methylation of LINE-1 repetitive elements

We first examined the global methylation status of 32 tumours
from a bank of paediatric GCTs (Supplementary information and
Supplementary Table 1) using the well-established strategy of
analysing the LINE-1 repetitive element sequences via the
combination of bisulphite and restriction analysis (COBRA)
technique (Yang et al, 2004; Figure 1A–C). These sequences are
normally heavily methylated, which is believed to be important to
maintain them in a ‘silent’ state so that they cannot destabilise the
genome (Belancio et al, 2010).

Consistent with studies in other cancers, the level of methylation
of the LINE-1 elements in almost all GCT samples analysed was
lower than that in controls (Figure 1D and E). Control samples
averaged 68% methylation, whereas the level of methylation was
significantly lower (Po0.0001) in germinomas (32%) and in YSTs
(42%). These differences were also seen between tumours and
tissue-matched controls (Figure 1F and G).
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Global methylation analysis of gene regulatory sequences

We next used the GoldenGate beadchip system to assess the
methylation status of gene regulatory regions. These beads carry

an optimised set of 1505 CpG sites selected from 807 genes
including known tumour suppressors, oncogenes and factors
involved in processes such as DNA repair, cell cycle control,
differentiation and apoptosis. Results were obtained for 15
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tumours (seven germinomas and eight YSTs) and five control
samples from healthy individuals (buccal cells from two adult male
subjects and peripheral blood from three infants) (Supplementary
Tables 1 and 2). Unsupervised hierarchical clustering grouped the
germinomas and controls together, whereas YSTs formed an
independent cluster exhibiting a generally more methylated status
(Figure 2A and B). Using three-dimensional principle component
analysis, YSTs again formed a separate group from the germino-
mas and controls, which formed a single group (Figure 2C). Even
when we used k-means analysis of the 20 samples (a preceding
Scree plot had determined that three clusters were optimal)
germinomas remained clustered together with the control samples
and it was the YSTs that were separated into two distinct groups
(Figure 2D).

YSTs but not germinomas exhibit widespread
hypermethylation of gene regulatory sequences

To describe differences between b-values (delta b-value) that were
considered ‘significant’, we analysed an additional, independent
cohort of nine germinomas and 11 YSTs (Supplementary Tables 1
and 2). This revealed that the majority of delta b-values 40.3 were
consistent between the two tumour subtypes in both cohorts of
samples. We therefore used this delta b-value to determine
significant differences in methylation. It is worth noting that this
value is among the more stringent values used in previous studies
(Martin-Subero et al, 2009; Richter et al, 2009; Ang et al, 2010).

Of the genes included on the GoldenGate array, 131 (16%) were
significantly more methylated in YSTs than in germinomas
(Supplementary Table 1; X-chromosome genes were excluded as
they would normally differ between male and female subjects due
to X-chromosome inactivation.). Importantly, we also determined
which genes were hypermethylated or hypomethylated in GCTs as
compared with ‘normal’ control tissues. Overall, we found little
evidence of hypomethylation. In germinomas, only 4 out of 807

genes (0.5% of genes tested) were significantly less methylated
than controls and only 13 out of 807 genes were hypomethylated in
YSTs. Indeed, only one gene, CD86, was reproducibly hypermethy-
lated in germinomas and there is no evidence to suggest that this
cell surface marker can function as a tumour suppressor.

Therefore, comparison to normal control tissues allowed us to
show that the germinomas in our study have a normal level of
methylation of gene regulatory regions, not ‘as good as devoid of
DNA methylation’ as was concluded by Lind et al (2007) with
respect to seminomatous GCTs. Such a lack of hypermethylation
makes germinomas a very unusual tumour type compared with the
other classes of tumour analysed to date.

