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small number of controls along with cases and then compar-

ing this group to the additional controls. We show that re-

moving SNPs that show differences between these control 

groups reduces false-positive findings. Thus, through an em-

pirical approach, this report provides practical guidance for 

using additional controls from publicly available datasets. 

 Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 In recent years, genome-wide association studies 
(GWAS) have been used to identify numerous replicable 
susceptibility loci for many complex diseases. A typical 
GWAS involves a case-control design in which the inves-
tigator analyzes DNA samples from both affected case 
individuals and matched, healthy control individuals. 
One hurdle in conducting such studies, in which hun-
dreds of thousands of SNPs are independently tested for 
association with disease, is the large sample size required 
to obtain adequate power to detect a modest effect after 
correcting for multiple testing. To address this problem, 
many groups have joined efforts to create large consortia 
with DNA samples from thousands or tens of thousands 
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 Abstract 

 Though genome-wide association studies (GWAS) have 

identified numerous susceptibility loci for common diseases, 

their use is limited due to the expense of genotyping large 

cohorts of individuals. One potential solution is to use ‘ad-

ditional controls’, or genotype data from control individuals 

deposited in public repositories. While this approach has 

been used by several groups, the genetically heterogeneous 

nature of the population of the United States makes this ap-

proach potentially problematic. We empirically investigated 

the utility of this approach in a US-based GWAS. In a small 

GWAS of pancreatic cancer in New York, we observed clear 

population structure differences relative to controls from 

the database of Genotypes and Phenotypes (dbGaP). When 

we conduct the GWAS using these additional controls, we 

find large inflation of the test statistic that is properly cor-

rected by using eigenvectors from principal components 

analysis as covariates. To deal with errors introduced due to 

different sources, we propose simultaneously genotyping a 
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of individuals to conduct studies that are well powered to 
detect even a modest genetic effect. Even with large con-
sortia, however, the cost of genotyping such a large num-
ber of samples can be prohibitive.

  One potential solution to the sample size requirement 
of GWAS that has been proposed is the use of a common 
set of control individuals in numerous studies. In 2007, 
the Welcome Trust Case Control Consortium (WTCCC) 
used this ‘shared controls’ approach to study seven com-
mon diseases  [1] . Rather than using controls individually 
matched to the cases for each disease, the WTCCC geno-
typed a common set of controls representative of the self-
identified white European population of Great Britain 
and compared allele frequencies from this group with 
each set of case individuals. This approach has been used 
by others with case individuals who come from both the 
UK and elsewhere, including the United States  [1–5] . Re-
cently, Zhuang et al.  [6]  published a simulation study in 
which they showed the theoretical potential for expand-
ing the control group with publicly available disease sam-
ples or reference samples to increase the power of GWAS; 
we refer to the use of such controls from the database as 
‘additional controls’.

  Despite the apparent practical success of this approach 
and simulation studies suggesting its effectiveness, both 
the power and pitfalls of using additional controls from 
databases in the genetically heterogeneous population of 
the United States remain unclear. Genome-wide geno-
type information, along with limited phenotypic data,
is available for numerous healthy individuals from the 
United States in the database of Genotypes and Pheno-
types (dbGaP) at NIH. Therefore, in theory it should be 
possible to combine these data with genome-wide SNP 
profiles from a smaller number of cases that an individ-
ual investigator is studying to identify disease suscepti-
bility loci. However, population stratification due to dif-
ferences in genetic ancestry between people in such case 
and control groups and differential genotyping error 
from different sources could hinder an effective use of 
this approach. It is known that even if a study is restricted 
to self-identified ‘white’ individuals in the United States, 
genotype frequency at many loci can vary based on from 
where in Europe the ancestors came  [7, 8] . While a variety 
of statistical methods have been developed to identify and 
correct for such stratification  [9, 10] , how such correction 
will influence the power and type I error rate of using 
common controls in US-based studies remains to be seen.

  In this paper, we evaluate the use of additional controls 
from publicly available sources in a US-based GWAS. To 
do so, we utilize a small pancreatic cancer dataset for 

which we have genome-wide genotype data on 263 cases 
and 202 controls. We chose this dataset in part because 
four recently reported pancreatic cancer-associated SNPs 
could be used as true positives to estimate the power of 
this additional controls approach in a real setting  [11, 12] . 
We found that the rank and p value of these true disease 
SNPs improved significantly in our dataset with addition-
al controls, with the added benefit of more controls reach-
ing a plateau after a control:case ratio of 10:   1 is obtained. 
Despite a large amount of population stratification in this 
joint dataset, the impact of this stratification was effec-
tively captured and corrected by principal component 
analysis (PCA). We demonstrate the utility of genotyping 
some controls at the same time as cases for comparison 
with the additional controls to remove SNPs that show 
differential allele frequencies due to disparity in data pro-
cessing and technical artifacts. We thus show systemati-
cally for the first time the practical issues that concern the 
use of controls from different sources. This report can 
serve as useful guidance when using additional controls 
from publicly available datasets in future studies.

  Subjects and Methods 

 Ethics Statement 
 The study was approved by the Memorial Sloan-Kettering 

Cancer Center’s (MSKCC) Institutional Review Board and all 
participants signed informed consent.

