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 Introduction 

 In a multiple-comparison setting, a certain statistical 
test is applied to each individual variable. Tests with p 
values less than a preset threshold will be claimed statis-
tically significant. It is important but usually difficult to 
set the cutoff values in advance. With a large cutoff value, 
there will be so many false-positive results due to chance 
only; on the other hand, with a too stringent cutoff, many 
true-positive results will not pass the threshold and there-
fore be overlooked. Šidák  [1]  and Bonferroni  [2, 3]  correc-
tions are two commonly used methods to control exper-
iment-wise error rate.

  In a multiple testing problem, if the individual tests 
are not independent, the Šidák and Bonferroni correc-
tions are conservative in the sense that the actual exper-
iment-wise error rate will be lower than the given nom-
inal value. In recent genome-wide association studies, 
the number of variables (e.g. single nucleotide polymor-
phisms, SNPs), which are often densely genotyped, can 
be up to hundreds of thousands. Due to linkage dis-
equilibrium (LD), many SNPs are highly correlated. 
Giving this situation, neither Šidák nor Bonferroni cor-
rection should be used since they are only appropriate 
for independent tests. An alternative method based on 
permutation has been proposed  [4] . This method shuf-
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 Abstract 

 In genetic association studies, such as genome-wide associa-

tion studies (GWAS), the number of single nucleotide poly-

morphisms (SNPs) can be as large as hundreds of thousands. 

Due to linkage disequilibrium, many SNPs are highly corre-

lated; assuming they are independent is not valid. The com-

monly used multiple comparison methods, such as Bonfer-

roni correction, are not appropriate and are too conservative 

when applied to GWAS. To overcome these limitations, many 

approaches have been proposed to estimate the so-called 

effective number of independent tests to account for the cor-

relations among SNPs. However, many current effective num-

ber estimation methods are based on eigenvalues of the cor-

relation matrix. When the dimension of the matrix is large, 

the numeric results may be unreliable or even unobtainable. 

To circumvent this obstacle and provide better estimates, we 

propose a new effective number estimation approach which 

is not based on the eigenvalues. We compare the new meth-

od with others through simulated and real data. The com-

parison results show that the proposed method has very 

good performance.  Copyright © 2011 S. Karger AG, Basel 
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fles the cases and controls in each permutation; then it 
calculates the p values (or the corresponding statistics) 
for all variables. For each permutation, the smallest p 
value (or the statistic with the largest absolute value) is 
recorded. After a large number of permutations, say M, 
have been conducted, the  q -th quantile of the M-small-
est p values (or the largest absolute statistics) is then the 
estimated point-wise cutoff p value (or statistic) to con-
trol the experiment-wise error rate at level  q   [4] . Usu-
ally, the cutoff p values from this approach control the 
experiment-wise error rates quite well and it has been 
served as the gold standard method. However, it is a 
computation-intensive approach that requires many 
permutations to get accurate estimates. With large 
number of variables, it could take time from several 
days to many years  [5] .

  Some methods that are less computation dependent 
have been proposed  [5–14] . We assume there exist N eff  
independent tests which are equivalent to those N corre-
lated tests in the sense that the cutoff value based on these 
independent tests will control the experiment-wise error 
rate at the given nominal level. N eff  is called the effective 
number of independent tests. Cheverud  [6]  is the first 
person who proposed the idea of effective number of in-
dependent tests and developed a simple method to esti-
mate this number based on the eigenvalues of the correla-
tion matrix. However, studies have shown that Chever-
ud’s method is too conservative  [5, 8–10] . Several other 
eigenvalue-based methods have also been proposed to 
improve the performance  [5, 7–10] . One should notice 
that although the method proposed by Dudbridge and 
Gusnanto  [12]  also utilized the eigenvalues; the correla-
tion matrix used in their method was different from those 
used in the above methods. Unfortunately, those eigen-
value-based methods have limitations which are associ-
ated with eigenvalue calculation. When the dimension of 
the correlation matrix is large, the numerical results are 
either unreliable or difficult to get. In order to circumvent 
these difficulties and provide better estimates, we pro-
pose a new approach that does not require calculating the 
eigenvalues of the correlation matrix. Instead, we use the 
correlation coefficients themselves to estimate the effec-
tive number. To evaluate the performance of the new ap-
proach, we compare it with other methods through simu-
lated and real data by using the permutation-based meth-
od as the gold standard. Our comparisons show that the 
proposed method performs better than existing eigenval-
ue-based methods.

