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Review

The role of sulfoglucuronosyl glycosphingolipids in the pathogenesis
of monoclonal IgM paraproteinemia and peripheral neuropathy

By Toshio ARIGA*!f
(Communicated by Kunihiko SUZUKI, M.J.A.)

Abstract: In IgM paraproteinemia and peripheral neuropathy, IgM M-protein secretion by
B cells leads to a T helper cell response, suggesting that it is antibody-mediated autoimmune disease
involving carbohydrate epitopes in myelin sheaths. An immune response against sulfoglucuronosyl
glycosphingolipids (SGGLs) is presumed to participate in demyelination or axonal degeneration in
the peripheral nervous system (PNS). SGGLs contain a 3-sulfoglucuronic acid residue that interacts
with anti-myelin-associated glycoprotein (MAG) and the monoclonal antibody anti-HNK-1.
Immunization of animals with sulfoglucuronosyl paragloboside (SGPG) induced anti-SGPG
antibodies and sensory neuropathy, which closely resembles the human disease. These animal
models might help to understand the disease mechanism and lead to more specific therapeutic
strategies. In an in vitro study, destruction or malfunction of the blood-nerve barrier (BNB) was
found, resulting in the leakage of circulating antibodies into the PNS parenchyma, which may be
considered as the initial key step for development of disease.
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Introduction

Glycosphingolipids (GSLs) are located primarily
on plasma membranes and are particularly abundant
in the nervous system. They are known to play
important roles in biological functions, such as
cellular differentiation, modulation of signal trans-
duction, and immune reactions. Recent studies have
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focused on the immunological properties of GSLs and
their role in pathogenic mechanisms of several
immune-mediated peripheral neuropathies, such as
Guillain—Barré syndrome.")?) This field has recently
undergone remarkable expansion.?)?

In plasma cell dyscrasias, one clone of plasma
cells developed from B lymphocytes multiplies
excessively and produces a large quantity of a single
type of monoclonal antibody (immunoglobulin),
known as the IgM M-protein. Monoclonal gammop-
athy of undetermined significance is the most
common plasma cell dyscrasia, accounting for more
than 60% of these diseases. It is sometimes closely
associated with malignant disorders such as multiple
myeloma, Waldenstrom’s macroglobulinemia, pri-
mary amyloidosis, and heavy-chain disease. These
diseases are more common among older people.
IgM paraproteins accumulate in serum or urine of
approximately 1% of patients above 50 years of age,
and its incidence increases to approximately 3%
in patients above 70 years of age. The incidence
of plasma cell dyscrasia is increased in African-
American male populations.” ") In this review, I will
describe the pathological role of certain GSLs that
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are specific for the PNS on IgM paraproteinemia and
peripheral neuropathy.

IgM paraproteinemia and peripheral neuropathy

Approximately 10% of patients with plasma cell
dyscrasia have associated peripheral neuropathies
that occur 6—-10 times more frequently in these
patients than in age-matched controls;®? this
disease is referred to IgM paraproteinemia and
peripheral neuropathy. Clinical manifestations are
distal symmetric sensory symptoms followed by
motor weakness with progressive proximal involve-
ment. The disease often shows slow progression of
a demyelinating neuropathy, which can be demon-
strated by performing nerve conduction studies or
nerve biopsies, in addition to a variable degree of
axonal loss associated with sensory ataxia and
impaired gait.!?!) Most patients have chronic,
slowly progressive demyelinating neuropathy, pre-
dominantly in sensory ataxia.'?1®) Neurophysiolog-
ical examination typically shows a widespread slow-
ing of sensorimotor nerve conduction velocity with
marked delay of distal latencies, suggesting that
nerve fiber endings are particularly affected.'6)

Although the pathogenesis of IgM paraproteine-
mia and peripheral neuropathy is unknown, there
is evidence that deposits of excessive amounts of
abnormal IgM M-proteins are found in patient’s
nerve biopsies, especially in the PNS myelin.'"!8)
The intraneural injection of IgM M-proteins into
animals reveals demyelination in the sciatic
nerve,'20) suggesting that the IgM M-protein may
play a causative role in the disease.?!)2%)

Latov et al.?¥) first reported that IgM M-protein
in a patient with sensorimotor neuropathy and IgM
gammopathy reacted with an antigen in the PNS. In
about 50—-60% of the patients with neuropathy, the
monoclonal IgM M-protein possesses an antibody
activity against myelin components in the PNS. The
myelin antigen was subsequently characterized to be
MAG.?) The epitope was later shown to be on the
oligosaccharide moiety of MAG.?) It also reacted
with the mouse monoclonal antibody HNK-1, which
recognized a surface antigen of natural killer cells.?”

Although about half of the IgM M-protein
reacted with MAG, the pathogenic role was debat-
able since MAG is distributed in both the PNS and
central nervous system (CNS); however, only periph-
eral nerve injury occurred in the disease. In this
regard, much attention has been focused on the
reactivity of the monoclonal IgM M-protein from
patients with peripheral neuropathy and PNS-
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specific glycosphingolipids (GSLs).?® ™% Indeed, at
least two GSLs strongly reacted with IgM M-protein
from patient sera, suggesting that they may be the
true target antigens for potentially harmful IgM M-
protein in the disease.??

Characterization of PNS-specific
glycosphingolipids recognizing monoclonal IgM
M-protein in patients with IgM paraproteinemia
and peripheral neuropathy

Ilyas et al.?0) first reported that monoclonal IgM
M-protein of patients with IgM paraproteinemia and
peripheral neuropathy cross-reacted to acidic GSLs
in the ganglioside fraction from human sciatic nerve.

Freddo et al?®) found that the reactive PNS-
specific GSLs lacked sialic acid; therefore, they were
not gangliosides. We?!) isolated two acidic GSLs that
bound to the IgM M-protein from human cauda
equina by DEAE-Sephadex A-25, Iatrobeads, and
high performance liquid column chromatographies.
The major acidic GSL migrated between GM1 and
GD1la and the minor acidic GSL migrated between
GDla and GDI1b (Fig. 1). Their structures were
elucidated by sugar analysis, enzymatic digestion,
mild acid hydrolysis, permethylation, fast atom
bombardment mass spectrometry, and nuclear mag-
netic resonance studies.

