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Summary
Hierarchical models are widely-used to characterize the performance of individual healthcare
providers. However, little attention has been devoted to system-wide performance evaluations, the
goals of which include identifying extreme (e.g., top 10%) provider performance and developing
statistical benchmarks to define high-quality care. Obtaining optimal estimates of these quantities
requires estimating the empirical distribution function (EDF) of provider-specific parameters that
generate the dataset under consideration. However, the difficulty of obtaining uncertainty bounds
for a square-error loss minimizing EDF estimate has hindered its use in system-wide performance
evaluations. We therefore develop and study a percentile-based EDF estimate for univariate
provider-specific parameters. We compute order statistics of samples drawn from the posterior
distribution of provider-specific parameters to obtain relevant uncertainty assessments of an EDF
estimate and its features, such as thresholds and percentiles. We apply our method to data from the
Medicare End Stage Renal Disease (ESRD) Program, a health insurance program for people with
irreversible kidney failure. We highlight the risk of misclassifying providers as exceptionally good
or poor performers when uncertainty in statistical benchmark estimates is ignored. Given the high
stakes of performance evaluations, statistical benchmarks should be accompanied by precision
estimates.

Keywords
Bayesian methods; empirical distribution function; ensemble; hierarchical model; statistical
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1. Introduction
Performance evaluation is an important activity in health policy research. Policy motivations
for these evaluations include improving patient outcomes, increasing accountability among
providers of services, and enhancing quality of health care. Much attention has been given to
the development of analytic methods to estimate provider-level performance (Christiansen
and Morris, 1997; Normand et al., 1997; Landrum et al., 2003; Liu et al., 2004; Normand
and Shahian, 2007) and to rank providers (Goldstein and Spiegelhalter, 1996). A common
characteristic of such evaluations is that provider-level performance is measured using
patient-level outcomes. Hierarchical Bayesian modeling is well-suited to such evaluations
given the data structure, with the first stage of the model representing the sampling
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distribution of the outcome measured on patients, the second stage the sampling distribution
from which provider-specific parameters are drawn, and the third stage a hyper-prior
distribution. This model is readily extendible for larger numbers of stages (Lindley and
Smith, 1972).

Far less attention has been devoted to developing statistical methods to evaluate the
performance of a system (or population) of K providers. Examples of such system-wide
performance evaluation goals include identifying hotspots (Wright et al., 2003) or estimating
threshold exceedances (Conlon and Louis, 1999) in environmental risk assessment;
implementing pay-for-performance programs like those considered by the Centers for
Medicare and Medicaid Services in the United States that identify performance of the top
20% of hospitals with respect to performance on quality of care measures (Centers for
Medicare and Medicaid Services, 2005); and establishing a performance monitoring system
within the Veterans Health Administration in the U.S. to improve vaccination rates (Jha et
al., 2007).

A related goal to system-wide performance monitoring is the ongoing development of
statistical benchmarks to define high-quality care. The demand for data-driven performance
benchmarks has been informed in part by the desire to effectively motivate health care
providers to improve their performance. For example, the Achievable Benchmarks of Care
(Kiefe et al., 2001) is a statistical benchmarking approach that defines a ‘realistic standard of
excellence’ as the performance attained by the top (e.g., 90th percentile) of health care
providers. Kiefe et al. (2001) found that providers who received feedback about how their
performance compared to that of their strongest peers provided higher quality care than
those who did not receive such feedback. One of the most well-known collections of
statistical benchmarks is provided by the Healthcare Effectiveness Data and Information Set
(HEDIS). Further emphasizing the widespread use of statistical benchmarks is the fact that
over 90% of health plans in the U.S. use HEDIS to measure their performance (National
Committee on Quality Assurance, 2009). HEDIS summarizes 71 performance measures
collected across eight domains of care in terms of a national performance benchmark (e.g.,
the 90th percentile of overall performance) as well as other percentile thresholds.

An open issue is that these statistical benchmark estimates are not reported with
accompanying uncertainty statements. This is in contrast to other related inferential targets,
such as provider-specific posterior means and ranks, for which the importance of reporting
uncertainty is well-established (Goldstein and Spiegelhalter, 1996). The statistical
benchmark could be estimated under a Bayesian hierarchical modeling framework from the
conditional expected empirical distribution function (EDF) of the provider-specific
parameters, but statistical methods are lacking for obtaining its uncertainty bounds. Though
one could construct approximate uncertainty bounds using its posterior mean and variance
(Shen and Louis, 1998), a more principled approach that avoids relying on the central limit
theorem would be desirable.

