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Bayesian network models are commonly used to model gene expression data. Some applications require a comparison of the
network structure of a set of genes between varying phenotypes. In principle, separately fit models can be directly compared,
but it is difficult to assign statistical significance to any observed differences. There would therefore be an advantage to the
development of a rigorous hypothesis test for homogeneity of network structure. In this paper, a generalized likelihood ratio
test based on Bayesian network models is developed, with significance level estimated using permutation replications. In order to
be computationally feasible, a number of algorithms are introduced. First, a method for approximating multivariate distributions
due to Chow and Liu (1968) is adapted, permitting the polynomial-time calculation of a maximum likelihood Bayesian network
with maximum indegree of one. Second, sequential testing principles are applied to the permutation test, allowing significant
reduction of computation time while preserving reported error rates used in multiple testing. The method is applied to gene-set
analysis, using two sets of experimental data, and some advantage to a pathway modelling approach to this problem is reported.

1. Introduction

Graphical models play a central role in modelling genomic
data, largely because the pathway structure governing the
interactions of cellular components induces statistical depen-
dence naturally described by directed or undirected graphs
[1–3]. These models vary in their formal structure. While
a Boolean network can be interpreted as a set of state
transition rules, Bayesian or Markov networks reduce to
static multivariate densities on random vectors extracted
from genomic data. Such densities are designed to model
coexpression patterns resulting from functional cooperation.
Our concern will be with this type of multivariate model.
Although the ideas presented here extend naturally to various
forms of genomic data, to fix ideas we will refer specifically
to multivariate samples of microarray gene expression
data.

In this paper, we consider the problem of comparing
network models for a common set of genes under varying
phenotypes. In principle, separately fit models can be directly
compared. This approach is discussed in [3] and is based on
distances definable on a space of graphs. Significance levels

are estimated using replications of random graphs similar in
structure to the estimated models.

The algorithm proposed below differs significantly from
the direct graph approach. We will formulate the problem as
a two-sample test in which significance levels are estimated
by randomly permuting phenotypes. This requires only
the minimal assumption of independence with respect to
subjects.

Our strategy will be to confine attention to Bayesian
network models (Section 2). Fitting Bayesian networks is
computationally difficult, so a simplified model is developed
for which a polynomial-time algorithm exists for maximum
likelihood calculations. A two-sample hypotheses test based
on the general likelihood ratio test statistic is introduced in
Section 3. In Section 4, we discuss the application of sequen-
tial testing principles to permutation replications. This may
be done in a way which permits the reporting of error rates
commonly used in multiple testing procedures. In Section 5,
the methodology is applied to the problem of gene set (GS)
analysis, in which high dimensional arrays of gene expression
data are screened for differential expression (DE) by com-
paring gene sets defined by known functional relationships,
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in place of individual gene expressions. This follows the
paradigm originally proposed in gene set enrichment analysis
(GSEA) [4–6]. The method will be applied to two well-
known microarray data sets.

An R library of source code implementing the algorithms
proposed here may be downloaded at http://www.urmc
.rochester.edu/biostat/people/faculty/almudevar.cfm.

2. Network Models

A graphical model is developed by defining each of n genes
as a graph node, labelled by gene expression level Xi for
gene i. The model incorporates two elements, first, a topology
G (a directed or undirected graph on the n nodes), then,
a multivariate distribution f for X = (X1, . . . ,Xn) which
conforms to G in some well defined sense. In a Bayesian
network (BN), model G is a directed acyclic graph (DAG), and
f assumes the form

f (x) =
n∏

i=1

fi
(
xi | xj , j ∈ PaG(i)

)
, (1)

where PaG(i) is the set of parents of node i. Intuitively,
fi(xi|xj , j ∈ PaG(i)) describes a causal relationship between
node i and nodes PaG(i).

The advantage of (1) is the reduction in the degrees
of freedom of the model while preserving coexpression
structure. Also, some flexibility is available with respect
to the choice of the conditional densities of (1), with
Gaussian, multinomial, and Gamma forms commonly used
[7]. We note that BNs are commonly used in many genomic
applications [7–9].

2.1. Gaussian Bayesian Network Model. For this application,
we will use the Gaussian BN. These models are naturally
expressed using a linear regression model of node i data Xi
on the data Xj , j ∈ PaG(i). In [10], it is noted that in
microarray data gene expression levels are aggregated over
large numbers of individual cells. Linear correlations are
preserved under this process, but other forms of dependence
generally will not be, so we can expect linear regression
to capture the dominant forms of interaction which are
statistically observable. In this case the maximum log-
likelihood function for a given topology reduces to

L(G) =
∑

i

− ln(MSE[PaG(i)]), (2)

where MSE[PaG(i)] is the mean squared error of a linear
regression fit of the offspring expressions onto those of the
parents.