Gas—liquid chromatography analysis revealed
that the acidic GSLs contained glucose, galactose,
N-acetylglucosamine, glucuronic acid (GlcA), and
long-chain base with molar ratio of 1:2.01:1.07:0.73
and 0.96 for the major GSL, and 1:2.97:1.88:0.93, and
0.82 for the minor GSL, respectively. The major fatty
acids of both GSLs were C16:0, C18:0. C18:1, C20:0,
(C22:0, C24:0, and C24:1. The long chain base was
mainly C18:1 sphingosine.

Negative fast atom bombardment mass spec-
trometry gave the sugar sequence information in
addition to the molecular weights. Their core
structure was confirmed to be paragloboside by
high-performance thin-layer chromatography-immu-
nostaining using anti-paragloboside monoclonal anti-
body (mAb).

Both acidic GSLs lacked sialic acid but con-
tained sulfated GlcA as their acidic moiety. The
presence of GlcA in mammalian GSLs is very rare.
We confirmed its presence in GSLs by capillary gas—
liquid chromatography—chemical ionization mass
spectrometry using authentic 5-D-GlcA. The sulfate
group in GlcA was attached to the 3 position by
periodate oxidation and permethylation—reduction
studies. In this procedure the terminal sulfated



388
a
o
GD1a- ' %,
GD1b-
GT1b- ,
1 2 3
Fig. 1.

T. ARIGA

[Vol. 87,

b
e W SOPC
= B SGLPG
—— | —— -
1 2 3

Thin-layer chromatography-immunostaining of GSLs with serum from a patient with IgM paraproteinemia and peripheral

neuropathy. Lane 1, bovine brain gangliosides; 2, acidic GSLs isolated from bovine cauda equine; 3, authentic standard sample of
SGPG. Plate a was stained with orcinol-sulfuric acid reagent and plate b was immunostained with serum from patient with IgM

paraproteinemia and peripheral neuropathy.

GlcA yielded a sulfated glucose residue. Subsequent
acetolysis, reduction, and acetylation of the per-
methylated GSLs produced 2,4-di-O-methyl-1,3,5,6-
tetra-O-acethyl-glucitol, 2.3,6-tri-O-methyl-1.4-5-tri-
O-acetylglucitol, 2.4.6-tri-O-methyl-1,3,5-tri-O-acetyl-
galactitol, and 3,6,-di-O-methyl-1,4,5-tri-O-acetyl-
1,3,5-tetra-O-acetyl-2-deoxy-2-N-methyl-acetoamido-
glucitol. The structure of 2,4-di-O-methyl-1,3,5,6-
tetra-O-acethyl-glucitol was characterized by frag-
ment ions at m/z 43, 117, 129, 159, 189, and 233 as
detected by gas—liquid chromatography—electron
ionization mass spectrometry. These results indicate
that the sulfated group is attached to the 3 position
of GlcA. Nuclear magnetic resonance studies con-
firmed that the paragloboside core structure and the
further established sulfated GlcA were terminally
linked and that all the sugars are §-linked.

These results indicate that the structures of the
two acidic GSLs, named as sulfoglucuronosyl glyco-
sphingolipids (SGGLs) are identified as follows: (a)
GlcA(3-sulfate) (61-3)Gal(51-4) GleNAc(51-3) Gal(51-
4)-Gle(B1-1")ceramide or IV3GleA (3-sulfate)nLcOsey-
Cer (SGPG) and (b) GlcA(3-sulfate)[(51-3)Gal(51-
4)GlecNAc(F1-3)]2Gal(81-4)-Gle(B1-1")ceramide  or
VI3GleA (3-sulfate)nLcOsegCer (SGLPG) as shown
in Fig. 2. The structures of these SGGLs were
independently confirmed by Chou et al.*?3%) as well
as by total chemical synthesis.?*)30)

The carbohydrate epitope recognizing in patients
with IgM M-paraproteinemia and peripheral
neuropathy and its expression in glycoproteins
and neural adhesion molecules

The mouse monoclonal antibody anti-HNK-1
(Leu-7; VC1.1), which recognizes the surface antigen
of natural killer cells,*” is known to cross-react with
MAG;*® therefore the antigenic determinant for HNK-
1 is presumably present on MAG.?) We have reported
that HNK-1 and IgM M-protein both bind to acidic
GSLs of the PNS.?) Therefore, HNK-1/SGGL and
human IgM M-protein from patients with neuropathy
must share an affinity for a common epitope.??9)

SGPG was found to be extremely labile to acid.
After treatment with 0.05M hydrochloric acid in
methanol at room temperature, SGPG was converted
to the lactone form of desulfated SGPG. After base
treatment, the lactone form was converted to
desulfated SGPG. Although desulfated SGPG was
immunostained with patient’s serum, neither the
lactone form of desulfated SGPG or the methyl ester
of desulfated SGPG were reactive, suggesting that
the free carboxyl group, but not the sulfate group, in
the terminal GlcA residue is necessary to bind IgM
M-protein from neuropathy patients,?')%) whereas
both the sulfate and carboxyl groups are required for
reactivity with HNK-1.3941)
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To further define the precise structural require-
ment for this carbohydrate epitope, we tested 14
chemically synthesized SGGLs and their nonsulfated
derivatives with defined carbohydrate chain lengths
and aglycone structures, including ceramide, 2-(tetra-
decyl)hexadecyl residue, and 2-(trimethylsilyl)ethyl
residue.*” These synthetic SGGLs were tested
for immunoreactivity with anti-HNK-1 antibody,
VC1.1, mouse mAb NGR50, which was prepared
using naturally occurring SGPG as the immunogen
as described later,”® and sera (LT and YT) from two
patients with IgM paraproteinemia and demyelinat-
ing neuropathy using high-performance thin-layer
chromatography-immunostaining and enzyme-linked
immunoabsorbent assay. The mAb VC1.1 reacted
with SGGL analogs containing a minimum of the two
terminal sugars of 3-sulfoglucuronic acid (SGlcA)-
Gal-, but not with the nonsulfated derivatives of
SGGLs nor with SGGLs having a modified ceramide
structure. On the other hand, mAb NGR50 reacted
only with SGPG and SGLPG. This suggests that
mAb NGR50 reacts with an epitope that includes
ceramide structure. The human patient serum LT
reacted with all synthetic SGGLs except those with
SE aglycone structure. On the other hand, another
human patient serum YT, similar to the VCI1.1,
reacted with SGPG, SGLPG, and SGGL analogs
containing a minimum of two terminal sugars of
SGlcA-Gal-. All antibodies reacted more strongly
with synthetic SGGLs with longer carbohydrate
chains than those with shorter chains. These results
indicate that, with some exceptions, anti-SGGL
antibodies recognize a minimum of two sugars
bearing the following structures, 3-sulfoglucuronosyl

e end

Structures of SGGLs from human cauda equina.
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B1-3galactosyl; SGlcA-Gal- and the aglycone (“ce-
ramide”) structure appear to play an important role
for antibody—antigen interaction.?*? In this regard,
Schmitz et al.**) reported that both SGlcA and the
neolactosyl core structures in synthetic SGGLs are
essential for recognition of the L2/HNK-1 antibody
and these structures may be responsible for the
biological function of certain glycoconjugates.