In this paper, we develop and study alternative EDF estimates for univariate provider-
specific parameters that are based on computing order statistics of Markov Chain Monte
Carlo (MCMC) samples drawn from the posterior distribution of the provider-specific
parameters under a hierarchical Bayesian model. Our method could be used to obtain
uncertainty bounds on the EDF estimate and features of it, such as thresholds and
percentiles. We apply our method to data from the Medicare End Stage Renal Disease
(ESRD) Program, a national health insurance program in the U.S. for people with
irreversible kidney failure. Congress established a network to support the U.S. government
in monitoring the quality of the care ESRD patients receive throughout the entire system of
Medicare-certified dialysis facilities and kidney transplant centers (Crow, 2005). We
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illustrate how to characterize acterize provider performance with respect to provider-level
risk-adjusted mortality. Our work also has broader relevance whenever the analytic
objective is to produce an ensemble of parameter estimates to describe the distribution of
cluster-specific parameters or to identify clusters that fall above or below a pre-specified
threshold, such as for small area estimation (Rao, 2003, Section 9.6; Louis and
DerSimonian, 1986) and subgroup analysis (Tukey, 1974; Louis, 1984).

We proceed as follows. Our three-stage hierarchical modeling framework is presented in
Section 2. Estimation of the EDF and our order statistics-based approach for estimating its
uncertainty is presented in Section 3. We study the properties of our method by simulation
in Section 4. We illustrate our approach in Section 5 using data from our motivating ESRD
application. We use this motivating application to illustrate the importance of incorporating
uncertainty about the EDF estimate into inferences about the distribution of provider-level
mortality rates as well as its effect on statistical benchmarks. We conclude with discussion
of our results and implications for performance evaluation in Section 6.

2. Hierarchical Model
We consider a three-stage, compound sampling model

(1)

We assume that the θk's and η are continuous and that Y = (Y1, …, Yk) (k = 1, …, K). The
provider-specific observations, Yk, come from a sampling distribution fk that depends on θk.
The provider-specific parameter, θk, comes from a population distribution, G, that depends
on hyperparameters, η, and η is assumed to have a hyperprior distribution, H. In the ESRD
context, patient outcomes for the kth provider are represented by Yk and are nested within
dialysis provider having target parameter θk. Two instances of this model will be explored in
Section 4. Let g and h be the density functions of G and H, respectively; then, the posterior
distribution of θk is,

(2)

where

3. Estimating the EDF
Our target of interest is the empirical distribution function (EDF) of θ = (θ1, …, θK):

(3)
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and let qK(p) be the pth quantile of GK(t ∣ θ). Though GK is consistent for G (Shen and Louis,
1998), note that GK is preferred to the superpopulation distribution, G, as an inferential
target for system-wide performance evaluation and for developing statistical benchmarks.
Statistical benchmarks are performance standards developed from existing data on a
population of K providers that are used for setting performance targets by, for example,
identifying the 90th percentile of provider performance. GK summarizes the distribution of
the K providers who are actually in the system, rather than generalizing to a hypothetical
population of all such providers represented by G. To further emphasize this point, in our
motivating application, K is the total number of providers in the system. It is this set of
providers that is the focus to decision-makers and policy-makers using this information.

3.1. Posterior Mean Estimate
Let A(t) be a candidate estimate of GK(t ∣ θ). Under integrated squared error loss (ISEL),

(4)

Shen and Louis (1998) show that the optimal estimate is

(5)

The optimal discrete distribution estimate with at most K mass points is ĜK, with mass K−1

at

(6)

To compute ĜK from MCMC draws, after burn-in pool all θs and order them. The Ûj are the
(2j − 1)/(2K)th order statistics.

3.2. Percentile-based Estimates
We present two percentile-based EDF estimates that can be derived using MCMC output
that summarizes the marginal posterior distributions of model parameters θ. These
approaches allow one to estimate uncertainty bounds without relying on the central limit
theorem to construct approximate uncertainty intervals using the estimated mean and
variance of the estimate of (3). Denote the number of MCMC draws (after burn-in) by n.