2.2. Restricted Bayesian Networks. Fitting BNs involves opti-
mization over the space of topologies and hence is compu-
tationally intensive [9]. While exact algorithms are available
[11], they will generally require too great a computation time
for the application described below. A recent application of
exact techniques to the problem of pedigree reconstruction
(a BN with maximum indegree of 2) was described in [12].

Using methods proposed in [13] the exact computation of
the maximum likelihood of a pedigree with 29 individuals
(nodes) required 8 minutes. The author of [12] agrees with
the conclusion reported in [13], that the method is not viable
for BNs with greater than 32 nodes.

It is possible to control the size of the computation
by placing a cap K on the permissable indegree of each
node, though the problem remains difficult even for K =
2 (see, e.g., [14]). On the other hand, a method for
fitting BNs with constraint K = 1 in polynomial time
is available under certain assumptions satisfied in our
application. This method is based on the equivalence of
the approximation of multivariate probability models using
tree-structured dependence and the minimum spanning tree
(MST) problem as described in [15]. The objective is the
minimization of an information difference I(P,Pt), where
P is the target density, and Pt is selected from a class of
tree-structured approximating densities. Interest in [15] is
restricted to discrete densities. We find, however, that the
basic idea extends to general BNs in a natural way. See [16]
for further discussion of this model.

Many heuristic or approximate methods exist for fitting
Bayesian networks. See [17] for a recent survey. Such algo-
rithms are usually based on MCMC techniques or heuristic
algorithms such as TABU searches [18]. We note that the
proposed hypothesis test will depend on the calculation of
a maximum likelihood ratio, hence it is important to have
reasonable guarantees that a maximum has been reached.
Thus, given the choice between an exact solution of a
restricted class of models or an approximate solution of
a general class of models, the former seems preferable.
Considering also that in the application described below a
solution is required for cases number in “10 s or 100 s” of
thousands, a polynomial time exact solution to a restricted
class of models appears to be the best choice.

Suppose we are given an n-dimensional random vector
X . We will assume that the density is taken from a parametric
family f θ(x) = f θ(x1, . . . , xn), θ ∈ Θ. We write first- and
second-order marginal densities f θi(xi) and f θi j (xi, xj), with
conditional densities f θi j (xi | xj) = f θi j (xi, xj)/ f θj (xj). For
convenience, we introduce a dummy vector component x0,
for which f θi0 (xi | x0) = f θi(xi). Let G1 be the set of DAGs on
nodes (1, . . . ,n) with maximum indegree 1. This means that
a graph g ∈ G1 may be written as a mapping g : (1, . . . ,n) →
(0, 1, . . . ,n). If i has indegree 0 set g(i) = 0, otherwise g(i)
is the parent node of i. We must have g(i) = 0 for at least
one i. For each g ∈ G1 let Θg ⊂ Θ be the set of parameters
admitting the BN decomposition

f θ(x) =
n∏

i=1

f θig(i)

(
xi | xg(i)

)

=
⎛
⎝

n∏

i=1

f θi(xi)

⎞
⎠×

⎛
⎝
∏

i:g(i)>0

f θig(i)

(
xi, xg(i)

)

f θi(xi) f θg(i)

(
xg(i)

)

⎞
⎠.

(3)

Now suppose we are given N independent and complete
replicates X̃ = (X(1), . . . ,X(N)) of X . Write components
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X(k) = (X1(k), . . . ,Xn(k)), k = 1, . . . ,N . The log likelihood
function becomes, for θ ∈ Θg ,

L
(
θ | X̃

)
=

n∑

i=1

Li(θi) +
∑

i:g(i)>0

Lig(i)

(
θig(i)

)
, where

Li(θi) =
N∑

k=1

log
(
f θi(Xi(k))

)
,

Li j
(
θi j
)
=

N∑

k=1

log

⎛
⎝

f θi j
(
Xi(k),Xj(k)

)

f θi(Xi(k)) f θj
(
Xj(k)

)

⎞
⎠.

(4)

Suppose we may construct estimators θ̂i = θ̂i(X̃), θ̂i j =
θ̂i j(X̃). We then assume there is some selection rule θ̂g =
θ̂g(X̃) ∈ Θg for each g ∈ G1. This will typically be
the exact or approximate maximum likelihood estimate
(MLE) on parameter space Θg . We will need the following
assumptions.