Some of the carbohydrates on the cell surface
have been shown to be associated with cell—cell
recognition and adhesion.*”*%) The HNK-1 carbohy-
drate epitope is known to be recognized as the surface
antigen on a number of human lymphocytes, includ-
ing natural killer cells®” and are characteristically
expressed on a series of cell adhesion molecules in
MAG, including PO, PMP-22, NCAM, L1, J1, and
P012):15).23):30)4049) and also on some GSLs in the
PNS.2)3D:32) Variability in the relative strength of
the binding of the IgM M-proteins to these glyco-
conjugates as MAG, SGPG, PO and PMP-22 has
been described.?® Shiina et al.>") reported that serum
IgM M-proteins from 4 of the 12 patients with IgM
paraproteinemia and peripheral neuropathy strongly
immunostained the entire myelin, whereas serum
IgM M-proteins from the remaining eight patients
bound to a region surrounding the myelin sheath in
the cross-section, suggesting that there are variabil-
ities in the fine specificity of IgM M-proteins with
anti-SGPG reactivities. They also reported that the
reactivities against MAG and SGPG may play more
important roles in the pathogenesis of IgM para-
proteinemia and peripheral neuropathy than those
against PO and PMP-22. The HNK-1 or SGIcA
epitope expressed on glycoconjugates modulate
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synaptic plasticity by affecting adhesive and anti-
adhesive properties®® and cell adhesion, migration,
and neurite outgrowth.??5%)

In addition to HNK-1 (Leu-7 or CD57), specific
antibodies against the SGIcA epitope, including Elec-
39,47 NC-1,9 BM-89,°7 and VC1.1,°¥ have been
reported. We*®) have produced the mouse mAb
NGR50 by immunizing C3H/HeN inbred strain
female mice with purified SGPG absorbed to acid-
treated Salmonella minnesota mutant R595 and
studied its antigenic specificity. Thin-layer chroma-
tography immunostaining revealed that mAb
NGR50 reacted specifically with SGPG and SGLPG,
but not with the desulfated derivatives of SGGLs and
other GSLs. Western blot analysis showed cross-
reactivity with human MAG and several glycopro-
teins in the 20-30 kDa range, but not with rat MAG.
Failure to react with rat MAG implies that the
occurrence of the SGIcA epitope on glycoproteins is
dependent upon the animal species. An immunocy-
tochemical study of rat sciatic nerve using mAb
NGR50 revealed positive staining in the outer surface
of the myelin sheath and Schwann cells, as well as in
the intervening connective tissues.

Jungalwala and co-investigators® reported
the presence of its binding protein, SBP-1, in the rat
cerebellum and that its expression was developmen-
tally regulated.”® %) During development of the rat
cerebral cortex, the level of SBP-1 decreased after
embryonic (E) day 18 to an almost undetectable level
by postnatal (P) day 10; whereas in the cerebellum,
the expression of SBP-1 was maximal at P7.69)

),60)

Biosynthesis of SGGLs and cloning of key
enzymes in the biosynthesis of HNK-1 epitope

Biosynthetically, at least four glycosyltransfer-
ases are required: lactosyl ceramide (LacCer;
GalB1-4Glcf1-1'Cer)N-acetylglucosaminyl transfer-
ase (LacCer-GlcNAcT) to form lactotriaosyl ceram-
ide (LcOsesCer); LcOsesCer-galactosyl transferase
(LcOsegCer-GalT) to form neo-lactotetraosyl ceram-
ide (paragloboside, nLcOsesCer); nLcOsesCer-glu-
curonosyl transferase (GlcAT) to form glucuronosyl
neolactotetraosyl ceramide (IV3GlcA-nLcOse Cer);
and IV3GlcA-nLcOse Cer-sulfotransferase (SulT) to
form SGPG (IV3GlcA (3-sulfate)nLcOseyCer). Activ-
ities of these enzymes have been demonstrated in the
brains of chickens and rodents;?)-%) the key enzymes
in the biosynthesis of HNK-1 epitope are [1,3-
GIcAT, which transfers a GlcA to a terminal
galactose, and SulT, which adds a sulfate group to
the GlcA.
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Das et al.5967) first reported that glucuronyl-

transferase (GlcAT-1) in embryonic chicken brains
catalyzed the in wvitro biosynthesis in GLcA con-
taining GSLs starting from neolactotetraosylcer-
amide (nLcOsesCer) and neolactohexaosylceramide
(nLcOsegCer). Chou et al.%) also reported that the
enzyme in the adult rat cerebral cortex catalyzed the
transfer of GlcA from UDP-GIcA to the terminal
galactose of the neolacto (type 2) series of GSLs to
form g 1-3-linked glucuronosyl neolacto-GSLs. The
enzyme was highly specific for the neolacto series of
acceptor GSLs, nLcOse Cer, nLcOses-Cer, and neo-
lactooctaosylceramide (nLcOsegCer). Considerable
activity of GlcAT was present in the adult rat
cerebral cortex, even though SGGLs almost com-
pletely disappeared from the cortex by P15. In the
cerebellum, although the levels of SGGLs increased
with development, the specific activity of GIcAT
declined.%®)