3.2.1. Posterior percentiles of GK(t ∣ θ) for a fixed t—Let A(t) be a candidate
estimate of GK(t ∣ θ). Under integrated absolute error loss (IAEL),

(7)

Let  be the 50th posterior percentile, which is the optimal estimate of GK(t ∣ θ)

under IAEL. More generally, for 0 < α < 1,  is the αth posterior percentile of GK(t ∣

θ). For all α,  is non-decreasing in both α and t. By definition, for a fixed α it is
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discrete with a maximum of K mass points. Using a standard argument, for each t, 

minimizes (α, 1 − α)-weighted absolute value loss for estimating GK(t ∣ θ). That is, 
minimizes the posterior risk induced by the loss function:

α· |ĜK(t) − GK(t ∣ θ)| I{ĜK(t)≤GK(t∣θ)} + (1 − α)· |ĜK(t) − GK(t ∣ θ)| I{ĜK(t)>GK(t∣θ)}

Also, it minimizes (α, 1 − α)-weighted IAEL. For 0 < α < 0.5 use  for

a (1 − 2α) credible interval. To estimate GK(t ∣ θ), replace ḠK(t ¯ Y) by . To

compute , order the draws of θ from the MCMC sampler at iteration m, θ(m), and

place them in row m of a matrix of MCMC samples of θ, so that  is the jth largest value
in θ. Then, column j of this matrix of MCMC samples summarizes the posterior distribution
of the jth order statistic. Obtain the desired αth percentiles from each column. Then, set

 for t equal to the αth percentile of column j.

3.2.2. Posterior percentiles of qK (p)—Define  to be the αth posterior percentile
of the pth quantile of GK(t). The qK(p) can be obtained using order statistics, represented

approximately as  and exactly as θ([pK]+1), 0 < p < 1, where θ(k) is the kth order

statistic and […] is the greatest integer function. To compute , at each MCMC
iteration order the draws θ so that column j is the jth order statistic. Then, for each column

(order statistic), compute the desired αth percentile. Use  for the estimated pth

quantile and  for the (1 − 2α) credible interval.

3.3. Compatibility of  and 

Due to the discrete distributions involved,  and  are not necessarily
compatible but are so asymptotically (in K). See the Appendix for the proofs showing that:

(8)

4. Simulation Study

We evaluate  and ĜK(t) as point estimates of GK(t) with respect to both ISEL (for

which ĜK is optimal) and IAEL (for which  is optimal), examining scenarios of K =
20, 60, and 100, to cover a range of relatively small to moderate-sized providers.
Furthermore, we evaluate coverage (Rubin, 1984) of the (1 − 2α) tolerance intervals for GK,
for α = 0.005, 0.025, 0.05, 0.125 on a grid of t-values along the support of G, represented by
T*:

(9)
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where I(·) is the indicator function, C is the number of Monte Carlo cycles and T is the
cardinality of T*. Similarly, we evaluate coverage probabilities for quantiles, qK(p), for α =
(0.005, 0.025, 0.05, 0.125) and p = (0.01, 0.05, 0.1, 0.25, 0.5).

4.1. The Gaussian model
The data-generating Gaussian-Gaussian model for the simulation study is,

(10)

with μ = 0 and τ2 = 1. To evaluate via simulation how performance depends on the size of
the sampling variance relative to the prior variance and on the variation in the , we fix the

 as follows:

where,

and study gm = (0.1, 1.0) and rls = (1.0, 100).

Model (10) is the analysis model for data sets generated for the simulation study, along with
the additional specification of hyper-prior:

(11)

such that E(τ−2) = d0/d1, m0 = 0, M0 = 100, d0 = 1, and d1 = 1. The joint posterior
distribution of (θ1, …, θK, μ, τ−2) is,

4.2. The Poisson-Gamma Model
The data-generating Poisson model for the simulation study is,
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(12)

Here, E(Yk ∣ mk, θk) = V(Yk ∣ mk, θk) = mkθk. We generate data using fixed (α, β) = (20, 0.02),
so E(θk ∣ α, β) = 0.4, V(θk ∣ α, β) = 0.008 and to induce a range of conditional variances, we
set mk = 5 + 2(k − 1), analogous to rls > 1 in the Gaussian model.

For the analysis model, we specify hyperpriors for α and β, which result in a Poisson-
Gamma model that allows for the possibility of over-dispersion relative to a Poisson model
(George et al., 1993):

(13)

where a0 = a1 = b0 = b1 = 0.001, and the resulting joint posterior distribution is:

We ran each simulation for 10, 000 Monte Carlo cycles. For each cycle, MCMC
implemented by the BRugs package in R (Thomas, 2006) was used to sample model
parameters from their joint posterior distribution. For the compound Gaussian model
(10-11), 1000 parameter draws were saved after a 1000 burn-in; for the Poisson-Gamma
model (12-13), every fifth draw of the 5000 following a burn-in of 5000 were saved, with
the thinning done to speed up the Monte Carlo simulation since the sorting required at each
cycle for computing order statistics was relatively computationally expensive. We examined

the efficiency of  relative to ĜK(t) using the ratios,

(14)

along with their Monte Carlo standard errors (MCSEs) for the Gaussian-Gaussian and the
Poisson-Gamma models, respectively.

