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Abstract
Purpose of review—New findings continue to support the notion that broadly crossreactive
neutralizing antibody induction is a worthwhile and achievable goal for HIV-1 vaccines.
Immunogens are needed that can overcome the genetic variability and complex immune evasion
tactics of the virus. Other antibodies might bridge innate and acquired immunity for possible
beneficial vaccine effects. This review summarizes progress made over the past year that has
enhanced our understanding of humoral immunity as it relates to HIV-1 vaccine development.

Recent findings—Although a clear path to designing an effective neutralizing antibody-based
HIV-1 vaccine remains elusive, there is new information on how antibodies neutralize HIV-1, the
epitopes involved, and clues to the possible nature of protective immunogens that keep this goal
alive. Moreover, there is a greater understanding of HIV-1 diversity and its possible limits under
immune pressure. Other antibodies might possess antiviral activity by mechanisms involving Fc
receptor engagement or complement activation that would be of value for HIV-1 vaccines.

Summary—Recent developments strengthen the rationale for antibody-based HIV-1 vaccine
immunogens and provide a stronger foundation for vaccine discovery.
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Introduction
Neutralizing antibodies (NAbs) remain a major focus for HIV-1 vaccine development. In
addition to a strong association with the success of many approved vaccines [1], NAbs are
the only known immune response that has proved capable of completely blocking AIDS
virus infection in animal models [2]. New evidence suggests that NAbs might also protect
against HIV-1 superinfection in humans [3•], and there is increasing evidence that maternal
NAbs can protect against perinatal HIV-1 transmission [4••,5••]. In principle, vaccine-
elicited NAbs of sufficient quantity, breadth and duration could confer long-term sterilizing
immunity in a large segment of the human population. In cases in which complete protection
is not achieved, NAbs might assist in blunting peak viremia and lowering the viral setpoint
[6•], thereby making it less likely that an infected individual will develop disease and
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transmit virus, especially if vaccine-elicited antiviral T-cell responses are also present [7].
What has dampened the prospects for an effective NAb-based vaccine is the extraordinary
degree of genetic diversity and structural complexity exhibited by the HIV-1 envelope
glycoproteins (Env) [8,9]. The results of recent studies are helping to shape the rationale for
novel HIV-1 vaccine designs.

Neutralizing antibodies in HIV-1 infection
Previous studies in HIV-1-infected patients who were treated with highly active
antiretroviral therapy suggested that a threshold level of viremia is needed to drive NAb
production [10,11]. In support of this, low levels of NAbs were seen in a distinct subset of
long-term non-progressors (‘elite suppressors’) who maintained viral loads of less than 50
copies/ml without antiretroviral therapy [12•]. In another recent study [13••], the magnitude
of neutralization against heterologous viruses was predicted by the level of viremia in
chronically infected individuals. Overall, the NAb response in HIV-1-infected individuals
exhibits wide variation in kinetics, magnitude and breadth, but one pattern that is uniform is
the substantial delay in NAb production relative to peak viremia after primary infection [14–
16]. In general, the earliest NAb response is detected after 3–12 months of infection, and is
highly specific for the corresponding early virus variant for up to 2 years of infection. Soon
after these NAbs are generated, the virus mutates to evade them, and new serum antibodies
slowly emerge that neutralize the escape variant [17–19].

Recent evidence suggests that there are constraints on both the number of escape cycles and
the specificity of escape in HIV-1-infected individuals [13••,20•]. Although the virus
ultimately wins the battle in most individuals, there is hope that previous vaccination will tip
the balance in favor of the host. In this regard, viral evolution through multiple rounds of
escape could be a driving force that explains the gradual broadening of serum neutralizing
activity over time. Serum from approximately 10% of chronically infected individuals thus
contains moderate titers of NAbs against a wide spectrum of viral variants across multiple
genetic subtypes [15,21,22]. Of greater interest, serum from approximately 2% of
chronically infected individuals contains high titers of broadly crossreactive NAbs (D.C.
Montefiori, unpublished). Assuming that NAbs will have greater value either before
infection or during acute infection, the neutralizing activity of serum from some HIV-1-
positive individuals is evidence that effective NAb induction should be possible by
vaccination with the right immunogen. The nature and specificity of the NAb response in
these rare HIV-1-infected individuals are thus of considerable interest for vaccine
development [23]. In addition, viruses from these individuals are of potential interest as
novel vaccine immunogens [24].