Oka et al%) found in rat brain extract two
different GlcATs that were separated by UDP-GIcA-
Sepharose CL-6B column chromatography, desig-
nated as GIcAT-L and GIcAT-P. GIcAT-L was
recovered predominantly in the effluent fraction
and catalyzed the transfer of GlcA from UDP-GIcA
to GSL acceptors. GIcAT-P was recovered in the
eluting fraction and catalyzed the transfer of GlcA
to glycoprotein acceptors, suggesting that GlcAT-P
is associated with the biosynthesis of HNK-1 epitope
on glycoproteins such as N-CAM and other cell
adhesion molecules.?)™) GlcAT-P specifically recog-
nized the N-acetyllactosamine (GalB1-4GlcNAc)
structure at the nonreducing terminals of glyco-
protein acceptor, whereas GlcAT-L had a similar
activity to that reported by Das et al.) and Chou
et al.%) Further studies have demonstrated that
GIcAT-L or GIcAT-D is active on both glycoproteins
and GSLs in vitro.”)™ The GlcAT-P was highly
specific to the terminal type II structure, Galgl-
4GlcNAc, while the GlcAT-S recognized not only
the type II structure, GalB1-4GIlcNAc, but also the
type I structure, Gal1-3GlcNAc.”™) These acceptor
specificities were similar to those of the native
enzymes.”)™) The GlcAT-D transferred a GlcA to
not only type 2 (Galf1-4GlcNAc) but also type 1
(Galp1-3GlcNAc) glycan chains, suggesting that
the HNK-1 epitope expressed on type 1 glycan
chain may occur, although the existence of such
glycans has not previously been reported. The
enzyme was localized specifically in the brain, and
was barely detectable in other tissues, including
sciatic nerve fibers, thymus, and liver.” Yavuz



No. 7]

et al.™ reported that GlcAT-P expressed on mouse
brain was also expressed in E. coli cells along with
other glycosyltransferases and showed activity for
transfer of GlcA to neolactotetraose and neolacto-
hexaose.

Some phospholipids were reported to stimulate
the activities of glycosyltransferases, such as [1-
4GalT™ and a2-3sialyltransferase.”™ GIcAT-P was
activated dramatically in the presence of sphingo-
myelin." In GlcAT-D, phosphatidylinositol and
phosphatidylserine increased the enzymatic reaction
by 4.4- and 2—3-fold, respectively, whereas phospha-
tidylcholine slightly decreased the rate.”™ Phospha-
tidyl inositol is specifically required for expression of
the activity of the recombinant enzymes toward the
GSL acceptor, paragloboside.™)

Terayama et al.®?) first isolated a ¢cDNA clone
encoding GlcAT-P from a rat brain by a PCR-based
cloning method. The primary structure deduced
from the cDNA sequence predicted a type II trans-
membrane protein with 347 amino acids. Mitsumoto
et al® also cloned a ¢cDNA encoding GlcAT-P
from human brain that was 98.2% identical to rat
GIcAT-P in amino acid sequence and demonstrated
that the human GIcAT-P gene was located on
chromosome 11g25. Transfection of the GIcAT-P
¢DNA into COS-1 cells not only induced expression
of the HNK-1 epitope on the cell surface but also
marked morphological changes of the cells, suggest-
ing that the HNK-1 epitope is associated with a
cell-substratum interaction. Further study of the
gene indicated that the predicted amino acid
sequence of mouse GIcAT-P was 96.2% and 98.2%
identical to those of the rat and human enzymes,
respectively.®?)  Alternatively spliced isoforms of
mouse GlcAT-P are present in the brain and encode
two proteins that are identical throughout their
length except for an additional 13 amino acids in the
N-terminal cytoplasmic domain of the major form.
The coding region of GlcAT-P was composed of 5
exons spanning approximately 6 kb, and the GIcAT-
P gene was mapped to the A4 region of mouse
chromosome 9.

GlcAT might catalyze the transfer of GlcA to
the Gal residue of proteoglycans. Kitagawa et al.%)
cloned a ¢cDNA from human placenta, which encoded
GIcAT-1 responsible for the biosynthesis of the
glycosaminoglycan—protein linkage region, GlcAj1-
3Galp1-3GalB1-4xyl31-O-Ser, of the proteoglycan by
a PCR strategy based on motifs conserved GlcAT-P
into putative proteins. The amino acid sequence
showed 43% identity to the rat GlcAT-P, and the
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highest sequence identity was found in the COOH-
terminal catalytic domain.

During a screening of a rat brain cDNA library
using GlcT-P ¢cDNA corresponding to the catalytic
region of GlcAT-P as a probe, Seiki et al.™ obtained
a novel ¢cDNA clone encoding a GIcAT-D, later
named as GlcAT-S. The cDNA sequence contained
an open reading frame encoding 324 amino acids,
with type II transmembrane topology. The amino
acid sequence revealed 49% homology to rat GlcAT-
P. In this regard, using the RNA of rat E 13 brain as
a template of reverse transcription-PCR and design-
ing primers to the highly conserved regions found in
the alignment of amino acid sequence of GlcAT-P
and GlcAT-1, Shimoda et al.™ independently
isolated a ¢cDNA clone encoding a GlcAT-D, which
was involved in the biosynthesis of the HNK-1
epitope on the neuronal cells. Imiya et al.3¥ isolated
a cDNA and genomic clones encoding the mouse
GIcAT-S. The amino acid sequence of mouse GIcAT-
S was 98.1% identical to that of rat GIcAT-S.
Northern blot analysis revealed that the mouse
GIcAT-S transcript was specifically expressed in the
nervous system. Moreover, the mouse GlcAT-S gene
was composed of four exons spanning over more than
25 kilobase pairs. Southern blot analysis and
chromosomal mapping indicated that the mouse
GIcAT-S gene was a single copy gene and mapped
to the A4-B region of mouse chromosome 1. The
GIcAT-S transcript was specifically expressed in the
nervous system. The crystal structures of these
GlcATs have been reported.5?)56)

Sulfotransferase (SulT) is also considered to be
a key enzyme in the biosynthesis of the HNK-1
epitope. Subsequently, Bakker et al.’") reported the
isolation of a ¢DNA clone encoding SulT from
rat brain by an expression cloning strategy that
involved the cotransfection of GlcAT-P ¢cDNA. The
clone isolation predicts a protein of 356 amino acids,
with characteristics of a type II transmembrane
protein and with no sequence similarity to other
known SulTs. The enzyme is expressed as a soluble
fusion protein, and cell homogenate transfection
with the full-length ¢cDNA transfers a sulfate from
a sulfate donor to acceptor substrates containing
a terminal GlcA. The cloned ¢cDNA was shown to
induce HNK-1 reactivity in CHOP; cells only in
combination with a GIcAT, indicating that these
two enzymes, together with common enzymes al-
ready present in the cells, are required and sufficient
for the biosynthesis of the HNK-1 epitope on
glycoproteins.
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Expression of glucuronyltransferases and
sulfotransferase in mouse brain and rat embryos