  Methods 

 Effective Number and Its Estimation 
 In a multiple comparison problem that controls the experi-

ment-wise error rate, the Šidák point-wise cutoff p value is defined 
as

   �  p  = 1 – (1 –  �  e ) 
1/  N   (1)

  where  �  e  is the experiment-wise threshold and N is the total num-
ber of comparisons in the study  [1] . The Bonferroni point-wise 
cutoff p value is an approximation for that of Šidák and is given 
by  [2, 3] : 

    �  p  =  �  e  / N   (2)

  Both Šidák and Bonferroni corrections are conservative and only 
appropriate for independent comparisons (tests). In a genome-
wide association study (GWAS), it is very common that some 
SNPs are highly correlated due to LD. Observing that ‘higher cor-
relation among the traits leads to higher eigenvalue variance’, 
 Cheverud proposed the following formula to estimate the effec-
tive number  [6] : 
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    is the observed variance of the eigenvalues  �  i  ( i  = 1, 2, ...,  N ) of the 
correlation matrix of all SNPs. N Chev  has the following properties 
 [6, 8] : 

 Property 1 
 When all tests are completely independent, the N eigenvalues 

are all equal to 1 and  V   �   obs  = 0, therefore N Chev  = N.

  Property 2 
 When all the tests are perfectly correlated, except for one 

which is equal to N, all other eigenvalues are equal to 0,  V   �   obs  =  N , 
and hence N Chev  = 1.

  Replacing N by  N  Chev  in (1) or (2), we can get the Cheverud’s 
point-wise cutoff p value. This method is usually very conserva-
tive in the sense that the actual experiment-wise error rates are 
much smaller than the preset value  [5, 8–10, 15] . Nyholt  [10]  tried 
to improve Cheverud’s method by excluding all SNPs in perfect 
LD except one before using formula (3). However, Nyholt’s meth-
od is still overly conservative  [5] .

  Li and Ji  [8]  pointed out that the effective number should also 
have the third property:

  Property 3 
 If the N tests can be composed of  c (1  ̂    c   ̂    N ) copies of  N / c  

independent tests, then the effective number is  N / c .
   N  Chev  does not possess this property since in this situation 

 N / c  of the N eigenvalues are equal to c and the remainder equal 
to 0. The estimated effective number from (3) is then  N  – 1 +  c , 
not N/c  [8] . Observing this limitation of Cheverud’s method, Li 



 Effective Number Estimation Approach Hum Hered 2011;72:1–9 3

and Ji  [8]  proposed an improved version of  N  Chev  which satisfies 
property 3:

1

                                                       (4)
N

LJ i
i

N f | |�

    where  f ( x ) =  I ( x   6  1) + ( x  – [ x ] )  for  x   6  0 and [ x ] is the floor func-
tion which gives the largest integer less than or equal to  x . 

 Recently, Gao et al.  [5, 7]  proposed another eigenvalue-based 
method to estimate the effective number through principal com-
ponent analysis:

1
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    where  �  1   6   �  2   6  ...  6      �  N  are the ordered eigenvalues of the cor-
relation matrix and  C  is a parameter, which is typically set as 
99.5%  [5, 7] . Obviously,  N  Gao  does not possess property 2. When 
all the tests are completely independent,  N  Gao  will always under-
estimate the effective number for any  C   !  1. 

 New Method to Estimate Effective Number N Chen  
  Step 1.  For the  i -th ( i  = 1, 2, ...,  N ) SNP, estimate the absolute 

composite LD (CLD) coefficient between this SNP and any other 
SNP  �  r  ij  �,   j   0   i ;

   Step 2.  Calculate

1

, 1, 2, , ,
N

k
i ij

j
R |r | i N

    where k is a positive constant number; 
  Step 3.  Estimate the effective number:

1

1
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    The constant k is a statistical test-dependent parameter. In this 
paper, the Cochran-Armitage trend test is used to test associa-
tions between the phenotype and the genotype  [16, 17] . It is easy 
to verify that our new method satisfies properties 1–3 mentioned 
above. 