  Analytical Power Calculation 
 We determined the analytical power of GWAS assuming a 

simple test of allelic association. We computed the power using a 
non-central  �  2  distribution with non-centrality parameter  �   [13] . 
The power was computed under an additive model with the sig-
nificance threshold  �  = 1  !  10 –7 . The genotype relative risk 
(GRR) was varied from 1.0–3.0 with increments of 0.1, and the 
disease allele frequency (DAF) was varied from 0.05 to 0.50. The 
number of cases used ranged from 100 to 3,000, and the 
control:case ratio ranged from 1:   1 to 50:   1.

  Pancreatic Cancer Study Samples and Genotyping 
 The pancreatic cancer study dataset was obtained from an on-

going hospital-based case-control study conducted in conjunc-
tion with the Familial Pancreatic Tumor Registry (FPTR) at 
MSKCC. The samples were obtained by the MSKCC FPTR re-
search study assistant. Patients were eligible if they were aged 21 
or over, spoke English, and had pathologically or cytologically 
confirmed adenocarcinoma of the pancreas. Patients were re-
cruited from the Surgical and Medical Oncology Clinics at 
MSKCC when seen for initial diagnosis or follow-up. Controls 
were visitors accompanying patients with other diseases to 
MSKCC or spouses of patients. They had the same age and lan-
guage eligibility requirements as the cases and were not eligible if 
they had a personal history of cancer (except for non-melanoma 
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skin cancer). The 263 cases and 202 controls in this analysis were 
recruited between June 2003 and July 2009. The participation rate 
among approached and eligible individuals was 76% among cases 
and 56% among controls. Participants provided a blood or buccal 
(mouthwash or saliva) sample for DNA and completed risk factor 
and family history questionnaires administered by the research 
study assistant by telephone or in person.

  Genomic DNA was isolated from buccal cells using the Pure-
gene DNA purification kit (Qiagen, Inc., Valencia, Calif., USA). 
DNA was also isolated from saliva samples with the Oragene sa-
liva kits (DNA Genotek, Kanata, Ont., Canada) or from blood us-
ing the Gentra Puregene blood kit (Qiagen, Inc.). DNA samples 
were hydrated in 1x TE buffer. Genomic DNA was genotyped on 
the Illumina 370K SNP chip (either the Illumina CNV370-Duo or 
Illumina CNV370-Quad) at the Genomics Core Laboratory of 
MSKCC according to the manufacturer’s protocol.

  Additional Controls from dbGaP 
 Genotypes from additional controls were obtained from the 

NIH’s dbGaP. All individuals used are controls in the underlying 
study and are of European ancestry. Specifically, data from 6 stud-
ies in dbGaP genotyped using Illumina chips were used ( table 1 ). 
These datasets provide 5,485 additional controls in total. Using a 
common set of markers present in all the datasets, we combined 
our MSKCC cases and controls with some or all of the additional 
controls to yield control:case ratios of 5:   1, 10:   1 or 20:   1.

  Data Processing and Quality Control 
 All genotype data was processed using PLINK  [14] . We per-

formed several steps of quality control (QC). First, we processed 
the MSKCC samples alone, without additional controls. As we 
could not be certain of the DNA strand the genotype calls from 
each study are in reference to, we removed all A/T and C/G SNPs, 
as strand could be confused for these allele pairs. We removed 
individuals for whom less than 90% of genotypes were called and 
SNPs for which less than 10% of genotypes were called. We also 
removed SNPs with a minor allele frequency of  ! 5%, or SNPs that 
were out of Hardy-Weinberg equilibrium in controls (p  !  1  !  
10 –7 ). A total of 314,664 markers passed the QC in the MSKCC 
data and were used for combining data from various sources. Sim-
ilar QC steps with the same parameters were performed on each 
of the additional controls datasets independently. The datasets 
were then merged using PLINK, restricting analysis to a set of 

SNPs common to all datasets. We calculated genome-wide iden-
tity by descent (IBD) using PLINK (– genome) and 70 individuals 
with excessive IBD ( � ^  1  0.4) were removed from our analysis. Af-
ter these steps, we applied the same thresholds for missing data, 
minor allele frequency, and Hardy-Weinberg equilibrium as be-
fore. We also removed 529 SNPs that showed a significant differ-
ence in rates of missing genotype calls between cases and controls 
(p  !  1  !  10 –7 ) and a further 723 markers that show differential 
missingness (p  !  1  !  10 –7 ) between males and females. A test for 
differences in missingness based on local haplotype also did not 
reveal any SNPs with strong evidence for differential missingness 
based on inferred genotype at the SNP (– test-mishap in PLINK; 
p  !  1  !  10 –7 ). We compared allele frequencies and call rates be-
tween MSKCC study samples obtained from different DNA 
sources (buccal, saliva, or blood) and did not find any markers 
showing different missingness rates or genotype frequencies due 
to difference in DNA source (p  !  1  !  10 –7 ).

  Principal Components Analysis 
 To perform principal components analysis to adjust for popu-

lation substructure, we used the EIGENSTRAT software from the 
EIGENSOFT 2.0 package  [9] . We first filtered the data by remov-
ing markers in high linkage disequilibrium (LD). This gave us
a set of 32,619 SNPs for which pairwise r 2  values within a win-
dow of 50 SNPs are all less than a specified threshold (usually
0.1; – indep-pairwise 50 5 0.1 command in PLINK). This set of 
markers was then used as input for EIGENSTRAT. Principal
components were computed and outliers removed using default 
parameters. Significant principal components were determined
using the Tracy-Widom statistic (p  !  0.05).