Inoue et al’? and Nagase et al.®) reported
different region-specific expression patterns of two
GIcATs (GlcT-P and GlcAT-S) or GIcAT-D. In
mouse brain, strong expression of GIcAT-P and
moderate expression of GlcAT-S were observed in
the neuronal cells of several nuclei of limbic-related
regions and of the sensory system and the cerebellum.
In rat day P8 cerebellum, GlcAT-S mRNA was
expressed in the internal and external granule layers
as well as the embryonic palladium and retina. On
the other hand, the expression of GIcAT-P was
mainly localized in the Purkinje cell layer.™)

The HNK-1 epitope was observed in a subpo-
pulation of myotomal cells and migrating myoblasts
in the limb bud. Nagase et al.®®) investigated the
expression patterns of genes encoding two GlcATs
(GleAT-P, GlcAT-D) and SulT, which are required
for biosynthesis of the HNK-1 epitope. In rat day E
11.5, the GIcAT-P gene was expressed in the non-
migrating longitudinal fibers, whereas the GlcAT-D
gene was expressed in the migrating myoblasts
in the limb bud. Thus, differential expression of
GlcAT genes may relate to the epaxial /hypaxial or
migrating/non-migrating myoblast lineages, whereas
the expression of the SulT gene was ubiquitously
observed in the embryo, which was confirmed by
complete absence of in situ hybridization signal
when the SulT sense probe was used. In our study,
however, GlcAT-P expression did not show signifi-
cant developmental regulation in mouse brains. In
contrast, GIcAT-S showed a transient expression
pattern from E14 to E18.39 Expression of GlcAT-S is
presumed to be involved in the transient expression
of SGPG in developing mouse embryonic brains.

Yamamoto et al.”?) generated mice with targeted
deletion of the GlcAT-P gene; the HNK-1 carbohy-
drate disappeared almost completely in GlcAT-P-
deficient mice, but a trace of HNK-1 immunoreac-
tivity remained on the surfaces of the soma and
proximal dendrites of a subset of neurons in some
limited regions. These remaining HNK-1 carbohy-
drates in GlcAT-P-deficient mice were localized
predominantly in the perineuronal nets and assumed
to be synthesized by GIcAT-S, suggesting the
possibility that the two GlcATs synthesize structur-
ally and functionally different HNK1 carbohydrates
in vivo. From this point of view, GlcAT-P-deficient
mice constituted a useful tool for clarifying the
structural and functional roles of the remaining the
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HNK-1 carbohydrate epitope. Interestingly, the
GIcAT-P —/— mice exhibited normal development
of gross anatomical features; however, the adult
mutant mice exhibited reduced long-term potentia-
tion at hippocampal CA1l synapses and showed a
defect in spatial memory formation. GlcAT-P-defi-
cient mice showed impaired hippocampus-dependent
spatial learning. Although HNK-1 plays an essential
role in synaptic plasticity and memory formation,
it remains unclear how HNK-1 regulates these
functions.

Expression of SGGLs in tissues
of the nervous system

SGGLs are present mainly in the PNS tissues,
cauda equina, and sciatic nerve, of human, bovine,
cat, dog, and monkey.*)*Y) They were present in high
concentrations and seemed to express almost equal
amounts in these species.’’) They were also present in
the sciatic nerve of rat, mouse, rabbit, guinea pig,
and chicken, but in much lower concentrations.
Therefore, the occurrence of SGGLs was species-
dependent, and higher in non-rodent mammals than
in rodents.*?) 0891 SGGLs were absent in the CNS of
adult brain from the same species. The concentration
of SGLPG was about one-fifth of that for SGPG in
most tissues.”?) Although SGGLs did not express
in the spinal cord,®®*V) they were expressed in brain
stem and dura mater.”) SGGLs were also expressed
in human dorsal root ganglion,’? and motor and
sensory mneurons in the PNS.%) in comparable
amounts as in the sciatic nerve. SGGLs were minor
components in human sympathetic ganglion,”? inner
ear,”” eighth nerve,”” and optic nerve.?” Interest-
ingly, SGGLs were not detectable in the CNS
myelin,”? but expressed as minor components in
rat Schwann cells,”) Schwanoma,” several tumor
cells of neural origin,”® brain microvessels,*") human
umbilical veins,*" bovine brain microvascular endo-
thelial cells,””) human brain microvascular endothe-
rial cells,”® peripheral nerve endothelial microvascu-
lar endothelial cells,”®) as well as in the neural crest
cells of fish and birds in low amounts.'®) SGGLs were
found in the adult goldfish brain. It is speculated
from these observations that SGGLs have some role
during neural cell differentiation and in regeneration.
In the CNS of higher animals, neuronal differ-
entiation is minimal after maturation. However, it
is known that in fish brain and in the PNS, neural cell
differentiation and regeneration is possible even in
the adult.’” SGGLs were present in the purified
myelin fraction from cat PNS nerve, but their level
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Table 1. Concentration of SGGLs in the nervous system tissues
Spicies Tissue SGPG SGLPG References
Human Cauda equina 1.34 0.29  Kohriyama et al., 1987 (91)
1.59 —  Ariga et al, 1990 (92)

Sciatic nerve 0.85 0.22  Ariga et al., 1990 (92)
Dorsal root ganglion 1.02 0.18 Ariga et al., 1990 (92)
Sympathetic ganglion 0.04 ND Ariga et al., 1990 (92)
Motoneurons 0.85 — Yu et al., 1994 (93)
Sensory nerve 0.93 — Yu et al., 1994 (93)
Optic nerve 0.04 — Yoshino et al., 1993 (95)
Inner ear 0.17 0.01  Yamawaki et al., 1998 (94)
Eighth nerve 1.58 0.42  Yamawaki et al., 1998 (94)
Cultured microvascular endothlial cells 0.06 — Kanda et al., 2004 (98)
Cultured umbilical vein endothlial cells 0.05 — Miyatani et al., 1990 (41)
Spinal cord ND ND Kohriyama et al., 1987 (91)
Cerebral cortex ND ND Kohriyama et al., 1987 (91)
Cerebral white matter ND ND Kohriyama et al., 1987 (91)
Adult cerebellum 12.5% — Chou et al., 1991 (68)
Fetal brain, 37 weeks of gestation 7.5% — Chou et al., 1991 (68)

Bovine Cauda equina 0.77 0.27  Kohriyama et al., 1987 (91)
Dura mater 1.05 0.05  Kohriyama et al., 1987 (91)
Brain microvascular endothelial cells, 7 days 0.07 — Kanda et al., 1994 (97)
Brain mcrovascular endothelial cells, 14 days 0.02 — Kanda et al., 1994 (97)
Pheripheral nerve microvascular endothelial cells 0.08 — Kanda and Ariga, 2001 (99)
Spinal cord ND ND Kohriyama et al., 1987 (91)