Many potential tumour suppressor genes are methylated in
YSTs

In our initial array analysis, 85 out of 807 genes (10.5%) were
hypermethylated in YSTs, but not germinomas (Supplementary
Table 2; top 25 shown in Figure 3A). In this study, the genes
identified to be specifically hypermethylated in paediatric YSTs
were highly reproducible. In the second cohort of GCTs analysed, a
similar number of genes were hypermethylated (104 out of 807,
12.8%), 71 of which were the same genes identified in the first
cohort, with three genes appearing in the top five (as ranked by
delta b-value) in both cohorts (Figure 3B). Indeed, analysis of each
tumour for the methylation status of the 85 genes initially
identified showed that 27 of these genes were hypermethylated
in X85% of tumours from both cohorts (Figure 3C). Hence, it
appears that the significant majority of YSTs exhibit a very similar
‘methylator’ phenotype.

These hypermethylated genes included several that others have
shown to be highly methylated in adult testicular non-seminomas.
Previous studies used a candidate gene approach to identify nine
genes, from a total of 39 studied, that were frequently methylated
in non-seminomatous adult testicular GCTs, especially in YSTs

C C C C CG G G G G G Y Y Y Y Y Y Y Y
–4

PC2 PC3

–2
0

4
6

–5 0 5 104
2

0
–2

–4

4

2

0

–2

–8

Germinoma/
controls

–6 –4 –2
Component 1

0 2

C
om

po
ne

nt
 2

2

G

C C C C CG G G G G G Y Y Y Y Y Y Y YG

0.25

0.20

0.15
100

au

87

93

98

95
95

70

100

67

63
75

93 86

74
88

100

88

75
0.10

LB
I3

X
67

M
D

I1
A

2

A
3

X
35

E
W

I2

X
17

X
33 X

42

X
22

X
30

X
15

X
38

X
19

X
57

X
54

X
36

X
73

X
79

0.05

0.00

H
ei

gh
t

YST

YST

Figure 2 Cluster analysis of tumours according to methylation status. (A) Heat map showing that germinomas (G) cluster together with controls (C),
whereas YSTs (Y) cluster separately, showing higher levels of methylation (red). (B) Bootstrapped hierarchical clustering using the R package pvclust (Suzuki
and Shimodaira, 2006). Subgroups with an approximate unbiased P-values of o0.05 were significant. (C) The observed clustering patterns were assessed
using principal component analysis and k means analysis. Yolk sac tumours are shown in blue, germinomas in red and controls in green. (D) Plot shows
subgroup members selected by k means analysis plotted against the first two principal components. The optimal number of clusters for k means analysis
was assessed using Scree plots. Differentially methylated loci between subgroups were identified using Mann–Whitney U-tests, with an adjusted P-value
o0.05 after Benjamini –Hochberg false discovery rate correction for multiple testing. The colour reproduction of this figure is available at the British Journal of
Cancer online.

Methylator phenotype in germ cell tumours

JN Jeyapalan et al

578

British Journal of Cancer (2011) 105(4), 575 – 585 & 2011 Cancer Research UK

G
e
n

e
tic

s
a
n

d
G

e
n

o
m

ic
s



(Koul et al, 2002, 2004; Smith-Sorensen et al, 2002; Honorio et al,
2003; Manton et al, 2005; Lind et al, 2006, 2007). Of these
previously identified genes, we found that five (RASSF1A, HOXA9,
SCGB3A1, HIC1, APC) of the nine included in our initial array
analysis were also significantly more methylated in YSTs than in
germinomas.

Previously, RASSF1A, HOXA9, SCGB3A1, HIC1 and APC had
been shown to be hypermethylated in 100% of YSTs analysed
(Honorio et al, 2003; Rathi et al, 2003; Koul et al, 2004; Lind et al,
2006; Brieger et al, 2010). However, we found only one of these
genes hypermethylated in all YST samples from both cohorts of
tumours analysed (Figure 3C). This was largely due to the presence
of a single YST in the second cohort that lacked the methy-
lator phenotype (approximately 74% of the genes that were

hypermethylated in most other YSTs exhibited no significant
hypermethylation in this tumour). To gain a clear indication of
those genes most strongly associated with the methylator
phenotype, we next excluded the single YST lacking the methylator
phenotype. We found three genes hypermethylated in all of these
(HOXA9, APC, PYCARD), which were methylated in less than 25%
of germinomas and a further 30 genes hypermethylated in over
80% of the YST samples (14 of these genes were not methylated in
a single germinoma and 16 were methylated in o25% of
germinomas; Table 1).