 Once we obtain the effective number, we can estimate the 
point-wise cutoff p value by using Šidák or Bonferroni correction 
with the total number of tests N being replaced by the estimated 
effective number in (1) and (2), respectively. In this paper, we use 
 N  P ,  N  Chev ,  N  LJ ,  N  Gao  and  N  Chen  to denote the estimated effective 
number from the permutation-based method, the methods of 
 Cheverud, Li and Ji, Gao et al. and our new method, respectively. 
We actually do not need to estimate the effective number if the 
permutation-based method is used; however, in order to use it as 
a standard in method comparisons, we will estimate  N  P  by  �  e / �  p , 
where  �  p  is the estimated point-wise cutoff p value from the per-
mutation-based method.

  For our proposed method, we estimate the effective number 
based on the correlation matrix. As suggested by Gao et al.  [5] , we 
use the CLD coefficient to estimate the correlation coefficient be-
tween each pair of SNPs since it has certain advantages over the LD 
correlation  [5, 18–21] . For example, the expectation-maximization 
algorithm-based estimate of LD correlation makes a strong as-

sumption of the Hardy-Weinberg equilibrium  [22] , which may not 
meet in practice  [21, 23, 24] . Some researchers have shown that CLD 
can capture the relationship among SNPs comparable to those of 
gametic LD without requiring the Hardy-Weinberg equilibrium  [5, 
18–21] . In addition, the CLD coefficient can be easily estimated. 
The calculation of the CLD coefficient is simple: code the wild-type 
homozygote, heterozygote and variant homozygote as 2, 1 and 0, 
respectively, for each individual genotype and then calculate the 
correlation coefficient in the usual way [e.g. R function cor()] for 
each pair of SNPs. For more details, see Gao et al.  [5] .

  Simulation Settings 
 The R package ‘popgen’ (version 0.0-4; http://cran.r-project.

org/src/contrib/Archive/popgen/) is used to generate phenotype 
data. We simulate data sets with the settings similar to those 
used in Gao et al.  [5, 25] . More specifically, we simulate two dif-
ferent data sets. For simulation 1, we simulate 8 cold regions 
(each 10 kb long) separated by hotspots (each 1 kb long). For 
simulation 2, we simulate 4 cold regions (each 10 kb long) sepa-
rated by hotspots (each 15 kb long). The mutation rate is  �  = 
4 N  e  � , where the effective population size  N  e  and the mutation 
rate per base pair per generation  �  are set to be 10,000 and 1.4  !  
10 –8 , respectively. The recombination rate is  r  = 4 N  e  � , where the 
recombination rate per base pair per generation  �  are chosen to 
be 2.5  !  10 –8  and 9  !  10 –10  for cold regions in simulation 1 and 
2, respectively, to get patterns similar to those observed in the 
SeattleSNP database  [5, 25] . For the hot regions, the recombina-
tion rates per base pair per generation are set to be 100 times 
greater than those in the cold regions. For both simulations, 100 
experiments will be generated, each with 200 cases and 200 con-
trols. To see whether sample sizes affect the outcomes, we also 
simulate data sets with 1,000 cases and 1,000 controls. The low-
est minor allele frequency (MAF) will be set as 0.05, as com-
monly chosen in practice; SNPs with MAF  ! 0.05 will be re-
moved. Gao et al.  [5]  used 0.1 as the MAF cutoff in their simula-
tions. In the permutation-based method, we use chran-Armitage 
trend tests with 10,000 permutations to estimate the point-wise 
cutoff p values and the corresponding estimated effective num-
bers  N  P  with experiment-wise levels 0.05 and 0.01. Regarding the 
method of Gao et al.  [5] , we use 99.5% for the parameter  C ; in our 
new approach, we use  k  = 7.

  Real Data 
 A real SNP data set is also used to compare the methods  [26] . 

In this data set, we use the data from the 167 Eastern Asian Chi-
nese people. There are 1,272 SNPs across 16 regions of chromo-
some 21; among them 226 SNPs with MAF  ! 5% are removed, 
resulting in 1,046 SNPs in the final analysis. Among the 167 sam-
ples, 83 are assumed as hypothetical cases and 84 as controls in 
the permutation-based test.