Rat Sciatic nerve 0.09 0.02  Kohriyama et al., 1987 (91)
Cortex, ED 19 11.2* — Chou et al., 1991 (68)
Cortex, Adult 0.5% — Chou et al., 1991 (68)
Trigeminal nerve 1.5% — Chou et al., 1991 (68)
Brain stem 2.0* — Chou et al., 1991 (68)
Brain microvessels 0.09 — Miyatani et al., 1990 (41)
Cerebral myelin ND ND Miyatani et al., 1990 (41)
Schwanoma 0.1 0.02  Kohriyama et al., 1987 (91)

Chiken Sciatic nerve 0.1 0.002  Kohriyama et al., 1987 (91)

Rabbit Sciatic nerve 0.02 0.002  Kohriyama et al., 1987 (91)

ng/mg protein; *ng/mg dry weight of tissue; ND, not detected; —, not determined.

was not enriched in whole homogenate.*?19) SGGLs
were present in the adult rodent cerebellum. SGGLs
were localized specifically in Purkinje cells and their
arbors or dendrites in the molecular layer.'9?)
However, they were not detected in the cerebella
mice mutants of the Purkinje cell degeneration
model, in which Purkinje cell loss was the primary
defect. The loss of SGGLs in Purkinje cell-deficient
mutants was specific, since most of the major lipids
were not significantly affected and only the percent-
age composition of other lipids, such as sulfatides
and gangliosides, were altered in adult cerebellum of
the mutants. Other GlcA-containing GSLs, which do
not contain the sulfate group, have been reported

in insects such as Calliphora vicina and Tenebrio
molitor'")1%) (Table 1).

Subcellular localization studies of bovine spinal
accessory nerve tissue,”)) human dorsal root gan-
glion,?? and human sensory nerve of the PNS*) have
demonstrated that SGPG was relatively abundant in
the axolemma-enriched fraction (1.71-3.33 pg/mg
protein) and myelin (1.34—1.63 pg/mg protein).

Developmental expression of SGGLs
in rat and mouse brains

SGGLs were expressed in selected regions of
the CNS tissues of fetal, newborn, and adult rodents
and their expression is developmentally regu-
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lated.68):101):105)106) Ty pat cerebral cortex, SGGLs
were developmentally regulated and were maximally
expressed at day E15, but undetectable between day
of birth (P1) and P14 after birth. They were not
present in the adult rat brain but expressed
maximally in the subpopulation of differentiated
neurons of embryonic brain during development,
thus they may be considered as stage-specific
antigens.’-%) Immunoreactivity in the cerebral
cortex appeared first in the mantle layer of neural
tube of day E10. Staining then appeared more
strongly in the molecular layer (layer I) and subplate
(layer IIT), and more faintly in the intermediate zone
and cortical plate in E15. In postnatal age, the whole
brain was almost uniformly stained. However,
immunoreactivity gradually disappeared 3 to 4 weeks
after birth, except in specific neuronal cell types.!?”

SGGLs are also detected in the cerebellum even
in adult rats.'%) The levels of SGGLs increased
during postnatal development of the cerebellum,
contrary to their diminishing expression in the
cerebral cortex. Interestingly, the developmental
profile of SGGLs in cerebellum appeared to be
biphasic. The first phase appears near birth, and
then the level decreases at P7. This pattern may
reflect developmental events such as cellular migra-
tion and differentiation. Based on immunocytochem-
ical studies of SGGLs, Bergmann glial fibers, the
granular cell layer, and nascent white matter were
stained at P2. Immunoreactivity of the granular cells
was diminished drastically at P7, but remained
constant in the white matter. Thereafter, the second
phase of SGGL expression occurred at P10 and
reached a maximum at P20; this phase may reflect
the massive growth of dendritic trees in Purkinje
cells. By P15, the expression of SGGLs was greatly
reduced except in the molecular layer, where the
immunostaining persisted until adulthood. There-
fore, SGGLs may serve as regulatory markers of
cellular differentiation in the cerebellum. In the adult
rat cerebellum, Purkinje cell dendritic trees of the
molecular layer and synapses of the deep cerebral
layer were strongly stained, but not in the granular
cell layer or the white matter.'%) The high level of
SGGLs remaining in Purkinje cells in adulthood
suggests that SGGLs may play an integral role in
Purkinje cell function.)

In mouse embryos, the SGIcA epitope, detected
using HNK-1 antibody, appeared at the early stages
of E8.5 and E10.5.'%Y) Immunoreactivity against the
HNK-1 epitope appeared in neuroepithelial cells prior
to axonal outgrowth and along the walls of the
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early neural tube. This expression pattern suggests
that the SGIcA epitope may be associated with the
organization of early neuronal setting and axonal
growth patterns,'™) and a further study indicated
that SGPG was expressed at E16.59

In rat PNS, the concentration of SGGLs
increases with age and then declines slightly. The
rate of increase in the level of SGGLs between
day 5 to 20 was similar to the rate of deposition of
myelin in the nerve. The rate of accretion of SGGLs
was rapid for the first P30 days and plateaus at
P40-60. This developmental pattern appeared to
coincide with the process of myelination.®-1%9 In the
mouse sciatic nerve, immunoreactivity against the
HNK-1 epitope appeared first in unmyelinated fibers
until P21, and strongly in myelinated fibers at 8
weeks.110)

Experimental animal models of IgM
paraproteinemia and peripheral neuropathy
by sensitization of animals with SGPG

In IgM paraproteinemia and peripheral neuro-
pathy, studies on nerve biopsy from patients have
revealed IgM deposits only in the PNS myelin and
moderate demyelination with widening of the myelin
lamellae. The IgM M-protein deposits are found in
myelin with wide spacing of lamellae, which is the
hallmark of this form of neuropathy.'?-15)-111).112)
Moreover, direct injection of anti-SGGL/MAG anti-
body into cat sciatic nerve resulted in demyelination,
which was associated with complement deposi-
tion.')1'3) Thus, an antibody-dependent comple-
ment-mediated mechanism is presumed to partic-
ipate in the pathogenesis of this autoimmune disease.
To further clarify the pathogenic role of SGGLs, we
sensitized rabbits and Lewis rats with highly purified
SGPG.2O)’114)7116>