  Additional QC by Control Group Comparisons 
 To perform additional QC to reduce false-positive findings, we 

tested for genotype frequency differences between each control 
group versus the rest of the controls. For each control group, we 
adjusted for the top 11 principal components and used logistic 
regression to test for differences in genotype frequency versus the 
other control groups. For the MSKCC controls, we identified 
2,702 SNPs that show a significant difference in genotype fre-
quencies (p  !  0.01; online suppl. fig. 1; for all online suppl. mate-
rial, see www.karger.com/doi/10.1159/000330149); these SNPs 
were removed from further analysis. For the other control groups, 
we identified an additional 15 SNPs that showed significant de-

Table 1. C ontrols from dbGaP used in the present study

Abbreviation Study Controls, n dbGaP accession
No.

Ref.

SAGE Study of addiction: genetics and environment 1,285 phs000092v1
CGEMS breast cancer CGEMS breast cancer GWAS – stage 1 – NHS 1,142 phs000147v1 [28]
CGEMS prostate cancer CGEMS prostate cancer GWAS – stage 1 – PLCO 1,148 phs000207v1 [29]
CIDR PD CIDR: genome-wide association study in familial

Parkinson disease
863 phs000126v1

SIALS Study of Irish amyotrophic lateral sclerosis 211 phs000127v1 [26]
A genome-wide scan of lung

cancer and smoking
A genome-wide scan of lung cancer and smoking 844 phs000093v2 [30]
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viation in genotype frequency in at least one control group (p  ! 
1  !  10 –7 ; online suppl. fig.  1). Notably, we found that the 211
controls from the Study of Irish Amyotrophic Lateral Sclerosis 
(SIALS; phs000127v1) show a strong deviation from the null hy-
pothesis on a quantile-quantile plot (online suppl. fig. 1). There-
fore, we chose to remove these 211 controls from the final analysis. 
This resulted in a final dataset of 263 cases and 5,416 total controls 
at 267,109 markers.

  Association Analysis and Estimation of  �  
 To test for association between disease phenotype and SNPs, 

we used logistic regression as implemented in PLINK. When we 
do not consider population substructure, logistic regression is 
used without covariate adjustment; otherwise, significant princi-
pal components were used as covariates to adjust for population 
substructure.

  We used PLINK’s estimate for the genomic control parameter 
 � , which is a measure of test statistic inflation due to effects such 
as population stratification. PLINK reports  �  (based on median 
 �  2 ) in the .log file. To test control:case ratios of 1:   1, 5:   1, 10:   1, and 
20:   1, we selected appropriate subsets of the additional controls to 
add to the MSKCC case-control dataset.

  TaqMan Genotyping Assay 
 All MSKCC DNA samples were first amplified using the Illus-

tra GenomiPhi v2 DNA amplification kit (GE Healthcare), fol-
lowing the manufacturer’s recommendations. The reaction was 
then diluted by adding 120  � l reduced TE buffer. Prior to use in 
genotyping, we performed an additional 2-fold dilution to im-
prove assay performance. One SNP, rs2236479, was genotyped 
using the TaqMan allelic discrimination genotyping assay (Ap-
plied Biosystems). Genotyping was conducted according to the 
manufacturer’s instructions as follows: a master mix consisting of 
1.375  � l water, 2.5  � l 2 !  TaqMan master mix, and 0.125  � l SNP 
assay (probe + primers) for each individual was prepared. Four 
microliters were aliquoted into each well of a 384 well plate, and 
1  � l of amplified and diluted DNA was added. PCR was per-
formed in an ABI Gene Amp 9700 machine under the following 
conditions: 95   °   C for 10 min followed by 48 cycles of 92   °   C for
15 s and 60   °   C for 1 min. Plates were read on an ABI Prism 7900HT 
fast real-time PCR system, and genotype calling was performed 
using the ABI Sequence Detection System software version 2.3. 
The genotype concordance rate was computed using 346 indi-
viduals who were genotyped both with TaqMan and on the Illu-
mina arrays.

  Results 

 Analytical Power 
 The large number of control individuals currently 

available in dbGaP and other databases raises the ques-
tion of limiting returns. In other words, at what point is 
the improved power obtained through additional con-
trols small enough that it is no longer worth adding con-
trols? We therefore investigated the shape of the curve of 
power as a function of control:case ratio with a constant 

number of cases. As expected, the power increases with 
increasing number of cases, GRR and DAF. The maxi-
mum power is achieved when the control:case ratio in-
creases to 10:   1; beyond that, the power plateaus ( fig. 1 ). 
For example, at a GRR of 1.6, a DAF of 20%, and a sig-
nificance level of 10 –7 , little increase in power is observed 
after a control:case ratio of 10:   1. Therefore, we consider a 
10:   1 control:case ratio ideal for using additional controls 
in a GWAS.