  Results 

 Simulation Results 
 The number of SNPs generated from the 100 experi-

ments in simulation 1 varies from 33 to 184 with a mean 
of 69.1 and a median of 65.5. Similarly, the number of 
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  Fig. 1–4.  The estimated effective numbers 
from various methods in simulation 1 ( 1 , 
 2 ) and in simulation 2 ( 3 ,  4 ) with N P  esti-
mated at experiment-wise level 0.05 ( 1 ,  3 ) 
and 0.01 ( 2 ,  4 ). Perm = Permutation; L&J = 
Li and Ji.   
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SNPs in simulation 2 is between 30 and 170, with a mean 
of 74.4 and a median of 75.5. We first use the permuta-
tion-based method to estimate  N  P , which is then served 
as the gold standard: the closer the estimated effective 
number to  N  P , the better the method performs.  Figure 1  
plots the estimated effective numbers  N  Chev ,  N  LJ ,  N  Gao  and 
 N  Chen  by the methods of Cheverud, Li and Ji, and Gao et 
al., and our new method, respectively, in simulation 1, 
with  N  P  estimated from trend test with experiment-wise 
level 0.05. The effective numbers are sorted by  N  P  before 
they are plotted to give better visualization (this applies 
to all figures).  Figure 2  compares those estimated effec-
tive numbers in simulation 1 with  N  P  estimated with ex-
periment-wise level 0.01.  Figures 1  and  2  clearly show that 
regardless of the experiment-wise levels used, most of the 
time,  N  Chen    performs better than  N  LJ  and  N  Gao , which are 
close to each other and both perform better than  N  Chev . 
 Figures 3  and  4  plot the effective numbers estimated in 
simulation 2 with  N  P  estimated with experiment-wise 
levels 0.05 and 0.01, respectively. Again the overall per-
formance of our new method is better than the methods 
of Li and Ji and Gao et al., which both are better than the 
Cheverud method.

   Tables 1  and  2  summarize the statistics of the estimat-
ed effective numbers from various methods in simula-
tions 1 and 2, respectively. It is noticeable that our new 

method  N  Chen  has very similar characteristics as the per-
mutation-based method. For example, in simulation 1 
the estimated overall effective numbers are 1,574 and 
1,592 from  N  P  with experiment-wise level 0.05 and 0.01, 
respectively, which are very close to the 1,594 obtained by 
our new method. The estimated overall effective num-
bers from  N  LJ  and  N  Gao  are both greater than those from 
 N  P .

  We also perform statistical tests to compare  N  Chev ,  N  LJ , 
 N  Gao  and  N  Chen  with  N  P . A one-sample test (e.g. a paired 
t test or a signed-rank test) is applied to the effective num-
bers estimated by each pair of methods of the 100 exper-
iments within the same simulation.  Tables 3  and  4  report 
the p values from a one-sample t test for simulations 1 and 
2, respectively. For both simulations (1 and 2), the esti-
mated effective numbers from our new method and the 
permutation-based method are not statistically signifi-
cantly different. For any other methods, their estimated 
effective numbers are always highly statistically signifi-
cantly different than those from the permutation-based 
method. We also applied the Wilcoxon signed-rank test 
and obtained very similar results. When we increase the 
numbers of cases and controls to 500 or 1,000 each, we 
have very similar results to those with 200 cases and 200 
controls; this is consistent with the findings from Gao et 
al.  [5] .

Table 1. S ummary statistics of the estimated effective numbers 
from various methods in simulation 1

Method Min Max Mean Median SD Sum

Trend (�e = 0.05) 9.7 21.7 15.7 15.7 2.49 1,574

Trend (�e = 0.01) 9.7 23.6 15.9 15.7 3.24 1,592
Chen (k = 6) 10.0 20.6 15.2 15.1 2.32 1,523
Chen (k = 7) 10.4 21.5 15.9 15.8 2.42 1,594
Chen (k = 8) 10.7 22.2 16.5 16.3 2.51 1,649
Cheverud 27.7 123.8 51.7 48.9        15.5 5,172
Gao et al. 13 24 17.6 17 2.44 1,763
Li and Ji 13 26 18.6 18 2.89 1,855

Table 2. S ummary statistics of the estimated effective numbers 
from various methods in simulation 2

Method Min Max Mean Median SD Sum

Trend (�e = 0.05) 8.8 25.2 15.7 15.4 2.73 1,567

Trend (�e = 0.01) 8.5 26.6 16.0 15.7 3.98 1,596
Chen (k = 6) 8.3 21.2 15.2 15.0 2.44 1,519
Chen (k = 7) 8.8 22.0 15.9 15.6 2.55 1,590
Chen (k = 8) 9.0 22.8 16.5 16.2 2.63 1,646
Cheverud 23.5 96.7 53.5 53.2        15.1 5,351
Gao et al. 10 24 17.8 18 2.73 1,778
Li and Ji 12 26 19.0 19 2.95 1,897

Table 3. p  value from the comparison of the estimated effective 
numbers in simulation 1