The reasons why most HIV-1-infected individuals do not mount a more vigorous NAb
response are poorly understood. In some cases, highly conserved and well exposed
neutralization epitopes might be autoantigenic and subject to B cell tolerance [25]. In other
cases, chronic B-cell activation by gp120 [26•] and, perhaps more importantly, by microbial
translocation from the gastrointestinal tract [27••], could be contributing factors. It is also
possible that sufficient numbers of cross-neutralizing epitopes on Env, particularly across
HIV-1 genetic subtypes, either do not exist or perhaps we lack suitable antibody reagents to
identify them. Such differences have previously been highlighted using monoclonal
antibodies (MAbs), some of which fail to neutralize non-B subtypes because the epitopes are
not present [28,29].

Other potential antiviral antibodies
Despite a delay in NAb production after primary HIV-1 infection, Env-specific binding
antibodies are detected very early, and often coincide with the decline in peak plasma
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viremia to setpoint levels. These antibodies have the potential to bind exposed epitopes on
non-functional Env proteins on the virus surface [30•], where they could mediate biological
activities related to Fc receptor (FcR) engagement or complement activation that might
either curb or exacerbate disease [31]. HIV-1-positive serum and human MAbs with weak or
no detectable neutralizing activity in a conventional peripheral blood mono-nuclear cell
(PBMC)-based assay were recently found to possess potent antiviral activity when assayed
in immature dendritic cells and macrophages [32•,33••]. This activity was Fcγ receptor-
dependent and did not require natural killer cells. The authors proposed that such ‘non-
neutralizing inhibitory antibodies’ might lead to endocytosis and the degradation of
opsonized HIV-1 particles as a possible means of protecting against mucosal transmission.
In another recent study [34•], the preactivation of monocyte-derived macrophages through
the ligation of either FcγRI, FcγRIIa or FcγRIII by an unrelated immune complex led to the
inhibition of HIV-1, HIV-2, SIVmac and SIVagm infection at a late stage in the virus
replication cycle. The mechanism of virus inhibition in that case could not be identified, but
it appeared to be unrelated to cytokine production.

Other antibodies might mediate antibody-dependent cellular cytotoxicity (ADCC) as an
immune mechanism that results in the clearance of infected cells. Both acquired and innate
immunity contribute to ADCC: acquired immunity provides cytophilic antibodies, whereas
innate immunity provides the effector cell populations represented by FcγR-bearing
granulocytes, natural killer cells, monocytes, macrophages and subsets of γδT cells. The
engagement of FcγR on effector cells brings about the release of perforins and granzymes
that destroy infected cells [35]. The humoral immune response in HIV-1 infection includes
the early production of antibodies that can mediate ADCC [36,37], when the appearance of
ADCC-mediating antibodies precedes the NAb response [38].

ADCC has received little attention for HIV-1 in the past, but this is changing as scientists
seek to identify a clear correlate of immunity in non-human primate models of candidate
AIDS vaccines. Of potential importance, broadly crossreactive ADCC responses can be
elicited by current HIV-1 Env immunogens [39•]. Moreover, there was a correlation
between ADCC and the partial control of acute viremia in a recent SIVmac vaccine study in
which no NAbs against the challenge virus were detected [40]. The authors took this latter
observation one step further by purifying high titer ADCC-mediating IgG from the
immunized animals, and found that passive infusion of this material into neonatal macaques
was not sufficient to protect against oral SIV exposure [41]. This disappointing outcome
might be explained by an immature neonatal immune system or by other differences in the
design of the two studies. Notably, the passive transfer of non-neutralizing antibodies has
provided protection in a similar neonatal model (see below) [42].