  Population Stratification in New York-Based Data 
 The present study was motivated by our desire to com-

bine data from common controls with data from case in-
dividuals ascertained at MSKCC in New York. We were 
concerned that population stratification could become a 
significant problem in such a study, even if we restrict our 
analysis to self-identified ‘white’ individuals, because of 
subtle genetic differences among different European pop-
ulations  [8, 15, 16] . The history of immigration to the 
United States suggests that a larger proportion of white 
Americans of Ashkenazi Jewish or southern European 
(e.g. Italian) ancestry would be found in the New York 
metropolitan area compared to the country as a whole. If 
this were the case, combining additional controls with our 
New York-based population would result in the detection 
of alleles that mark geographic ancestry within Europe 
rather than disease risk. To investigate whether this con-
cern was well-founded, we performed PCA on 263 cases 
and 202 controls from the MSKCC pancreatic cancer 
study combined with 5,416 individuals selected as addi-
tional controls from 6 different studies available in dbGaP 
( table 1 ). When we examine the first and third principal 
components in our samples from New York, we observe 
many individuals along a single gradient which has been 
previously suggested to represent a cline extending from 
northwest to southeast Europe  [17]  ( fig. 2 ). The separate 
cluster of individuals has been previously suggested to be 
individuals of Ashkenazi Jewish ancestry; all participants 
in our study who self-identified as Ashkenazi Jewish clus-
ter in this group, supporting the contention that this clus-
ter represents the Ashkenazi Jewish population ( fig.  2 ). 
When we compared this PCA plot with one for the con-
trols from dbGaP, we observe marked differences in the 
distribution of individuals on the plot, suggesting a differ-
ent distribution of geographic ancestry within Europe. 
Notably, 18% of the individuals in our study cluster in
the ‘Ashkenazi Jewish’ group, compared with 1.7% in the
dbGaP control group. These differences could potentially 
lead to high test statistic inflation when cases and addi-
tional controls are analyzed together. Therefore, we con-
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clude that population stratification may be a serious issue 
when using additional controls with a New York-based 
case dataset and must be addressed.

  PCA-Based Correction Method Using Additional 
Controls 
 We next asked if stratification between our New York-

based case dataset and controls from dbGaP results in 
false positives and if PCA can properly correct for it. We 
limited the data to those SNPs that were in common 
among all studies. As all studies were conducted using 
the Illumina platform, there were 272,796 overlapping 
SNPs. The full dataset results in a control:case ratio of
20:   1, twice as much as we would recommend based on the 
analytical power calculations. Using an independent set 

of markers (all pair-wise LD r 2   !  0.1), we determined the 
significant principal components using EIGENSTRAT 
 [9] . The top principal components were used as covariates 
in a logistic regression model. As can be seen on the quan-
tile-quantile plot, there is an immense inflation of the test 
statistic when we do not correct for population structure; 
we interpret this to be due to stratification rather than 
any true positive finding ( fig.  3 ). When we correct for 
population structure by adjusting for the top 21 eigen-
vectors, the quantile-quantile plot follows the distribu-
tion expected for the null hypothesis much more closely 
( fig. 3 ), even though there is a little inflation near the tail. 
Therefore simple adjustment for principal components 
can largely correct for population stratification intro-
duced when using additional controls.

Ratio of control:case

P
o

w
e

r

1:1 3:1 8:1 15:1 25:1 35:1 45:1

Ratio of control:case

1:1 3:1 8:1 15:1 25:1 35:1 45:1

Ratio of control:case

1:1 3:1 8:1 15:1 25:1 35:1 45:1

Ratio of control:case

1:1 3:1 8:1 15:1 25:1 35:1 45:1

Ratio of control:case

1:1 3:1 8:1 15:1 25:1 35:1 45:1

Ratio of control:case

1:1 3:1 8:1 15:1 25:1 35:1 45:1

Ratio of control:case

1:1 3:1 8:1 15:1 25:1 35:1 45:1

Ratio of control:case

1:1 3:1 8:1 15:1 25:1 35:1 45:1

Ratio of control:case

1:1 3:1 8:1 15:1 25:1 35:1 45:1

GRR = 1.2 and DAF = 0.1

Cases = 100
Cases = 200
Cases = 500
Cases = 1,000
Cases = 2,000
Cases = 3,000

GRR = 1.4 and DAF = 0.1 GRR = 1.6 and DAF = 0.1

GRR = 1.2 and DAF = 0.2 GRR = 1.4 and DAF = 0.2 GRR = 1.6 and DAF = 0.2

GRR = 1.2 and DAF = 0.4 GRR = 1.4 and DAF = 0.4 GRR = 1.6 and DAF = 0.4

1.0

0.8

0.6

0.4

0.2

0

P
o

w
e

r

1.0

0.8

0.6

0.4

0.2

0

P
o

w
e

r

1.0

0.8

0.6

0.4

0.2

0

P
o

w
e

r

1.0

0.8

0.6

0.4

0.2

0

P
o

w
e

r

1.0

0.8

0.6

0.4

0.2

0

P
o

w
e

r

1.0

0.8

0.6

0.4

0.2

0
P

o
w

e
r

1.0

0.8

0.6

0.4

0.2

0

P
o

w
e

r

1.0

0.8

0.6

0.4

0.2

0

P
o

w
e

r

1.0

0.8

0.6

0.4

0.2

0

  Fig. 1.  Analytical power of GWAS with additional controls. All power calculations assume an additive model 
and significance level of  �  = 1 ! 10 –7 . The power computed using GRR of 1.2, 1.4, and 1.6 and DAF of 0.1, 0.2, 
and 0.4 is plotted. 
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  Additional QC through Comparison of Control 
Groups 
 The presence of 6 SNPs at the genome-wide signifi-