Among the genes selectively methylated in YSTs, many have
been previously implicated as tumour suppressors (Table 2).
However, rather surprisingly, of the ‘top 14’ most frequently
reported genes that are hypermethylated in human cancers
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(Cheung et al, 2009), all of which were included in our array
analysis, only RASSF1A, APC and ESR1 were methylated in the
majority of YSTs and almost none were methylated in germino-
mas. Even more striking is the fact that a recent analysis of gliomas
exhibiting a ‘methylator’ phenotype showed 12 of these 14 genes to
be hypermethylated, but APC and ESR1 are the very genes that did
not show hypermethylation in these gliomas (Noushmehr et al,
2010). Our findings therefore suggest that the vast majority of
YSTs exhibit a strong methylator phenotype, but that this is quite a
different methylation signature to that seen in other tumour types
(Weisenberger et al, 2006; Shen et al, 2007), suggesting a different
underlying mechanism.

Validation of methylation array data

Pyrosequencing of bisulphite-treated DNA was used to validate the
data from the GoldenGate arrays, which also extended the number
of CpGs analysed. We selected PYCARD for this purpose as,
although this gene was significantly hypermethylated in almost all
YSTs and, as discussed below, this was reflected in a difference in
its expression between YSTs and germinomas, the difference in the
level of methylation between germinomas and YSTs was moderate.
PYCARD therefore represented a stringent validation test of the
methylation arrays. Owing to the limited availability of the tumour
DNA samples, this analysis was carried out only on five samples in
duplicate, which showed that the entire protocol was highly
reproducible (Figure 4A).

Pyrosequencing was carried out on the proximal promoter
region of PYCARD from a position �234 bp proximal to the
transcription start site. The amplified sequence was 100 bp
including six CpGs, one of which (at position �151) was also
included in the arrays. Comparison of the methylation values
obtained for this single CpG between pyrosequencing and the
original arrays showed a strong correlation between the two
techniques (Figure 4B). Pyrosequencing also revealed that CpGs
adjacent to this CpG shared a similar methylation status
(Figure 4A). These data validated the difference in methylation
of PYCARD between germinomas and YSTs and showed that this
difference was shared with other, nearby CpGs.

Relationship between methylation and gene expression

If differences in gene methylation are of biological significance to
the pathogenesis of GCTs, it seems probable that they must affect
the expression of those genes. In the previous studies of
methylated genes in adult testicular GCTs, only one gene,
RASSF1A, which was methylated in a large proportion of non-
seminomatous tumours and unmethylated in most seminomatous
tumours, exhibited an expression pattern that correlated with its
methylation status between the two tumour subtypes (Koul et al,
2002). To determine if the methylation we saw correlated with gene
expression in the tumour cells, we compared our data to the
expression array analysis previously reported for this same bank of
tumours (Palmer et al, 2008). Overall, the majority of hyper-

Table 2 List of genes that have previously been implicated as tumour suppressors among the 85 genes hypermethylated in YSTs

Genes Tumour type Reference

RASSF1 Testicular germ cell tumour; nasopharyngeal carcinoma Honorio et al (2003); Koul et al (2004); Lind et al (2006);
Wang et al (2009)