The antibody-mediated activation of monocytes, macrophages and natural killer cells
through FcγR not only leads to the killing of infected cells, but can also lead to the release
of cytokines and chemokines that can affect virus replication. Forthal and colleagues [43•]
recently described how human and rhesus PBMCs depleted of CD8 and CD14 cells inhibit
SIVmac251 in the presence of non-neutralizing antibodies. This inhibition involved both
cytolytic and non-cytolytic mechanisms and was termed antibody-dependent cell-mediated
virus inhibition (ADCVI). The study also showed that a non-neutralizing SIV-antibody-
positive serum that protected neonatal macaques after oral SIVmac251 challenge contained
potent ADCVI activity, suggesting that the activity is relevant in vivo. Potent ADCVI
activity was also present in a separate non-protective passive IgG study [41].

Interactions between HIV-1 and complement also received attention during the past year.
Two studies were published suggesting that HIV-1 is sensitive to complement-mediated
lysis and destruction in the presence of antibody. In one study [44], Env-specific antibodies
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that were detected before autologous NAbs during peak viral load in primary HIV-1
infection caused viral lysis and inactivation through the classical complement pathway.
Complement-mediated inactivation in that case was seen with both autologous and
heterologous viruses that were made and assayed in non-lymphoid cells. Notably, no effect
was observed when PBMC-grown virus was used. In a second study [45•], non-neutralizing
antibodies caused complement-mediated lysis and the inactivation of autologous PBMC-
grown virus that correlated with lower plasma viral loads during acute infection.

The results of both studies need to be weighed against strong evidence that HIV-1 evades
complement lysis by acquiring complement regulatory proteins as it buds from the host cell
membrane [31]. These proteins, which include CD46, CD55 and CD59, are differentially
expressed on various cell types and act by blocking activation of the terminal complement
pathway that is needed for formation of the membrane attack complex. At the very least,
both studies mentioned above indicated that HIV-1-specific complement-activating
antibodies are produced very early in infection. The role these antibodies play is uncertain
and could involve either virus opsonization or viral lysis by complement [31]. As suggested
recently [46••], any role for complement-opsonized HIV-1 is likely to involve interactions
with CR2 (CD21)-expressing cells (e.g. B cells, follicular dendritic cells) more so than
interactions with CR1 (CD35) on erythrocytes as proposed earlier [47].

Neutralization requirements and mechanisms
Recent progress has been made in understanding the mechanisms of, and requirements for,
antibody-mediated HIV-1 neutralization. Crooks et al. [48] described a creative set of assays
designed to determine the specific stage in virus entry that is targeted by a particular NAb. It
was confirmed that all three major stages are potential targets: (1) gp120 binding to its CD4
cell receptor; (2) subsequent binding of gp120 to either its CCR5 or CXCR4 co-receptor;
and (3) gp41-mediated membrane fusion. Moreover, relevant NAbs in HIV-1-infected
individuals targeted early steps in receptor binding. These assays will be useful in dissecting
vaccine-elicited NAb responses and for gaining a better understanding of effective NAb
induction. In another recent study [49•], neutralization potency appeared to be influenced by
the levels of CCR5 but not CD4 cell expression. Therefore, unusually high levels of CCR5
on genetically engineered cell lines might explain, at least partly, several rare occasions in
which a new generation of assays failed to detect neutralization that is readily detected in
PBMC assays [50].

Three studies published in 2006 advanced our understanding of the requirements for
neutralization. In one study [51•], the introduction of an unrelated epitope into the gp120 V4
region of multiple viral variants was used to show that HIV-1 is not intrinsically resistant to
neutralization and that neutralization potency is directly related to the affinity of antibody
binding. In a second study [52•], pseudoviruses containing phenotypically mixed Env
trimers were used to confirm that antibodies must bind functional trimers in order to
neutralize, where binding to a single monomer in each functional trimer on the virus is
effective. In a third study [53•], the potency of NAbs against the receptor-binding domain of
gp120 was related to the number of different conformational states of monomeric and
trimeric gp120 the antibody could bind.