cance threshold of 10 –7  concerned us as such highly sig-
nificant associations should have been found in the pre-
viously reported pancreatic cancer GWAS  [11, 12] . When 
we examined the previously reported GWAS of pancre-
atic cancer in dbGaP  [11] , none of these 6 SNPs was sig-
nificant (all p  1  0.05) ( table 2 ). This failure to replicate 
raises the possibility that the significant results in our 

study may represent false positives even after following 
QC steps used in regular case-control GWAS. We next 
asked if SNPs that lead to false positives could be detect-
ed by comparing the MSKCC controls with the addition-
al controls from dbGaP using logistic regression. The 
quantile-quantile plot of this comparison shows no in-
flation of test statistics when correcting for 11 principal 
components (genomic inflation factor  �  = 1.01). Five out 
of six potential false-positive SNPs showed a nominally 
significant difference (p  !  0.01) in allele frequency be-
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  Fig. 2.  Population substructure of the MSKCC pancreatic cancer 
study and additional controls. Principal components were com-
puted for the MSKCC and additional controls samples combined, 
and plotted separately.  a ,  c  Principal components of the 263 cases 
and 202 controls from the MSKCC (New York) pancreatic cancer 

study. The first principal component is plotted against the second 
( a ) or third ( c ). Individuals in red self-identified as Ashkenazi Jew-
ish in the study questionnaire.  b ,  d  Principal components of the 
additional controls from dbGaP. The first principal component is 
plotted against the second ( b ) and third ( d ) principal components. 



 Additional Controls in GWAS Hum Hered 2011;72:21–34 27

tween control groups ( table 2 ). We then examined the 
normalized intensity plots for the sixth SNP, rs1975920, 
in the data we generated (online suppl. fig. 3). While the 
plot shows distinct clusters, we noticed that this SNP was 
monomorphic in the samples we genotyped on the Illu-

mina CNV370-Quad array, while it was polymorphic in 
the larger number of samples genotyped using the Illu-
mina CNV370-Duo array. As only 20 controls were ge-
notyped using the Illumina CNV370-Quad array, we 
were not able to detect this artifact through the control 

Table 2. S NPs associated with pancreatic cancer at genome-wide significance (p < 1 ! 10–7) before additional 
QC

SNP Chr. Analysis using addi-
tional controls (p)

Differential
missingness (p)

PanScan
analysis (p)

Additional controls vs.
MSKCC controls (p)

rs7503953 17 2.7!10–12 7.8!10–5 0.5273 8.2!10–5

rs2236479 21 8.9!10–23 0.08729 0.7827 0.003
rs1975920 12 1!10–10 0.448 0.5081 0.55
rs1455311 4 1.3!10–32 1 0.2184 3.5!10–15

rs1810636 20 3.4!10–17 1 0.4524 1.5!10–5

rs1447826 3 1.1!10–16 1 0.2049 0.0014

I n the third column, all additional controls (control:case ratio = 20:1) were used. Differential missingness 
was measured by a test for differences in the missing data frequency between the two groups (p value). The p 
value for the PanScan analysis is obtained from published data [11, 12]. The last column compared MSKCC 
controls with additional controls, correcting for population structure. Chr. = Chromosome.
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  Fig. 3.  Quantile-quantile plot of GWAS of pancreatic cancer cases with additional controls. At a 20:   1 control:case 
ratio, this plot compares the association statistics without any population stratification correction (green), after 
correction with principal components analysis (red), or with both PCA and removal of SNPs that show differ-
ences between the MSKCC controls and additional controls (blue). The black line shows the expected result 
under the null hypothesis of no association.                 
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Table 3. G enomic inflation factor � for analyses with various control datasets

Control:
case
ratio

Controls used Controls 
n

Significant
principal 
components

� 

with out PCA
correction

with PCA
correction

1:1 MSKCC pancreatic cancer study controls 202 3 1.009 1.005

5:1 SAGE
MSKCC pancreatic cancer study controls

1,488 5 1.50 1.014

5:1 CGEMS breast cancer
MSKCC pancreatic cancer study controls

1,344 6 1.52 1.018

5:1 CGEMS prostate cancer
MSKCC pancreatic cancer study controls

1,350 5 1.64 1.019

5:1 CIDR PD
MSKCC pancreatic cancer study controls

1,276 5 1.53 1.008

10:1 SAGE
A genome-wide scan of lung cancer and 
smoking 
SIALS 
MSKCC pancreatic cancer study controls

2,522 7 1.71 1.015

20:1 SAGE
A genome-wide scan of lung cancer and 
smoking
CIDR PD
SIALS
CGEMS breast cancer
CGEMS prostate cancer
MSKCC pancreatic cancer study controls

5,628 20 1.81 1.03

Table 4. R ank and p value of the 4 pancreatic cancer-associated SNPs from analyses with varying numbers of 
additional controls