Chen Cheverud Gao et al. Li and Ji

Trend (�e = 0.05) 0.16 <2.2!10–16 <2.2!10–16 <2.2!10–16

Trend (�e = 0.01) 0.92 <2.2!10–16 1.6!10–11 <2.2!10–16

Table 4.  p value from the comparison of the estimated effective 
numbers in simulation 2

Chen Cheverud Gao et al. Li and Ji

Trend (�e = 0.05) 0.13 <2.2!10–16 <2.2!10–16 <2.2!10–16

Trend (�e = 0.01) 0.85 <2.2!10–16 2.9!10–9 <2.2!10–16
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  For SNP data, it is very common to have missing val-
ues, methods based on principal component analysis, 
such as  N  G , cannot be applied directly to this kind of data 
 [5] . Although some data imputing strategies can be used, 
this will bring some errors as well. Another problem with 
principal component analysis is that it becomes inefficient 
with a large number of SNPs ( 1 1,000)  [5] . The new pro-
posed method is not sensitive to missing value since it 
only needs the correlation coefficient between each pair 
of SNPs.

  When the number of SNPs becomes very large, many 
effective number estimation methods need to group the 
SNPs into subsets. However, we may not know exactly 
which SNPs should be grouped together in practice. It is 
desirable to know how the subset size affects the effective 
number estimation. To this purpose, we treat the gener-
ated SNP data from the 100 experiments within the same 
simulation as one single data set; then choose different 
subset sizes (e.g. 100, 200, ..., 1,000) to separate the single 
data set into several subsets with equal numbers of SNPs 
(only the last subset may have more SNPs). The overall 
estimated effective number is assumed the sum of the ef-
fective numbers estimated from each individual subset. 
 Tables 5  and  6  report the results for simulations 1 and 2, 
respectively. It can be seen that our new method is not 
sensitive to the subset size. With subset sizes between 500 
and 1,000, our new method gives reliable, effective num-
bers, which are very close to those from the permutation-
based method.

  To see how those methods work for large SNP data, we 
combine the data from the two simulations into one sin-
gle data set with 14,453 SNPs in total. Due to the limit of 
the memory of  R , we need to divide the whole data set into 
four subsets with almost equal size. The running time 
values (in seconds) using  R  are 274, 631, 628, 630 and 
1,086,961 (about 302 h) for our new method, and the 
methods of Cheverud, Gao et al., and Li and Ji, and the 
permutation method with trend test and 10,000 repli-
cates, respectively. The estimated effective numbers by 
those methods are 3,198, 14,225, 1,405, 2,030 and 3,359, 
respectively. The estimated effective number by Chever-
ud is too large, while those by Gao et al. and Li and Ji are 
too small. Our proposed method and the permutation 
method obtained very similar results.

  Results from Real Data 
 From the real data, the estimated effective numbers 

from the permutation-based method with experiment-
wise level 0.05 and 0.01 are 354 and 349, respectively. The 
effective number from our new method is 348, which is 
very close to those from the permutation-based method. 
The estimated effective numbers from Gao et al., Li and 
Ji, and Cheverud methods are 361, 371, and 859, respec-
tively. Again we can see that the Cheverud method is too 
conservative.

Table 5. E stimated effective numbers with different size (n) and 
number of subsets (G) in simulation 1

n (G) Chen
(k = 6)

Chen
(k = 7)

Chen
(k = 8)

Cheve-
rud

Gao
et al.

Li
and Ji

–a (100) 1,523 1,594 1,649 5,172 1,763 1,855
100 (69) 1,850 1,926 1,984 5,891 1,765 1,926
200 (34) 1,681 1,754 1,811 6,298 1,565 1,731
300 (23) 1,609 1,680 1,736 6,452 1,480 1,638
400 (17) 1,596 1,667 1,723 6,573 1445 1,597
500 (13) 1,607 1,680 1,737 6,650 1,420 1,581
600 (11) 1,559 1,630 1,685 6,674 1,367 1,520
700 (9) 1,573 1,645 1,701 6,724 1,333 1,493
800 (8) 1,549 1,620 1,675 6,733 1,299 1,458
900 (7) 1,546 1,617 1,672 6,754 1,264 1,427

1,000 (6) 1,566 1,638 1,694 6,774 1,220 1,398

a Number of SNPs from each experiment.