Env structure and neutralization avoidance
It has long been recognized that HIV-1 rapidly evolves to escape autologous NAbs,
explaining why the response fails to contain the virus. Insights into how escape occurs first
emerged when variable loop deletions and the removal of certain N-linked glycans on gp120
revealed complex structure-based epitope-masking mechanisms. Additional insights were
provided by crystal structures of liganded HIV-1 gp120 core molecules and later by crystal
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structures of an unliganded SIV gp120 core molecule, showing how one of the most critical
regions for neutralization, the CD4 cell binding site, resides in a recessed pocket that is
predicted to be poorly accessible to many antibodies. HIV-1 also imposes entropic barriers
to antibodies in the context of a conformationally flexible Env. Excellent reviews on how
HIV-1 uses these structural features and entropic barriers to evade NAbs have been
published [8,9].

Last year saw the first descriptions of the three-dimensional structure of Env trimer spikes,
as visualized on the surface of HIV-1 and SIV by cryoelectron microscopy tomography.
Those studies are important because they permit unmodified Env trimers to be examined in
their prefusion state as the natural targets for NAbs. One group [54••] reported a deduced
structural model of trimeric gp120 that fit well with the crystal structure of an unliganded
SIV core gp120 molecule in a profile that resembled a tri-lobed head with an arched apical
peak. The most striking finding in that study was that each gp41 monomer in a trimer spike
had a ‘leg’ and a ‘foot’ that protruded away from the gp120 head in a tripod fashion and
anchored distally in the membrane. Using similar methods, a second group [55••] described a
‘mushroom’ shaped spike with a compact gp41 ‘stem’ in which no separation of gp41
monomers was observed. These opposing models of trimeric gp41 are difficult to explain
[56•] and will be important to resolve. For example, a clear model of native gp41 structure
might help to explain why some neutralizing antibodies can bind gp41 after virus attachment
[48], whereas neutralization epitopes on gp120 are poorly accessible at the virus–cell
interface [57].

Genetic and antigenic properties of early transmitted viruses
Viruses transmitted either heterosexually or through homosexual contact, and those
transmitted from mother to child via breast-feeding, are primary targets for vaccine-elicited
antibody responses. It is possible that the bottleneck that occurs at transmission, when no
NAbs are present, selects viruses that show differences in receptor affinities, Env structure,
and replication fitness that impact certain neutralization epitopes. Recent studies have thus
suggested that early transmitted viruses (ETVs) of subtypes A and C possess unique genetic
and antigenic properties, including shorter variable loops and fewer predicted N-linked
glycans, which might provide less cloaking of neutralization-sensitive targets [58•,59•,60].
Another recent study suggested that these differences might be greater between newly
transmitted subtype B and C viruses than between early and late viruses within each subtype
[61••]. Although it is not entirely clear that ETVs exhibit greater overall sensitivity to
neutralization compared with late viruses, the observation that some ETVs from sexually
acquired subtype C infections are more sensitive to neutralization by autologous transmitter
plasma compared with the major viral variant in the transmitter [62] suggests that
neutralization-escape comes at a cost to transmission fitness. This is not seen in perinatally
infected infants, probably because transmission in that case occurs in the presence of
maternal NAbs [4••,5••]. It might be that genetic subtype as well as the route of infection
play a role in determining the variants that are transmitted. Whether the higher levels of
NAbs seen in HIV-1 subtype C-infected patients are caused by an inherent sensitivity of
transmitted subtype C viruses or a greater immunogenicity of subtype C Env remains to be
determined, as does the impact this will have on vaccine design [58•].