SNP/
odds ratio/
minor allele frequency

C ontrol:case ratio

1:1 5:1 10:1 20:1

rs505922/ rank 105,668 6,769 5,302 216
1.2/ p value 0.393 0.02 0.01 0.0007
0.358 power 0.20 0.33 0.349 0.364

rs9543325/ rank 477 21 72 52
1.26/ p value 0.0019 8.2!10–5 2.5!10–4 1.6!10–4

0.317 power 0.29 0.48 0.50 0.53

rs3790844/ rank 102,024 7,645 1,977 1,357
0.77/ p value 0.38 0.02 0.007 0.004
0.21 power 0.265 0.49 0.51 0.53

rs401681/ rank 265,649 239,819 152,561 157,875
1.19/ p value 0.99 0.91 0.57 0.58
0.434 power 0.198 0.313 0.32 0.347

Cor rection for population stratification is performed in all analyses. Analytical power is computed assum-
ing an additive model with � = 0.05.
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group comparison. However, 84 out of 263 cases were 
genotyped on the CNV370-Quad, presumably driving 
the signal seen in the case-control analysis. Thus, we in-
troduce an additional QC step by removing 2,863 SNPs 
that show significant difference (p  !  0.01) in allele fre-
quencies between the MSKCC control group and addi-
tional controls. We extended this analysis to the other 
control groups, comparing each group with all other 
control groups. We excluded 15 markers with significant 
differences in genotype frequency (p  !  1  !  10 –7 ). We 
also visually inspected the quantile-quantile plot of each 
test for excess test statistic inflation (online suppl. fig. 1). 
Notably, we found that the 211 controls from the SIALS 
(phs000127v1) show deviation from the null hypothesis 
in the quantile-quantile plot. Thus, we removed these 
211 controls from the final analysis. We reanalyzed 263 
pancreatic cancer cases with 5,416 additional controls af-
ter performing this additional QC step and found that 
most of the SNPs with an extremely low p value were re-
moved except one (rs2236479). We genotyped rs2236479 
in our cohort using a different technology (TaqMan). 
The concordance rate between the two technologies 
(TaqMan and Illumina) for rs2236479 was 85%, suggest-
ing that false positives may still be present due to geno-
typing error. Therefore, we conclude that careful QC
using a small control group genotyped simultaneously 

with cases can effectively reduce false-positive findings 
when using additional controls by identifying SNPs that 
show different genotype frequencies between control 
groups.

  Effect of Data Source on Inflation Factor 
 We next analyzed how test statistic inflation is influ-

enced by the number and choice of sets of additional con-
trols. We used the genomic control parameter  �  as an 
estimate of the test statistic inflation  [18] . We measured 
 �  in both the original case-control dataset (no additional 
controls) and with the addition of various additional con-
trols from dbGaP. We observe that  �  is near 1 when no 
additional controls are used ( table 3 ), indicative of no test 
statistic inflation. As the control:case ratio is increased by 
adding data from different sources,  �  increases, suggest-
ing the existence of population stratification and/or oth-
er technical artifacts. In this analysis,  �  is maximal at 1.81 
when data from all 6 different studies are added for a 
control:case ratio of 20:   1 ( table 3 ). When all significant 
principal components from PCA were used to correct for 
population stratification,  �  reduces to nearly 1 (range 
1.01–1.03;  table 3 ). Thus, as expected from our quantile-
quantile plot analysis, PCA-based correction can prop-
erly account for the population stratification that results 
when using additional controls.

Table 5. E ffect of choice of control group on association statistics for 4 known pancreatic cancer risk SNPs

SNP/
odds ratio/
minor allele
frequency

C ontrol datasets

SAGE CGEMS
prostate cancer

CGEMS
breast cancer

CIDR PD
and SIALS

               Controls, n: 1,487 1,350 1,344 1,065

rs505922/ rank 6,769 2,866 1,131 481
1.2/ p value 0.02 0.01 0.004 0.0018
0.358 power 0.333 0.328 0.32 0.315

rs9543325/ rank 21 101 133 445
1.26/ p value 8.2!10–5 0.0004 0.0004 0.001
0.317 power 0.483 0.477 0.476 0.459

rs3790844/ rank 7,645 84,087 20,488 92,396
0.77/ p value 0.02 0.31 0.075 0.34
0.21 power 0.49 0.491 0.491 0.476

rs401681/ rank 239,819 244,531 77,059 173,589
1.19/ p value 0.91 0.94 0.28 0.64
0.434 power 0.313 0.308 0.308 0.297

Ana lytical power is computed assuming an additive model with � = 0.05.