In rabbit, anti-SGPG antibody titers in sera
were detected 2 to 4 weeks after the initial
inoculation and reached a maximum 6 to 8 weeks
postinoculation. The animals showed weight loss,
sluggishness in righting response from the out-
stretched position, and a slight to mild weakness
predominantly in their hind feet 2 to 5 weeks
postinoculation. Electrophysiological studies re-
vealed slightly diminished conduction velocity and
conduction block in the sciatic nerves of the SGPG-
inoculated rabbits. Immunization of rabbits with
purified SGPG produced mild neurological symptoms
and electrophysiological dysfunction.''*) This finding
strongly suggests the involvement of SGPG in the
process of demyelination.
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Fig. 3. Electron micrographs of rat sciatic nerve (a) 3h and (b) 4 days after intraneural injection of anti-SGPG antibodies. (a) A large
myelinated axon (Ax) with disintegrating leaflets of myelin (arrows), primarily along the intraperiod line. (b) An electron micrograph
of the nodal region of an axon (Ax). To the left, normal appearing paranodal myelin is being stripped away by insinuating
macrophage (me) processes (arrows) from a degenerating axon (Ax). Numerous macrophages are present in the endoneurial

connective tissues. Scale bars: 0.5pm (a), 2.5 pm (b).

In Lewis rats, anti-SGPG antibody titers in the
sera were detected 2 to 4 weeks after injection and
reached a maximum 8 weeks post-inoculation. Inter-
estingly, anti-SGLPG antibodies were detected at
6 weeks and reached a maximum 12 weeks post-
inoculation. Electrophysiological examination of the
sciatic nerves revealed nerve conduction abnormal-
ities that consisted of a conduction block and mild
decrease in conduction velocity.''® In addition,
sensitization of rats with SGPG induced minor but
clear clinical signs of neuropathy, consisting of mild
tail muscle tone loss and walking disabilities. Mor-
phological studies showed (a) axonal changes in the
lateral aspects of the dorsal columns in the spinal cord;
and (b) damage to the endothelial cells in the spinal
cord, which suggested a breakdown of the blood-brain
barrier (BBB).?") In this regard, we reported that
SGPG was present in the microvessels of adult rat
brain.*) Thus, the present finding supports our
hypothesis that disruption to the capillaries, which
may be induced by the circulating anti-SGPG anti-
bodies, may contribute to subsequent nerve dam-
age.?Y) Interestingly, intraneural injection of the rat
anti-SGPG antibody with guinea pig complement
into the sciatic nerve of Lewis rats revealed extensive
demyelination and axonal degeneration, along with
mild to moderate clinical symptoms. Morphologically,
vesiculation and loosening of the myelin sheath were
observed 8h post-injection, followed by extensive
demyelination and macrophage infiltration after 4
days'® (Fig. 3). Since rat MAG does not bear the
SGIcA epitope, it supports the concept that SGGLs
may serve as primary target antigens in experimental
IgM paraproteinemia and demyelinating neuropathy.

Ilyas et al.''”) reported that four cats immunized
with SGPG developed clinical signs of sensory
neuropathy within 11 months after initial immuniza-
tion. All cats demonstrated characteristics of un-
steadiness, falling, hind limb weakness and ataxia.
In two cats, the ataxia and hind limb paralysis were
so severe that the animals had to be euthanized.
Pathological examination revealed sensory ganglio-
nitis with inflammatory infiltrates in the dorsal
root ganglia. No overt signs of pathology were noted
in the examined roots or nerves. High-titer anti-
SGPG antibodies were detected in all 4 cats immu-
nized with SGPG but not in the three control cats.
This study suggests that these anti-SGPG antibodies
play a role in the pathogenesis of this neuropathy.
It has suggested that immunization of cats with
SGPG induces anti-SGPG antibodies along with a
sensory neuropathy that closely resembles human
disease.

These animal models might help us understand
the disease mechanism and lead to more specific
therapeutic strategies.

Pathological role of SGGLs on IgM
paraproteinemia and peripheral neuropathy

1. Interaction between SGGLs and blood-
nerve barrier. Although the primary causal role of
humoral immunity has been postulated in IgM
paraproteinemia and peripheral neuropathy,2):114)
the mechanism by which large molecules such as
immunoglobulins can traverse the BBB or BNB to
enter the endoneurium is not fully understood.??)
However, in this disease, the destruction or malfunc-
tion of the BBB or the BNB results in leaking of
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circulating antibodies into the PNS parenchyma.
This has been considered as the initial key step
for the development of disease process. Since
endoneurial microvascular endotherial cells (MECs)
are one of the cardinal components making up the
structural basis of the BBB/BNB, knowledge on the
cellular characteristic of MECs using cell culture
techniques may provide new insights regarding the
pathogenetic mechanism of this immune-mediated
neuropathy.

To test the hypothesis that circulating anti-
bodies trigger permeability changes in the micro-
vascular structure, we””) established an in vitro
model of the BNB by coculturing a bovine MEC
monolayer and rat astrocytes in Transwell chambers.
We analyzed the effect of anti-IgM SGPG antibody
obtained from a patient with IgM paraproteinemia
and demyelinative peripheral neuropathy against
cultured bovine MECs. Permeability studies revealed
that the antibody facilitated the leakage of [carboxy-
4Cl-inulin and '*T-labeled human IgM through
bovine MEC monolayers. A direct cytotoxicity of
this antibody against bovine MECs was also shown
by a leakage study using [*!Crl-incorporated bovine
MECs. This cytotoxicity depended on the concen-
tration of the IgM antibody, and was almost
completely blocked by preincubation with the pure
antigen, SGPG. This study strongly supports the
hypothesis that immunological insults against bovine
MEC-bound SGGLs induce the destruction or
malfunction of the BNB, which results in penetration
of the immunoglobulin molecule that attaches to the
peripheral nerve parenchyma. It is also an intriguing
possibility that SGGLs, which bear the same
carbohydrate epitope as several cell-adhesion glyco-
proteins, may actually participate in the formation of
the BBB/BNB and the maintenance of barrier
function. This study showed that bovine MECs and
the peripheral nervous tissues shared many GSLs,
including SGPG, as common antigens; hence, the
presumed cascade of pathological processes-immuno-
logical function of the BNB is: (a) increased
permeability across the BNB, (b) leakage of immu-
noglobulins into the endoneurial space, and (c)
subsequent immunological attack of peripheral mye-
lin and axon, ultimately leading to their destruction,
which can be logically explained in those patients
with anti-GSL antibody. In SGPG sensitive rat
study, damage in the capillaries was induced in the
dorsal horn of the spinal cord lumbar region,”)
suggesting the damage to endothelial cells increases
the leakage of plasma proteins into the nerve
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parenchyma. However, it is not clear how immuno-
logical insults against bovine MECs actually occur
in this disease. There have been few studies on the
pathological changes of endothelial cells in IgM
neuropathy. Meier et al.''® reported that the gap
between the adjacent endoneurial cells are enlarged
in IgM neuropathy, and Powell et al.''? showed
microvascular changes, including endothelial cyto-
plasmic enlargement occasionally obliterating the
vessel lumen, and intracytoplasmic actin-like fila-
ments in dysglobulinemic neuropathies. Detailed
characterization of the antibodies was not performed.
In both reports, pathological changes in endothelial
cells were completely different from those of acute
inflammatory changes, but minimal presumably due
to the deposition of circulating immune complexes
typically observed in vessels in collagen disease with
vasculitis such as periarteritis nodosa.'?")