Subtype-specific virus panels for measuring antibody neutralization
Over the past few years a number of virus panels have been compiled in an attempt to
standardize the measurement of antibody-mediated neutralization, particularly in vaccine
trials. The use of molecularly cloned Env-pseudotyped viruses in luciferase reporter gene
assays has facilitated the reproducibility and overall accuracy of measuring antibody-
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mediated neutralization, and has provided higher throughput and lower cost. Moreover, in
most cases this assay detects the same antibody specificities as the PBMC assay but with
slightly greater sensitivity. The use of this assay in a three-tiered approach is now the
recommended format for assessing vaccine-elicited NAb responses, with a focus on primary
viruses from multiple subtypes that comprise tier 2 and tier 3 reference strains [63]. A
subtype B and African subtype C panel of reference strains from acute and early sexually
acquired infections have recently been developed and are available through the National
Institutes of Health Reference and Reagent Repository [61••,64]. Subtype C is the major
global subtype, and therefore additional panels from India, China and possibly other African
countries where subtype C dominates are urgently needed, as are panels of subtypes A, D,
CRF01_AE and CRF02_AG. Collectively, this covers 90% of all HIV-1 strains worldwide.
Viruses chosen for such panels need to be collected within 3 months of infection,
transmitted sexually and not be unusually sensitive or resistant to neutralization. A rigorous
and regular programme of proficiency testing will ensure adequate competency in
laboratories around the world. It is possible that initial panels of reference strains will need
to be modified as new information is gained on how to improve their correlative value.

Novel immunogen design and delivery
The failure of soluble monomeric gp120 immunogens to elicit NAbs against most primary
HIV-1 isolates and to show efficacy in humans highlights the need for more creative
immunogens [65]. In this regard, lead approaches focus on oligomeric Env immunogens that
may more effectively present epitopes as they exist on native viral Env. One solution is to
introduce a C-terminal trimeric GCN-4 transcription factor motif to form stable gp140 Env
trimers. Recent studies have confirmed that these gp140 trimeric proteins elicit higher titers
of NAbs than the corresponding monomeric gp120 [66]; however, further design
modifications will be required to generate more broadly reactive NAbs. Env trimer
construction often requires the elimination of the gp120–gp41 cleavage site to prevent
subunit dissociation. A potential problem with this approach is that the uncleaved Env
proteins are antigenically distinct from native cleaved Env. To circumvent this problem,
Beddows and colleagues [67] constructed a gp140 Env with an intact cleavage site and
stabilized the protein by introducing intermolecular disulfide bonds (SOS gp140) between
gp120 and gp41. Both clade A and B SOS gp140s are being studied for immunogenicity.

Improving the breadth of the NAb response may also be possible by the inclusion of
polyvalent Envs. In preclinical studies using DNA priming and oligomeric protein boosting,
a combined clade B and C Env immunogen generated high titers of antibodies to both
vaccine strains of virus [68]. Similarly, Wang and colleagues [69] used the DNA/protein
platform to immunize rabbits with Envs from clades A, B, C, D, E, F and G. In both studies,
NAbs against some non-clade B viruses were elicited but the total breadth of the NAb
response remained limited. An alternative approach is to construct immunogens based on
centralized (ancestral or consensus) Env sequences to minimize the genetic distance between
vaccine strains. Such immunogens might elicit NAbs to conserved antibody determinants on
Env. Initial centralized Env constructs based on group M and subtype C HIV-1 have been
found to elicit both T-cell and antibody responses in small animals; further studies are
ongoing [70]. Liao et al. [71•] compared a group M consensus Env immunogen to wild-type
Envs from clades A, B and C, and found the former to elicit NAb responses at least as good
as any individual wild-type Env.

Although much of the existing effort towards improving NAb responses is based on novel
immunogen design, there has been some progress in improving NAb responses by using
prime-boost delivery platforms and through the use of adjuvants. Several recent studies have
confirmed that either plasmid DNA or recombinant adenovirus immunization effectively
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primes for soluble protein boosting and results in high titers of NAbs [68,69,72]. In addition,
the co-delivery of granulocyte macrophage colony-stimulating factor DNA with Env DNA
in monkeys led to a more rapid and higher avidity antibody response than Env DNA without
adjuvant [73]. For soluble trimeric protein, use of the GSK series of adjuvants (AS01B,
AS02A and AS03; Glaxo-SmithKline Biologicals, Rixensart, Belgium) generated higher
titer NAb responses than a commercially available Ribi adjuvant [66].