(A1) For each g ∈ G1, θ̂
g
i = θ̂i, and θ̂

g
ig(i) = θ̂ig(i).

(A2) For each i, j we have Li j(θ̂
g
i j) ≥ 0.

We now consider the problem of maximizing L∗(g | X̃) =
L(θ̂g | X̃) over g ∈ G1. It will be convenient to isolate the
term

L∗2
(
g | X̃

)
=

∑

i:g(i)>0

Lig(i)

(
θ̂
g
ig(i)

)
. (5)

A spanning tree on nodes (1, . . . ,n) is an acyclic con-
nected undirected graph. Given edge weightswij , a minimum
spanning tree (MST) is any spanning tree minimizing the
sum of its edge weights among all spanning trees. A number
of well-known polynomial time algorithms exist to construct
a MST. Two that are commonly described are Prim’s and
Kruskal’s algorithms [19]. Kruskal’s algorithm is described in
[15]. In the following theorem, the problem of maximizing
L∗(g | X̃) is expressed as a MST problem.

Theorem 1. If assumptions (A1)-(A2) hold, then maximizing
L∗(g | X̃) over G1 is equivalent to determining the MST for

edge weights wij = −Li j(θ̂gi j).

Proof. Under assumption (A1), from definition (4) it follows
that L∗(g | X̃) depends on g only through the term L∗2 (g |
X̃). Then suppose g′ maximizes L∗2 (g | X̃). For any spanning
tree t define Wt =

∑
(i j)∈t;i< j wi j and suppose t′ minimizes

Wt. Assume g′ is not connected. There must be at least two
nodes i, j for which g(i) = g( j) = 0, and for which the
respective subgraphs containing i, j are unconnected. In this
case, extend g′ to g′′ by adding directed edge (i, j). We must
have g′′ ∈ G1, and by (A2) we have L∗2 (g′′ | X̃) ≥ L∗2 (g′ | X̃).
We may therefore assume g′ is connected. The undirected
graph of g′ is a spanning tree, so Wt′ ≤ −L∗2 (g′ | X̃).

Next, note that t′ can be identified with an element of G1

by defining any node as a root node, enumerating all paths

from the root node to terminal nodes, then assigning edge
directions to conform to these paths. This implies L∗2 (g′ |
X̃) ≥ −Wt′ , which in turn implies L∗2 (g′ | X̃) = −Wt′ , and
that g′, t′ may be selected so that t′ can be identified with
g′.

Remark 1. In general, the optimizing graph from G1 will not
be unique. First, the solution to the MST problem need not
be unique. Second, there will always be at least two extensions
of a spanning tree to a BN.

Marginal means, variances and, correlations of X are
denoted μi, σ2

i , ρi j , leading to parameters θi = (μi, σ2
i ), θi j =

(θi, θj , ρi j). Each parameter in the set Θg represents the class
of Gaussian BNs which conform to graph g. Following the

construction in assumption (A1), let θ̂i = (Xi, S2
i ), θ̂i j =

(θ̂i, θ̂ j ,Rij) using summary statistics Xi = N−1
∑

k Xi(k),

S2
i = N−1

∑
k (Xi(k)− Xi)

2
, Rij = N−1(SiSj)

−1∑
k(Xi(k) −

Xi)(Xj(k)−X j). Under the usual parameterization, it can be
shown that (omitting constants)

Li
(
θ̂
g

i

)
= −

(
N

2

)
log
(
S2
i

)
,

Li j
(
θ̂
g
i j

)
= −

(
N

2

)
log
(

1− R2
i j

)
,

(6)

noting that, since 0 ≤ R2
i j ≤ 1, assumption (A2) holds.

3. General Maximum Likelihood Ratio Test

Identification of nonhomogeneity between two Bayesian net-
works will be based on a general maximum likelihood ratio
test (MLRT). It is important to note the properties of the
MLRT are well understood in parametric inference of limited
dimension, and a sampling distribution can be accurately
approximated with a large enough sample size. These known
properties no longer apply in the type of problem considered
here, primarily due to the small sample size, large number
of parameters, and the fact that optimization over a discrete
space is performed. In addition, the maximum likelihood
principle itself favors spurious complexity when no model
selection principles are used. While we cannot claim that the
MLRT possesses any optimum properties in this application,
the use of a permutation procedure will permit accurate
estimates of the observed significance level while the use of
the restricted model class will control to some degree the
degrees of freedom of the model. See, for example, [20] for a
general discussion of these issues.