HOXA9 Breast cancer, testicular cancer Lind et al (2006); Gilbert et al (2010)
SCGB3A1 Breast cell lines; mouse transformed Clara cells; testicular cancer Krop et al (2005); Lind et al (2006); Tomita et al (2009)
ESR1 Squamous cell carcinoma Zhai et al (2010)
SLC22A3 Prostate cancer Tomlins et al (2007)
PYCARD/ASC/TMS Leukemia-derived cell lines; colon adenocarcinoma and stomach cancer cell lines Calvanese et al (2008); Mhyre et al (2009); Motani et al (2010)
WNT2 Colorectal cancer Shi et al (2007)
HIC1 Paediatric neoplasm; head and neck squamous cell carcinoma Rathi et al (2003); Koul et al (2004); Brieger et al (2010)
APC Testicular germ cell tumour; invasive ductal carcinoma Honorio et al (2003); Cho et al (2010)
IRF5 Gastric cancer Yamashita et al (2010)
SLIT2 Lung cancer; glioma cell Tseng et al (2010); Yiin et al (2009)
TFAP2C Human extravillious throphoblast cell; breast adenocarcinoma Li et al (2006); Kotani et al (2009)
SLC5A8 Head and neck squamous cell carcinoma Bennett et al (2009)
CASP8 Neuroblastoma Hoebeeck et al (2009)
FES Mouse mast cells; colorectal Cancer Shaffer and Smithgall (2009); Voisset et al (2010)
WT1 Ovarian clear – cell adenocarcinoma; gastric, lung, fibrosarcoma, glioblastoma Kaneuchi et al (2005); Tatsumi et al (2008)
CDH13 Pituitary adenomas Qian et al (2007); Andreeva and Kutuzov (2010)
KLK10 Non-small-cell lung cancer Zhang et al (2010)
LTB4R Colon cancer Ihara et al (2007)
THY1 Nasopharyngeal carcinoma Lung et al (2010)
TNFRSF10C Prostate carcinoma Hornstein et al (2008)
COL1A2 Colorectal cancer Sengupta et al (2003)
S100A4 Pancreatic cancer cell lines Tabata et al (2009)
DCC Colon cancer cells Rodrigues et al (2007)
PTPRO Lung cancer Motiwala et al (2004)
TPEF Colon, bladder, prostate cancer Liang et al (2010)

Abbreviation: YST¼ yolk sac tum. Additional references in Supplementary information.

Table 1 Genes hypermethylated in more than 80% of YST samples analysed by GoldenGate array

Genes hypermethylated in more than 80% of YST samples, and in o25% of germinoma samples in the methylation array
APC, ASCL2, BDNF, CCNA1, CD2, CYP1B1, ESR1, HCK, HFE, HLA-F, HOXA9, HPN, HS3ST2, IGF2AS, IRAK3, IRF5, KLK10, LAT, NPY, NTSR1, OSM, PDGFRB, PYCARD, RASSF1,
RIPK3, SCGB3A1, SLC22A3, STAT5A, TAL1, TNFSF8, VAV1, WNT1, WNT10B

Abbreviations: YST¼ yolk sac tum. Genes in bold were hypermethylated in all YSTs exhibiting the ‘methylator’ phenotype.
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methylated genes showed no significant difference in expression
(taken as an LOD score or B-statistic value of 3 or more). This may
not be surprising, as absence of methylation is not the only
prerequisite for a gene to be expressed. However, among the genes
that we identified as methylated in YSTs, but not in germinomas,
eight were selectively expressed in germinomas, whereas only one
was selectively expressed in YSTs (Table 3).

Among the genes methylated in YSTs and selectively expressed
in germinomas, TFAP2C, PYCARD, CD2, CASP8 (Caspase 8),
EVI2A and HLA-F were very biased in both methylation and
expression, with LOD scores for the difference in expression 44
(Palmer et al, 2008) and hypermethylation in 475% of YSTs and
in 25% or fewer germinomas (except TFAP2C, which was only
hypermethylated in 63% of YSTs, but in no germinomas)
(Figure 3C). It is striking that this list does not include the genes
previously implicated by methylation in GCTs, such as HOX9A or
RASSF1A, but instead identifies six new genes as the best
candidates for a role of DNA methylation in GCT biology. Of
these, CASP8 and PYCARD are of particular interest as they are
known to be associated with apoptosis.