4.3. Simulation Study Results
Tables 1-4 display results. ISEL.R and IAEL.R are near 1, ranging from 0.99-1.02 for all
scenarios examined for selected values of {K, gm, rls} under the Gaussian-Gaussian model.
The associated MCSEs are very small, ranging from 0.0001 – 0.0010. Results for the
Poisson-Gamma model (Table 1) are similar, except ISEL.R is largest for K = 20, with
IAEL.R closer to 1.

The percentile-based tolerance intervals perform well over all models and scenarios
considered. Table 2 shows that the average (with respect to t) coverage probabilities of
intervals for GK(t) (Equation 9) is at the expected nominal level for both models across all
choices of simulation parameters. Tables 3 and 4 display coverage probabilities of tolerance
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intervals for quantiles, qK(p), for P = 0.05, 0.10, 0.25, 0.50, under the Gaussian-Gaussian
and Poisson-Gamma models, respectively, with all intervals at or near the nominal levels.
Since MCSEs are very small and equal across simulations (MCSEs for {75%, 90%, 95%,
99%} = {0.44, 0.31, 0.23, 0.11}), they are omitted from Tables 2-4.

5. Performance Evaluation of Dialysis Providers
The providers in this analysis include Medicare-certified dialysis facilities and kidney
transplant centers. The data consist of ESRD provider-specific profiles constructed by the
United States Renal Dialysis System (USRDS) from the ESRD Facility Survey data, patient-
level data, and ESRD Medicare claims for 1998 (K = 3, 428 providers) and 2001 (K = 4, 007
providers). The USRDS provided to us the number of provider-specific observed (Yk) and
expected (mk) deaths, which are treated as known. Expected deaths are produced by a case
mix adjustment with respect to age, race, gender, ESRD primary diagnosis, number of years
with ESRD (“vintage”), year, and all two-way interactions among age, race, gender, and
ESRD primary diagnosis. To stabilize the estimates USRDS provided to us, three years of
data (1996, 1997, and 1998) were used with weights 1/3, 1/2, and 1, respectively, to derive
estimates for 1998 (Liu et al., 2004), and a similar weighting scheme was used to derive
provider-specific estimates for 2001. To provide a sense of the potential variability in
provider mortality, the number of patients per provider in the 1998 data ranges from 1 to
697, with the median equal to 66 (10th percentile= 13; 25th percentile= 33; 75th

percentile=111; 90th percentile= 163). The distribution of patients per provider in the 2001
data is very similar.

We fit the model presented in Equations (12-13) to data from each year (1998 and 2001) to
estimate the standardized mortality ratio (SMR) for provider k, θk, and their distribution for
the given year. We favored this approach over conducting a longitudinal analysis because
our substantive questions pertain to characterizing system-wide performance in a given year
as opposed to facility-level performance. Further emphasizing this fact is that the set of
facilities in the ESRD network change from year to year: 248 facilities dropped out of the
universe between 1998 and 2001 while 827 entered the universe by 2001. Focusing only on
the 3, 180 of the 4, 255 facilities that remained in both years would provide an incomplete
picture of performance in each of these years. Additionally, this approach also serves the
dual purpose of examining the development of statistical benchmarks using data such as the
USRDS data set, since the typical statistical benchmarking approach is to use one data set to
derive the statistical benchmark estimate while using a second data set to obtain provider-
specific performance estimates and compare them to an externally-derived benchmark.

For the analysis, hyperparameters were set to a0 = a1 = b0 = b1 = 0.0001; the results
obtained were insensitive to this prior parameterization relative to other priors we examined,
including a0 = a1 = b0 = b1 = 1 as well as specifying independent U(0, 1000) priors for α and
β (Gelman, 2006). We confirmed the appropriateness of allowing for extra-Poisson variation
by using the Poisson-Gamma model by comparing posterior mean deviances of the Poisson-
Gamma versus Poisson models and examining posterior predictive distributions for Yk's
versus observed yk's (Gelman et al., 2003).