 Mukherjee   /Simon   /Bayuga   /Ludwig   /Yoo   /
Orlow   /Viale   /Offit   /Kurtz   /Olson   /Klein 

Hum Hered 2011;72:21–3430

  Performance of Known Pancreatic Cancer-Associated 
SNPs 
 We next turned to the question of whether the use of 

additional controls in GWAS will enable new discoveries. 
To investigate this question, we asked whether we would 
have been able to discover the 4 recently reported pancre-
atic cancer susceptibility SNPs  [11, 12]  in our data com-
bined with additional controls. We asked what rank and 
p value are observed for each of these 4 SNPs both in our 
original cohort and as we add more additional controls. 
Theoretically, the power to detect each of these SNPs 
doubles as the control:case ratio increases from 1:   1 to
20:   1 ( table 4 ). We found that rank and p value of the 4 
pancreatic cancer-associated SNPs improved after add-
ing additional controls in a manner that appears to
correlate with the computed power. There is a two-fold 
increase in power for each of the 4 SNPs when the 
control:case ratio is increased from 1:   1 to 20:   1. SNP 
rs9543325 has the highest increase in power and largest 
improvement in rank and p value. There is some fluctua-
tion in rank and p value for all 4 SNPs when we compare 
control:case ratios of 10:   1 and 20:   1. We assume this is due 
to sampling variability rather than a difference in power 
as power plateaus out beyond a 10:   1 control:case ratio. 
These results demonstrate that using additional controls 
in GWAS can help bring true positive hits towards the top 
of the list, though in this case none of the true positives 
reached genome-wide significance. These powers should 
be compared to the power of the original PanScan study, 
which had 99% power to detect these 4 SNPs at  �  = 0.05, 
and reasonable power at  �  = 10 –7 , suggesting that our in-
ability to find these true positives at genome-wide sig-
nificance was to be expected.

  We also asked if, for a given number of additional con-
trols, the choice of dataset(s) from which the additional 
controls are taken influences our ability to detect asso-
ciation with these 4 SNPs. Using additional controls from 
4 different studies of approximately equal size, we asked 
what rank and p value are observed for each of the 4 
known pancreatic cancer risk SNPs. We observed vari-
ability in both the rank and p value for each of these 4 
SNPs depending on the choice of control samples. As no 
control group is consistently the best for all 4 SNPs, we 
attribute this variability to sampling variation rather 
than intrinsic factors in any of the control groups ( ta-
ble 5 ).

  Number of Significant Principal Components 
 One choice that must be made is how many principal 

components are included as covariates in the model. If 

one simply asks which principal components are signifi-
cant using Tracy-Widom statistics  [9] , the number of co-
variates to use increases as additional sources of control 
individuals are added ( table 3 ). For instance, in our ex-
ample with a 20:   1 control:case ratio there are 21 signifi-
cant principal components to include. To ask whether 
these many covariates are necessary, we varied the num-
ber of top principal components used as covariates and 
measured test statistic inflation using the genomic con-
trol parameter  �  ( fig. 4 ). We find that  �  decreases drasti-
cally with the first principal component and decreases 
somewhat more as the next 3 are added ( fig. 4 ). While this 
suggests that all 21 principal components are not needed 
as covariates, it does not tell us whether including extra 
principal components as covariates decreases the power 
of the test. When we examine the 4 known pancreatic risk 
SNPs, we find that the ranks of the 4 SNPs do not change 
dramatically as more principal components are added af-
ter the first few ( table 6 ). This suggests that while only 4 
principal components may be needed in this situation to 
correct for population stratification, the risk of decreased 
power through adding additional principal component 
covariates is minimal. To address the question of what 
these 21 significant principal components may represent, 
we first asked if any of the principal components appear 
to associate with membership in specific studies. Visual 
inspection of plots of 2 principal components at a time, 
with studies color-coded, does not reveal any striking 
correlation between principal components and study 
membership. Regression analysis revealed that only the 
top 4 principal components, for which we recommend 
adjusting in the GWAS, are associated with study mem-

Table 6. R ank of the known pancreatic cancer-associated SNPs 
after correcting for the specified number of principal components 
(PC)

Number of PCs 
for correction

rs9543325 rs505922 rs3790844 rs401681

0 585 103,084 103,905 264,098
1 197 1,795 2,692 133,722
2 162 821 2,859 140,725
4 76 302 1,382 162,016
6 77 294 1,382 161,914

10 65 290 1,676 156,465
16 56 220 1,651 153,981
21 52 216 1,357 157,875

I n total, 267,785 markers were analyzed.
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bership (data not shown). We next repeated the PCA with 
a more stringent r 2  threshold for LD-based SNP pruning. 
When the r 2  threshold for pruning is lowered from 0.1 to 
0.05, the number of significant eigenvectors (Tracy-Wi-
dom p  !  0.05) drops from 21 to 11.

  Therefore, we conclude that using additional controls 
can increase the power of relatively small GWAS after 
strict QC steps and properly correcting population strat-
ification.

  Discussion 

 In this article, we have performed a practical evalua-
tion of using additional controls from publicly available 
databases to conduct GWAS. This approach can result in 
improved power by increasing the number of controls 
without any extra cost of genotyping. By using data from 
our small pancreatic cancer GWAS, we evaluated this ap-
proach through comparison with results from the recent-
ly published PanScan GWAS  [11, 12] . When we analyzed 
our pancreatic cancer data with additional controls and 
properly accounted for population stratification, we 
found improvement in the rank and p value for all 4 
known pancreatic cancer SNPs relative to an analysis of 
our case-control dataset alone. However, while 3 of the 4 
SNPs were significantly associated with pancreatic can-
cer in our analysis with p  !  0.05, these results cannot be 
considered an independent replication of the PanScan re-

sults, as a large subset of our cases and controls were in-
cluded in PanScan.