Cause of hypermethylation in YSTs

In other cancers, changes in specific components of the epigenetic
machinery have been shown to cause hypermethylation. EZH2 and
SUZ12, components of the polycomb PRC2 complex, have been
implicated in several types of cancer (Chen et al, 2010; Karanikolas
et al, 2010; Martin-Perez et al, 2010). Also, overexpression of the
DNA methyltransferase, DNMT3B, was identified in lung and
breast cancer cell lines (Beaulieu et al, 2002) and depletion of
DNMT3B expression in breast cancer cell line was shown to
activate the methylated RASSF1 (Wang et al, 2006); therefore, we
analysed the expression of these factors by qRT-PCR.

Although we had access to only a small number of RNA samples
from the same tumours analysed for their methylation status, our
data did reveal a significant difference between germinomas and
YSTs in the level of expression of DNMT3B (Figure 5), but not
EZH2 or SUZ12 (data not shown). DNMT3B was generally
expressed at levels 4–16-fold greater in the YST samples analysed
compared with the germinoma samples. Indeed, analysis of the
array data on the same cohort of GCTs (Palmer et al, 2008)
revealed that DNMT3B was more strongly expressed in YSTs than
in germinomas (LOD scores of 3.36 and 6.7, respectively,
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Figure 4 Pyrosequence of the CpG island of the PYCARD gene from
selected tumour samples. (A) Graph showing percentage methylation
of two YST and three germinoma samples at the six CpG positions
included in the region of pyrosequencing for the PYCARD gene (100 bp
between positions �234 and �135 proximal to the start of transcription).
The YST samples show clear hypermethylation when compared with the
germinoma samples. (B) Comparison between the percentage methylation
at the sixth CpG (�151) in the five tumours shown in (A), as determined
from either the pyrosequencing (dark bars) or from the methylation array
(pale bars). This shows strong correlation between the array and
pyrosequencing results and also suggests that the pyrosequencing gives
more quantitative values at lower levels of methylation where these are
below the level detectable in the array (arrow heads). Bars show the range
for the two samples.

Table 3 Comparison between methylation status and expression levels for genes in which these show significant correlation

Delta beta-value % Tumour methylated

1st cohort 2nd cohort 1st cohort 2nd cohort

Genes Ave. LODs
Tumour
expression Germ YST Germ YST Germ YST Germ YST

TFAP2C 28.71057 Germinoma 0.02692 0.50441 0.03356 0.38462 0 88 0 64
PYCARD 11.98783 Germinoma 0.02194 0.55576 0.06177 0.45505 0 100 0 91
HDAC9 9.563456 Germinoma 0.03521 0.31761 0.045 0.38154 0 38 0 55
ETV1 8.929844 Germinoma 0.04711 0.28954 0.17621 0.25473 0 38 11 36
CD2 8.079104 Germinoma 0.10937 0.52285 0.04331 0.41915 29 100 22 91
CASP8 7.686273 Germinoma 0.11408 0.41122 0.11146 0.40555 0 75 11 82
HPN �7.431153 YST 0.14285 0.56466 0.16644 0.39917 29 100 22 82
EVI2A 4.376357 Germinoma 0.09123 0.38608 0.10608 0.3332 0 88 11 73
HLA-F 4.280225 Germinoma 0.0023 0.71691 0.01473 0.73472 0 100 0 73

Abbreviations: GCT¼ germ cell tumours; LOD¼ logarithm of odds; YST¼ yolk sac tum. aveLODS represents the degree to which these genes are expressed at higher levels in
germinomas than in YSTs (from Palmer et al (2008)). Methylation status is shown as the delta beta-value for difference in methylation between germinomas and YSTs in the two
cohorts of GCTs analysed, and as a percentage of tumours in which the gene was significantly hypermethylated.
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P¼ 0.0006). DNMT3B overexpression therefore provides a
strong candidate to explain the methylator phenotype seen in
those YSTs.