2. Inflammatory effect of SGGLs on micro-
vascular endothelial cells that may be involved
in the pathogenesis of IgM paraproteinemia and
peripheral neuropathy Although the functional
roles of SGGLs are not clear, they are able to support
cell adhesion of Schwann cells in vitro'") and they
may have implications in neural cell adhesion.?®

The most interesting aspect of the regulated
expression of SGGLs in bovine MECs is the induction
of their synthesis by proinflammatory cytokines.
Treatment of bovine MECs with interleukin (IL)-
13, a proinflammatory cytokine, was shown to induce
accumulation of SGGLs.'?? The SGPG content in
bovine MECs increased 8 fold after stimulation for
4h; this resulted in an enhanced attachment of
human lymphocytes on 1L-13-activated bovine MEC
monolayer surface. Further studies indicate that
inflammatory cytokines, such as tumor necrosis
factor (TNF)-a and IL-15 stimulate the GlcAT-P
and GIcAT-S genes and elevate the SGPG con-
centration in cerebromicrovascular endothelial cells,
SV-HCEC, promoting T cell adhesion.'?® In siRNA
HNK-15T (siHNK-1)-transfected cells, SGPG expres-
sion was down-regulated after stimulation in addition
to reducing T cell adhesion. In addition, up-
regulation of GIcAT genes in the cells was observed
after cytokine stimulation mediated by NFxB signal-
ing; controversially, inhibition of SGPG expression
by siHNK-1 intercepted the NFxB activity.!?%

Selectins are known to be involved in the
interaction between leukocytes and vascular endo-
thelial cell adhesion, leading to lymphocyte homing,
platelet binding, and neutrophil extravasation.'?”)
Needham and Schnaar'?® have reported that L-
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Fig. 4. Effect of anti-L-selectin and anti-SGPG antibodies on the
adhesion of human lymphocyes. Filled bars represent IL-15-
activated bovine MECs and the hatched bar represents the
nonactivated bovine MEC monolayer. Preincubation with anti-
L-selectin and/or anti-SGPG antibody significantly reduced the
attachment of human lymphocytes onto the bovine MEC
monolayer (*P < 0.05; **P < 0.001). Error bars indicate the SD.

and P-selectins bind to a surface adsorbed with
SGGLs in a Ca**independent manner, but not with
E-selectin. Interestingly, we'??) have found that a
significantly larger number of human lymphocytes
attach to the IL-1(3-stimulated bovine MECs than
to the unstimulated bovine MECs. Interestingly,
attachment of human lymphocytes to the IL-13-
activated bovine MEC cells can be blocked either by
incubation of the human lymphocytes with an anti-
L-selectin antibody or by application of an anti-
SGPG antibody to the bovine MECs (Fig. 4). In this
study, SGPG may act as an important ligand for L-
selectin for the regulation of the attachment of
activated lymphocytes, subsequently allowing cyto-
toxic lymphocytes to enter into the nervous system
parenchyma in inflammatory diseases of the PNS.
Whether L-selectin is involved in any SGGL-medi-
ated cell adhesions is not clear. L-selectin-mediated
attachment of lymphocytes to myelinated tracts of
the CNS was reported.'””) In this regard, it may
support the selective adhesion of a desired subpopu-
lation of leukocytes expressing L- or P-selectin.
SGGLs on the surface of MECs may play an
important role in inflammatory IgM paraproteinemia
and peripheral neuropathy of the PNS. The presence
of SGGLs on brain microvascular endothelium may
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implicate these molecules in leukocyte trafficking to
the nervous system and elsewhere.'20)

Hence, an immunological block of SGIcA epitope
by IgM M-protein may result in loss of cellular
interconnection and disruption of barrier function.
Our overall results strongly support the concept that
immunological insults against bovine MECs induce
the destruction or malfunction of the BBB/BNB,
resulting in the penetration of immunoglobulin
molecules and attack of the peripheral nerve paren-
chyma.

Therapeutic strategies in patients with IgM
paraproteinemia and peripheral neuropathy

Based on evidence regarding the pathogenicity
of anti-MAG/SGGL antibodies, therapeutic effects
have been documented reducing circulating IgM
protein or anti-MAG/SGGL antibodies by removal
(plasmapheresis or plasma exchange), inhibition
(intravenous immunoglobulin, IVIg), or reduction
of synthesis (corticosteroid, immunosuppressive, cy-
totoxic agents or interferon-a etc).'” In an earlier
study, reducing the IgM M-protein concentration by
plasmapheresis or plasma exchange has been re-
ported to ameliorate thesymptoms of patients.?!)
Plasma exchange was temporarily effective in ap-
proximately half of the patients both alone and in
combination with other therapies.'!) Corticosteroids
alone had no effect, but approximately half of the
patients responded to corticosteroids given in asso-
ciation with other therapies.") IVIg was effective in
half of the patients. Patients who had anti-MAG IgM
antibodies, showed significant improvement at 4
weeks with IVIg compared with placebo.'? Some
agents, such as interferon-a,'®”) chlorambucil,'”)
cyclophosphamide,'®? and Rituximab (monoclonal
antibody against CD20 antigen) improved the
sensory ataxia.'®2133) A plausible possibility is that
blockage of leukocyte/endothelial cell connections
by applying excess amounts of polysaccharides™® or
by administration of monoclonal antibodies to block
these oligosaccharide epitopes might be an effect
therapeutic strategy.””)
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