Suppose { fθ : θ ∈ Θ} is a family of densities defined
on some parameter set Θ. We are given two random
samples X̃ = (X1, . . . ,Xn1 ) and Ỹ = (Y1, . . . ,Yn2 ) from
respective densities f θ1 and f θ2 . Denote pooled sample X̃Y =
(X̃ , Ỹ). The density of X̃ and Ỹ , respectively, are f θ1

X̃
(x̃) =

∏n1
i=1 f

θ1 (xi) and f θ2

Ỹ
( ỹ) = ∏n2

i=1 f
θ2 (yi). We consider null

hypothesis H0 : θ1 = θ2. Under H0 the joint density of
X̃Y is f θ

′

X̃Y
(x̃, ỹ) = f θ

′

X̃
(x̃) f θ

′

Ỹ
( ỹ) for some parameter θ′.

Assume the existence of maximum likelihood estimators
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θ∗X = arg maxθL(θ | X̃), θ∗Y = arg maxθL(θ | Ỹ), and θ∗XY =
arg maxθL(θ | X̃Y). The general likelihood ratio statistic in
logarithmic scale is then (with large values rejecting H0)

Λ
(
X̃ , Ỹ

)
= L

(
θ∗X | X̃

)
+ L
(
θ∗Y | Ỹ

)
− L

(
θ∗XY | X̃Y

)
. (7)

Asymptotic distribution theory is not relevant here due to
small sample size and the fact that optimization is performed
in part over a discrete space of models, so a two sample
permutation procedure will be used. Permutations will be
approximately balanced to reduce spurious variability when
a true difference in expression pattern exists (see, e. g., [21]
for discussion). This can be done by changing group labels
of n ≈ n1n2/(n1 + n2) randomly selecting sample vectors
from each of X̃ and Ỹ . This results in permutation replicate
samples X̃P and Ỹ P . The balanced procedure ensures that
each permutation replicate sample contains approximately
equal proportions of the original samples.

We now define Algorithm 1.

Algorithm 1. (1) Determine g1, g2, g12 by maximizing L∗2 (g |
X̃), L∗2 (g | Ỹ), L∗2 (g | X̃ , Ỹ) (MST algorithm).

(2) Set Λobs = L∗(g12 | X̃ , Ỹ)− L∗(g1 | X̃)− L∗(g2 | Ỹ).

(3) ConstructM replicationsΛP
1 , . . . ,ΛP

M in the following
way. For each replication i, create random replicate
samples X̃P and Ỹ P , then determine gP1 , gP2 which
maximize L∗2 (g | X̃P), L∗2 (g | Ỹ P). Set ΛP

i = L∗(g12 |
X̃Y)− L∗(gP1 | X̃P)− L∗(gP2 | Ỹ P).

(4) Set P-value

p̂ =
∣∣∣
{
ΛP
i ≥ Λobs

}∣∣∣ + 1

M + 1
. (8)

Note that the quantity L∗(g12 | X̃Y) is permutation invariant
and hence need not be recalculated within the permutation
procedure.

4. Permutation Tests with Stopping Rules

Permutation or bootstrap tests usually reduce to the estima-
tion of a binomial probability by direct simulation. Since
interest is usually in identifying small values, it would
seem redundant to continue sampling when, for example,
the first ten simulations lead to an estimate of 1/2. This
suggests that a stopping rule may be applied to permutation
sampling, resulting in significant reduction in computation
time, provided it can be incorporated into a valid inference
statement. A variety of such procedures have been described
in the literature but do not seem to have been widely adopted
in genomic discovery applications [22–24].

Suppose, as in Algorithm 1, we have an observed test
statistic Λobs, and can simulate indefinitely a sequence
ΛP

1 ,ΛP
2 , . . . from a null distribution P0. By convention we

assume that large values of Λobs tend to reject the null
hypothesis. To develop a stopping rule for this sequence set

Si =
i∑

i′=1

I
{
ΛP
i′ ≥ Λobs

}
. (9)

Formally, T is a stopping time if the occurrence of event {T >
t} can be determined from S1, . . . , St. We may then design
an algorithm which terminates after sampling a sequence
of exactly length T from P0, then outputs ΛP

1 , . . . ,ΛP
T , from

which the hypothesis decision is resolved. We refer to such a
procedure as a stopped procedure. A fixed procedure (such as
Algorithm 1) can be regarded as a special case of a stopped
procedure in which T ≡M.