Table 6. E stimated effective numbers with different size (n) and 
number of subsets (G) in simulation 2

n (G) Chen
(k = 6)

Chen
(k = 7)

Chen
(k = 8)

Cheve-
rud

Gao
et al.

Li
and Ji

–a (100) 1,519 1,590 1,646 5,351 1,778 1,897
100 (74) 1,824 1,900 1,959 6,025 1,731 1,930
200 (37) 1,662 1,735 1,792 6,576 1,543 1,756
300 (24) 1,624 1,698 1,755 6,848 1,485 1,686
400 (18) 1,589 1,661 1,718 6,977 1,440 1,631
500 (14) 1,575 1,647 1,703 7,082 1,400 1,597
600 (12) 1,570 1,643 1,699 7,120 1,383 1,568
700 (10) 1,543 1,615 1,670 7,162 1,333 1,521
800 (9) 1,559 1,631 1,687 7,193 1,336 1,526
900 (8) 1,551 1,623 1,679 7,222 1,308 1,498

1,000 (7) 1,538 1,609 1,665 7,242 1,267 1,456

a Number of SNPs from each experiment.



 Chen   /Liu    Hum Hered 2011;72:1–9 8

  Discussion 

 In multiple-comparison problems with highly corre-
lated tests, such as GWAS using SNPs, statistical methods 
that account for the dependence and give reasonable cut-
off p values are highly desirable. Some of these methods 
have been proposed and successfully applied to genetic 
association studies. The concept of effective numbers of 
independent tests is simple but very useful.

  Like constant  C  in the method of Gao et al., the param-
eter  k  in our new method needs to be chosen in advance. 
This constant may vary among different situations. Al-
though we used  k  = 7 for our new method when the sta-
tistical tests were Cochran-Armitage trend tests, we found 
that, unlike the method of Gao et al.  [5] , our method was 
not sensitive to the parameter  k . For example, if we replace 
7 by any value between 6 and 8, we will have very similar 
results as those from our new method with  k  = 7. From 
both simulation and real data, we have shown that the es-
timated effective numbers from our new method with  k  = 
7 were very close to those from the permutation-based 
method; we feel that  k  = 7 is appropriate for most situa-
tions. If other association tests are used, another constant 
 k  should be chosen. For example, we find that if Pearson’s 
 �  2  test with 2 degrees of freedom (d.f.) is used,  k  = 3 is more 
appropriate (data not shown). In GWAS, one may want to 
adjust some covariates, e.g. age and gender. Under this 
situation, a logistic regression model with genotype and 
several other covariates as independent variables is more 
appropriate. As the statistical method changes, we would 
expect that a different constant  k  needs to be chosen. We 
do not have such data to give our suggestion about choos-
ing  k  for this situation, however, in principle, we may es-
timate this constant based on the permutation method 
with a small portion of the data. Although based on the 
results from our simulations and real data,  k  = 7 is suitable 
for both significance levels 0.05 and 0.01, this constant  k  
may also depend on the significance level used, as pointed 
out by other researchers  [11, 14] .

  For the methods of Gao et al., and Li and Ji, it is impor-
tant to find a suitable group size to divide a large data set 

into some subsets as the grouping effects are not negligible 
for those methods. However, for our proposed method, 
the grouping effect is limited based on our simulations.

  It should be noticed that the method proposed by 
Moskvina and Schmidt  [11]  also utilizes the correlation 
coefficients among SNPs, although in a different way, to 
estimate the effective number. In general, the estimated 
effective numbers by their method are conservative 
since their  r  j  s  are usually underestimated, resulting in 
overestimated  k  j  s  and therefore the effective numbers. 
Furthermore, Moskvina and Schmidt’s method is inde-
pendent of the association tests used. This may be a lim-
itation of their method. Recently, Han et al.  [13]  pro-
posed another correction method based on the observa-
tion that the covariance of their test statistics from two 
markers was the sample correlation coefficient of the 
two markers. However, the test they used was related to 
the allelic  �  2  test (Pearson’s  �  2  test with 1 d.f. for a 2  !  
2 contingency table); it was neither the trend test nor the 
 �  2  test with 2 d.f. for a 2  !  3 contingency table. It is un-
clear how this method works if we choose the common-
ly used trend test.

  We have proposed a new simple method to estimate 
the effective number to account for the correlations 
among SNPs in genetic association studies. It is less com-
putation dependent and easy to implement. Through 
simulation and real data, we have shown that the pro-
posed method outperforms existing effective number es-
timation methods.
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