Neutralization epitope mapping
Improved Env designs could be guided by assays that not only measure virus neutralization
but, more specifically, what epitopes those NAbs target. Several groups of investigators
have begun to analyze vaccine sera to understand better the antibody specificities generated.
Three papers published last year reported that vaccine-elicited autologous virus
neutralization was mediated by NAbs against the V1 region of gp120 [66,74,75].
Interestingly, all three groups identified the same hypervariable region at the tip of the V1
loop. Whether or not some common and partly conserved motifs exist in V1 that could serve
as a useful vaccine antigen remains to be determined.

Antibodies against the V3 region of gp120 are also readily generated by many Env
immunogens. Anti-V3 antibodies have inherent limitations because the V3 region of most
HIV-1 strains is not accessible. Nonetheless, a minority of HIV-1 isolates, probably 10–
15%, are sensitive to V3 MAbs. Efforts to optimize the NAb response against V3 include
protein scaffolds that present the known V3 MAb 447–52D epitope [76] and specific design
modifications to stabilize and increase the immunogenicity of V3 [74,75]. A potentially
interesting observation is that anti-V3 antibodies derived from non-clade B-infected patients,
or non-clade B immunization, might be more crossreactive than anti-V3 antibodies from
clade B HIV-1-infected subjects [74,77].

As new assays to map neutralization epitopes become more refined, they may be applied to
sera from HIV-1-infected patients, particularly those who possess broadly NAbs. Such
studies might provide insight about how neutralization breadth can be achieved. For
example, it is not known whether broadly neutralizing sera target conserved Env regions or
contain polyclonal antibodies that target several variable neutralization epitopes
simultaneously. One study of 92 HIV-1-positive plasma samples found little or no reactivity
to the membrane proximal external region of HIV-1 gp41 engrafted into SIV [78•], whereas
another study found that cloned viral Envs from two patients with broadly neutralizing sera
developed mAb 2F5 and 4E10 escape mutations, suggesting that NAbs to the membrane
proximal external region may play a role in driving virus evolution [24]. Decker et al. [79]
used non-conventional strains of HIV-2 to show that sera from HIV-1-infected individuals
contain high titers of antibodies against highly conserved neutralization epitopes in the co-
receptor binding domain of gp120. Unfortunately, these epitopes are poorly exposed on
most strains of the virus [57,61••]. Further studies of broadly neutralizing sera will be
required to understand how neutralization breadth is achieved in natural HIV-1 infection.

Conclusion
Two decades of intensive research have failed to yield an effective antibody-based HIV-1
vaccine. Despite the obstacles towards effective Env vaccine design, new evidence has
emerged to support the notion that NAbs and possibly other types of antiviral antibodies are
indeed worth pursuing. The field continues to make progress in understanding viral Env
structure and to engage in a combination of empirical and rational approaches to immunogen
design. The interface of these approaches may yet yield an effective vaccine. Future
prospects would benefit from progress in a number of key areas: (1) detailed studies of
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ETVs from the major genetic subtypes derived from multiple routes of infection, including
breast-milk transmissions; (2) the crystal structure of native unliganded trimeric Env as well
as gp120 structures from non-B subtypes; (3) broadly neutralizing MAbs with novel
specificities, including specificities that are both immunogenic and antigenic; (4) additional
assays to scrutinize the epitope specificities of NAbs generated by infection and vaccination;
(5) better adjuvants; (6) closer inspection of non-neutralizing antibodies; and (7) a greater
understanding of the ontogeny of the B-cell response to HIV-1 Env, including host genetic
factors.

Abbreviations

ADCC antibody-dependent cellular cytotoxicity

ADCVI antibody-dependent cell-mediated virus inhibition

ETV early transmitted virus

MAb monoclonal antibody

NAb neutralizing antibody

PBMC peripheral blood mononuclear cell
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