DISCUSSION

Previous studies have identified a small number of genes that are
hypermethylated in adult testicular GCTs, with non-seminomatous
tumours exhibiting much higher levels of methylation than their
seminomatous counterparts. In this study, we have performed the
first array-based analysis of the methylation status of GCT
genomes. In particular, we have studied paediatric tumour samples
from a range of gonadal and extragonadal locations. This has
revealed that, while there is global hypomethylation of repetitive
elements in both germinomas and YSTs and in GCTs from all
anatomical locations, there is little hypomethylation of gene
regulatory sequences. Germinomas also show little hypermethyla-
tion, whereas many genes are hypermethylated in YSTs regardless
of tumours site, patient age or sex. The set of genes hypermethy-
lated in YSTs was very consistent across two independent cohorts
of tumour samples and so identifies a large number of candidate
tumour suppressors for future functional analysis.

The role of methylation in GCTs

Our study agrees with the recent consensus that reduced
methylation of repetitive elements is not reflected in a general
lack of methylation of gene regulatory elements (De Smet and
Loriot, 2010). Hence, any contribution of global hypomethylation
is likely to be through its effects on repeat elements. Two general
models have been proposed. In the first, lack of methylation of
repeat elements might mobilise them, resulting in genomic
instability (Schulz et al, 2006), as was seen in a mouse model in
which global methylation was disrupted owing to a hypomorphic
mutation in Dnmt1 (Gaudet et al, 2003; Howard et al, 2008). In the
second model, activation of transcription of these elements might
be associated with an increase in transcription of adjacent genes
(Cruickshanks and Tufarelli, 2009; Weber et al, 2010). Given the
general hypomethylation of LINE-1 elements in GCTs, the
potential mechanism by which this may affect tumour develop-
ment is worthy of further investigation.

As 131 of 807 genes analysed were hypermethylated in YSTs, it
seems premature to assume that any one of these genes might have
a significant role in the tumours’ aetiology. Indeed, earlier studies
have not generally shown whether differences in methylation in
GCTs correlated with any difference in the expression of those
genes (Lind et al, 2007). It is clear from our data that the majority
of the genes that are differentially methylated between germinomas

and YSTs are not differentially expressed (Palmer et al, 2008). This
provides a much smaller number of genes in which methylation
status correlates with expression levels, which are therefore more
likely to have a role in GCT pathogenesis. Although we found
methylation of five of the previously identified genes that were
known to be hypermethylated in YSTs, none of these exhibited a
significant difference in expression between the two tumour
subtypes.

Among the six genes where methylation state corresponded with
expression, CASP8 and PYCARD were of particular note as they
both act in the same apoptotic pathway. Caspase 8 is critical for
death receptor-induced, extrinsic apoptosis (triggered by the death
ligand TRAIL/TNFSF10 and other tumour necrosis superfamily
factors (TNFSFs)). However, Caspase 8 is also central to cell death
induced by chemotherapeutic agents in a number of cancer cell
types (Kim et al, 2001). Moreover, Caspase 8 is silenced by
methylation in several other classes of cancer (Fulda, 2009).
Similarly, PYCARD (also known as ASC/TMS1) is repressed by
methylation in a range of tumours and has been implicated in
several antitumour activities (Kim et al, 2001; McConnell and
Vertino, 2004). In particular, PYCARD not only interacts with
Caspase 8, but also can induce Caspase 8-dependent apoptosis
(Masumoto et al, 2003), and it has also been implicated in
apoptosis induced by a wide range of chemotherapeutic agents
(Masumoto et al, 1999).