  While statistical theory argues that the power of a 
GWAS increases as the control:case ratio increases for a 
fixed number of cases, no clear guidelines exist to deter-
mine the maximum number of added controls after 
which there is little or no added benefit. Using analytical 
power calculations, we show that power increases rapidly 
as the control:case ratio moves from 1:   1 to 10:   1 and then 
plateaus out. Through our analysis of the pancreatic can-
cer data, we see improved power with a 20:   1 control:case 
ratio relative to a 10:   1 ratio. Based on these data, it ap-
pears that when designing a GWAS using additional con-
trols, obtaining at least 10 controls for every case is ex-
tremely important, though additional benefit could be 
had by obtaining up to 20 controls for every case.

  It is apparent that the QC steps of GWAS in the context 
of additional controls obtained from public data sources 
are different from those of typical case-control GWAS. 
Recently, Pluzhnikov et al.  [19]  reported a method to es-
timate genotyping errors from raw signal intensity data 
when using GWAS control samples from existing public 
databases. This method can only be used when the raw 
signal intensity data is available, which is not always the 
case. As an alternative approach to deal with errors intro-
duced from genotype data with different origins, we pro-
pose including some controls to be genotyped along with 
the cases. By removing SNPs that show different frequen-
cies between our controls and the additional controls, we 
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  Fig. 4.  Genomic inflation factor  �  versus 
number of principal components used for 
correction. There are 21 principal compo-
nents that are significant using Tracy-Wi-
dom test statistics when the control:case 
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effectively reduced the false-positive findings. We con-
sider this step crucial in controlling false positives, espe-
cially when raw intensity data is not available.

  Beside genotyping errors caused due to different data 
sources, our results illustrate that population stratifica-
tion is also a potential problem with additional controls. 
If there is different underlying genetic ancestry in the 
populations from which cases and controls are taken, an 
inflated type I error will result. This is clearly observed 
in our example, where disproportionately more self-re-
ported white cases from the New York metropolitan area 
are of southern European or Ashkenazi Jewish ancestry 
than self-reported white controls from other parts of the 
United States. This stratification results in artificially 
high test statistics if we combine data without correcting 
for population structure. Using simulation studies, it has 
been demonstrated that correction for population strati-
fication can be achieved successfully by using various 
methods like multidimensional scaling or PCA  [9, 10, 20–
22] . We used the popular PCA software EIGENSTRAT to 
identify principal components in our data and then cor-
rected for these components in logistic regression. Ad-
justing for the significant principal components substan-
tially reduces the genomic inflation factor in every addi-
tional controls dataset we tested.

  The proper number of principal components to con-
sider in correcting for population substructure remains 
unclear. Notably, the number of significant principal 
components computed using the Tracy-Widom test sta-
tistic  [9]  increased when we increased the control:case
ratio by adding data from different sources. With a 
control:case ratio of 20:   1, 21 significant principal compo-
nents were identified. We explored the effect of including 
different numbers of principal components in our analy-
sis and found that after 4 principal components are in-
cluded, no additional benefit is gained by including more 
principal components. Intriguingly, in a GWAS of Alz-
heimer’s disease, Harold et al.  [23]  similarly found no ad-
ditional improvement in  �  after accounting for 4 princi-
pal components. As we found a reduced number of sig-
nificant principal components upon lowering the r 2  
threshold to obtain independent markers for the PCA 
calculation, we hypothesize that many of the 21 principal 
components may be picking up local LD patterns in the 
data rather than population substructure. Therefore, in-
cluding these additional principal components is not nec-
essary for the analysis.

  We acknowledge that the additional controls approach 
is limited by choice of genotyping platform, as it requires 
the same SNP to be genotyped in all samples. To maxi-

mize overlap between SNPs, we restricted our analysis to 
projects that used Illumina chips for genotyping and fur-
ther restricted analysis to only SNPs in common among 
all studies. Alternatively, imputation techniques have 
been used to integrate genotype data from different plat-
forms, though how such an approach will perform when 
different platforms are used to genotype the cases and 
controls remains unclear.

  Besides these technical issues, there are conceptual 
limitations to this approach. Using additional controls 
works best in consideration of genetic effects alone. While 
in theory gene-environment interaction can be consid-
ered if appropriate environmental data is present in 
 dbGaP, in practice this information is often found in only 
some datasets and details of the collection of this data 
likely vary between studies.

  Based on these results, it appears that using this ap-
proach with only several hundred cases to study a disease 
typical of the common diseases studied with GWAS will 
result in the true disease loci rising to the top of the list 
of SNPs but not reaching genome-wide significance. 
Therefore, we propose that the use of additional controls 
will work best in the context of a large case-control study. 
In this context, a subset of cases and controls would be 
selected for genome-wide genotyping. These data would 
be combined with additional controls. The top 10 3 –10 4  
SNPs from this analysis would then be genotyped in the 
full case-control study both to increase power and re-
move false positives. In other words, additional controls 
may work best when included in stage 1 of a two-stage 
GWAS design  [24–27] . Standard downstream analyses 
including independent replication and fine mapping 
would then be conducted on SNPs that pass the second 
stage. Thus, the use of additional controls is a promising 
method to increase sample sizes and thus the power of the 
study without additional cost.
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