Figure 1 displays as a solid line the percentile-based, estimated EDF,  based on the
1998 data (the estimate ĜK(t) is virtually identical and is omitted), with the upper and lower
95% bounds displayed as dashed lines. The distance between bounds is wider for higher

SMR estimates and narrower for SMR estimates near 1.0. Figure 2 shows , the

probability density function associated with , as a solid line along with the
corresponding 95% credible interval (CI) in dashed lines.
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We now turn to developing statistical benchmarks for characterizing system-wide
performance with respect to mortality. We use the USRDS 1998 data to estimate several
candidate statistical benchmark values for SMR performance based on various quantiles of

the distribution of θk's using . Results for each of these benchmarks are provided in Table
5(i), with the posterior mean estimates of the statistical benchmarks (SBs) and their 95%
CIs.

We then analyzed 2001 USRDS data to determine whether each provider k was significantly
higher or lower than the 1998-based statistical benchmark estimate, as determined by the

benchmark estimate, , for p = 0.05, 0.10, 0.25, 0.75, and 0.90 falling outside of the
95% credible interval for θk obtained from the 2001 USRDS data analysis. We examined the
effect of uncertainty in the statistical benchmark estimate on this assessment by
conservatively classifying a facility as being different from the statistical benchmark if it fell
entirely above or below the 95% credible interval for the statistical benchmark.

Table 5(i) shows a discrepancy in the numbers of facilities classified as falling below the
statistical benchmark for each candidate statistical benchmarking threshold, depending on
whether the classification is based on the SB or the CI that reflects the uncertainty in the SB.
For example, the statistical benchmark using the 1998 data for the 5th quantile of SMR is
0.697, with a 95% CI of (0.676, 0.720). Zero facilities in 2001 had 95% CIs that fell

completely below the benchmark corresponding to , SMR = 0.697 (column a), nor
did any facilities have CIs that fell entirely below the lower bound of the benchmark SMR
CI (column b). In contrast, 2379 facilities had significantly higher SMRs than the mean 5th

quantile benchmark (column d), suggesting suboptimal performance with respect to
mortality given this performance benchmark. However, the number of facilities with 95%
CIs falling above the 5th quantile statistical benchmark was 1899 (column e), for a decrease
of 480 (20%) in the number of facilities deemed to be significantly different from the
benchmark. More generally, the misclassification rate across each performance indicator
shown in Table 5(i) for which at least some facilities meet the benchmark is about 20%.
Practically speaking, these 480 facilities (column f) are misclassified as having substantially
higher SMRs than the 5th quantile statistical benchmark when uncertainty in the benchmark
is ignored. This has implications for the use of statistical benchmarks for quality
improvement – in this case, resources that could be devoted to implementing and monitoring
improvements for the 1899 truly underperforming facilities would instead be partially
diverted to 480 facilities that are not actually meaningfully different than the benchmark.

Table 5(ii) shows the same analysis, only this time using quantiles, q(p), from the simulated
posterior distribution of G, in order to understand how sensitive inferences are to the choice
of estimating G versus GK given the relatively large number of providers in the data set.
Despite the near-equality of these statistical benchmark estimates and 95% CIs to those in
Table 5(i), important practical differences arise, particularly for the most extreme (e.g., 5th

and 95th) quantiles: 33 more facilities were classified as falling below the statistical
benchmark CI for the 95th quantile in Table 5(ii) than for Table 5(i), whereas 28 more
facilities were classified as falling above the statistical benchmark CI when using q rather

than .

6. Discussion
We introduce an effective inferential target for estimating the EDF of K provider-specific
parameters for which estimating its posterior uncertainty can be readily obtained from
posterior simulations of provider-specific parameters using MCMC. Our method relies on
computing order statistics for provider-specific parameters that are derived from MCMC
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output streams. The ease of implementation is a strength of our approach, which should
facilitate greater use of percentile-based EDF estimates and reporting of uncertainties
associated with estimates derived from it. This is especially important considering our

approach produces the optimal estimate, , under ASEL and thus should be favored over
other non-optimal methods currently in practice for characterizing system-wide performance
or developing statistical benchmarks.