It is striking that among the tumour necrosis factor superfamily
members and their receptors, six of the seven members
represented on the arrays were selectively methylated in YSTs.
These were TNFSF8 and TNFSF10 (the TRAIL ligand), and the
TNFSF receptors, TNFRSF10A, 10C and 10D (three of the four
death receptors for the TRAIL ligand) and TNFRSF1B (one of the
other three death receptors acting via Caspase 8) (Guicciardi and
Gores, 2009). Our data therefore provide a strong indication that
methylation of genes associated with Caspase 8-dependent cell
death might explain the relative resistance of YSTs to therapy-
induced cell death (Fujimaki, 2009; Fulda, 2009). Therapeutic trials
to activate CASP8 that had been silenced by methylation have
already taken place for other tumour types with some promising
results (reviewed by Fulda, 2009).

Relationship between the methylation status of
germinomas and YSTs

Our data are consistent with a model in which the initiation of
GCTs, such as germinomas, does not involve major changes in the
methylation of gene regulatory elements, but subsequent methyla-
tion changes are then associated with the transition to a YST-like
phenotype. Whether these changes are the cause or the result of
this alteration in tumour phenotype is yet to be determined. This
stepwise model may explain the occurrence of GCTs containing a
mixture of seminoma and YST components (Looijenga, 2009) and
the rare examples of seminomatous tumours that recur as a YST
after therapy (Wong et al, 2010). Indeed, a recent report described
a brain tumour that appeared to transform from a germinoma to a
non-germinoma phenotype, even before treatment (Wong et al,
2010). A model in which all types of adult testicular GCTs,
including seminomatous and non-seminomatous tumours, arise
from a common carcinoma in situ (CIS) precursor lesion was
proposed by Skakkebaek et al (1987).

Mechanism of YST methylator phenotype

The substantial difference in methylation between germinomas
and most YSTs suggests that a fundamental mechanism has been
disrupted. Although it remains to be experimentally tested, our
observation that DNMT3B is expressed at significantly higher
levels in YSTs than in germinomas provides a possible explanation
for this difference and, as YSTs exhibit a more aggressive
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Figure 5 Quantitative RT–PCR analysis of DNMT3B expression. Graph
showing the expression level of DNMT3B in five germinomas (pale bars)
and five YST samples (dark bars). Error bars show standard deviation.
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natural history than germinomas, a target for potential therapy.
Consistent with this suggestion, we found that 11 of about 70 genes
recently identified as targets for DNMT3B1 (Choi et al, 2011)
are among the genes methylated in our cohort of YSTs, whereas
only two of the DNMT3A1-specific targets were methylated (all
were present on our arrays). In addition, 23 of the genes that
are targeted by both DNMTs were also methylated in the YST
samples.

Interestingly, a recent study comparing microRNA expression
profiles between paediatric YSTs and germinomas identified
significant upregulation of all members of the miR-29 family
(miR-29a, miR-29b and miR-29c) in germinomas (P¼ 0.0001)
(Murray et al, 2010), which correlates with the level of expression
of DNMT3A and DNMT3B in the two subtypes of GCT. MicroRNA-
29b has been shown to target and knock down expression of both
DNMT3A and DNMT3B in cancer cells, with a consequent decrease
in genome-wide methylation (Fabbri et al, 2007; Garzon et al,
2009). These observations therefore suggest a mechanism whereby
relatively low levels of the miR-29 family members in YSTs may
result in de-repression of DNMT3B, allowing the methylator
phenotype to occur in this GCT subtype.

In conclusion, our data indicate that the methylator phenotype is a
feature of the YSTs irrespective of anatomical location, patient age or
sex. The gene targets of this methylation provide candidates for
further analysis as potential tumour suppressors, especially compo-

nents of Caspase 8-dependent apoptosis. Most importantly, our
initial analysis suggests that the methylator phenotype, which is
associated with the more aggressive subtype of tumour, the YST, is
also associated with increased expression of DNMT3B. It will now be
important to determine directly whether it is DNMT3B itself or
another factor(s) that is the cause of the altered methylation.
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