Though variation in estimates derived using some commonly-used statistical benchmarking
methods has been noted (O'Brien et al., 2008), we are unaware of any previous effort to
measure the uncertainty of a given statistical benchmark estimate itself. Our study therefore
contributes to the field not only by providing a method to estimate the uncertainty in
percentiles derived using EDFs but also by demonstrating the implications of such
uncertainty with respect to monitoring providers and improving health care quality and
outcomes. Our analysis of the USRDS data highlights the increased risk of misclassifying
providers as being exceptionally good or poor performers when uncertainty in the statistical
benchmark estimate is ignored. High stakes are involved in performance evaluations, which
often include direct financial incentives and penalties (Rosenthal et al., 2006) as well as less
direct ones, such as increased or decreased patient referrals (Werner and Asch, 2005).
Therefore, a benchmark estimate should always be reported along with an uncertainty
statement about its precision.

Future work includes extending our investigation to examine the variation in candidate
statistical benchmarking approaches as well as the uncertainties in their estimates. An open
question is how do widely-used approaches perform relative to using percentiles derived
from GK. Of particular interest are the Achievable Benchmarks of Care approach (Kiefe et
al., 2001) – which involves estimating provider-level performance using a non-hierarchical
modeling framework – and selection of top providers using posterior means (O'Brien et al.,
2008) – which is limited by the underdispersion of posterior means relative to the EDF
estimate. Our approach could also be extended to performance evaluations that focus on
multiple levels of interest, such as examining performance simultaneously at the physician,
facility, and geographic and/or network levels. Our work has implications for the
simultaneously addressing multiple inferential goals using the triple-goal estimation
framework of Shen and Louis (1998, 2000), since it relies centrally on estimating the EDF
of provider-specific parameters as described in this paper. We did not evaluate the
performance of percentile-based EDF estimates when the data-generating and data analysis
models differed. Practitioners concerned about model misspecification could modify our
analytic approach by modeling the superpopulation distribution, G, nonparametrically
(Paddock et al., 2006; Ohlssen et al., 2007), for example, and still be able to obtain
percentile-based EDF estimates. Finally, estimating statistical benchmarks using G versus
GK might be reasonable for K very large under a correctly specified analytic model.
Bayesian quantile regression may be a competitor in such cases. Bayesian quantile
regression for hierarchical data is only now being developed (e.g., Reich et al., 2010) and its
performance for estimating parameters such as θk's has yet to be examined. Thus, future
work includes examining its statistical performance and suitability to large-K statistical
benchmarking applications.
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Appendix: Compatibility of GK(α)(t∣Y) and qK(α)(p)

To see that , first order each vector obtained from MCMC,

, where m indexes the MCMC draws. After sorting the MCMC sampled
vectors, each column (order statistic) represents the p = k/(K + 1)th quantile of G (k = 1, …,

K). Then, select the αth percentile from the column (order statistic) to get . Because of

discreteness of , there are only K unique values of  for all p ∈ (0, 1). Thus, if p is
not in P = {1/(K + 1), …, K/(K + 1)}, select p1 closest to p such that p1 ∈ P. Define

. By construction,  because p1 ∈ P. Then,

. However, p1 will be arbitrarily close to p if K is
selected to be very large at the outset, so this limit goes to 0 as K → ∞.

To see that , first select  by ordering each vector obtained

from MCMC, . Then, select the αth percentile from each column. The grid, T,

is determined in this way, with t ∈ T, where , with p ∈ {1/(K + 1), …, K/(K + 1)}.

Since the grid, T, is determined by the values of , the particular t of interest may not be

on that grid. Select the closest grid point to t, and call it t1.  is non-decreasing in α and t,
so t1, will be arbitrarily close to t if K → ∞, as the grid becomes finer. By construction,

, as t1 is on the grid T, so the above becomes limK → ∞ |t1 − t|. Given the
choice of t1 arbitrarily close to t at the outset as K → ∞, |t1 − t| → 0.
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Fig. 1.

 versus t, the standardized mortality ratio (SMR), and 95% credible interval (dashed
lines) for the K = 3428 facilities in the 1998 USRDS data.
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Fig. 2.

Left:  (solid line) and 95% credible interval, with the lower bound given by the dashed
line and the upper bound by the dotted line for the K = 3428 facilities in the 1998 USRDS
data.
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Table 1

Poisson-Gamma model: Ratios of integrated squared error loss (ISEL.R) and ratios of integrated absolute error
loss (IAEL.R) of  versus . Mean values are subscripted by their MCSEs.

K ISEL.R(MCSE) IAEL.R(MCSE)

20 1.14(0.0028) 1.04(0.0019)

60 1.02(0.0006) 1.01(0.0005)

100 1.01(0.0003) 1.00(0.0003)
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