An important distinction will have to be made between
a single test and a multiple testing procedure (MTP), which
is a collection of K hypothesis tests with rejection rules that
control for a global error rate such as false discovery rate
(FDR), family-wise error rate (FWER), or per family error
rate (PFER) [25]. In the single test application, we may set
a fixed significance level α and continue replications until we
conclude that the P-value is above or below α. For an MTP, it
will be important to be able to estimate small P-values, so a
stopping rule which permits this is needed. Although the two
cases have different structure, in our development they will
both be based on the sequential probability ratio test (SPRT),
first proposed in [26], which we now describe.

4.1. Sequential Probability Ratio Test (SPRT). Formally (see
[27, Chapter 2]) the SPRT tests between two simple alterna-
tives H0: θ = θ0 versus H1: θ = θ1, where θ parametrizes
a family of distributions fθ . We assume there is a sequence
of iid observations x1, x2 . . . from fθ where θ ∈ {θ0, θ1}. Let
ln(θ) be the likelihood function based on (x1, . . . , xn) and
define the likelihood ratio statistic λn = ln(θ1)/ln(θ0). For two
constants A < 1 < B, define stopping time

T = min{n : λn /∈ (A,B)}. (10)

It can be shown that Eθ[T] < ∞. If λT ≤ A we conclude H0

and conclude H1 otherwise. We define errors α0 = Pθ0 (λT ≥
B) and α1 = Pθ1 (λT ≤ A). It turns out that the SPRT is
optimal under the given assumptions in the sense that it
minimizes Eθ[T] among all sequential tests (which includes
fixed sample tests) with respective error probabilities no
larger than α0,α1. Approximate formulae for α0,α1 and
Eθ0 [T],Eθ1 [T] are given in [27].

Hypothesis testing usually involves composite hypothe-
ses, with distinct interpretations for the null and alternative
hypothesis. One method of adapting the SPRT to this case is
to select surrogate simple hypotheses. For example, to test
H0 : θ ≥ θ′ versus H1 : θ < θ′, we could select simple
hypotheses θ0 ≥ θ′ and θ1 < θ′. In this case, we would need
to know the entire power function, which may be estimated
using simulations.

An additional issue then arises in that the expected
stopping time may be very large for θ ∈ (θ0, θ1). This can
be accommodated using truncation. Suppose a reasonable
choice for a fixed sample size is M. We would then use
truncated stopping time TM = min{T ,M}, withT defined in
(10). When T > M, we could, for example, select hypothesis
H0 if λM ≤ 1. These modifications are discussed in [27].

4.2. Single Hypothesis Test. Suppose we adopt a fixed sig-
nificance level α for a single hypothesis test. If αobs is
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the (unknown) true significance level, we are interested in
resolving the hypothesis H :αobs ≤ α. The properties of the
test are summarized in a power curve, that is, the probability
of deciding H is true for each αobs. An example of this
procedure is given in [28], for α = 0.05, using a SPRT with
parameters A = 0.0010101, B = 99.9, θ0 = 0.03, θ1 = 0.05,
and truncation at M = 2000. Hypothesis H is concluded if
λTM ≤ A when T < M; otherwise when λM ≤ 1.

4.3. Multiple Hypothesis Tests. We next assume that we have
K hypothesis tests based on sequences of the form (9). We
wish to report a global error rate, in which case specific
values of small P-values are of importance. We will consider
specifically the class of MTPs referred to as either step-up
or step-down procedures. If we are given a sequence of KP-
values p1, . . . , pK which have ranks ν1, . . . , νK , then adjusted
P-values, paνi are given by:

paνi = max
j≤i

min
(
C
(
K , j, pν j

)
, 1
)(

step-down procedure
)
,

paνi = min
j≥i

min
(
C
(
K , j, pν j

)
, 1
)(

step-up procedure
)
,

(11)

where the quantity C(K , j, p) defines the particular MTP.
It is assumed that C(K , j, p) is an increasing function of
p for all K , j. The procedure is implemented by rejecting
all null hypotheses for which pai ≤ α. Depending on the
MTP, various forms of error, usually either family-wise error
rate (FWER) or false discovery rate (FDR), are controlled
at the α level. For example, the Benjamini-Hochberg (BH)
procedure is a step-up procedure defined by C(K , j, p) =
j−1Kp and controls for FDR for independent hypothesis
tests. A comprehensive treatment of this topic is given in, for
example, [25].

Suppose we have K probabilities p1, . . . , pK (P-values
associated with K tests). For each test i = 1, . . . ,K , we may
generate Sij ∼ bin(pi, j) as the cumulative sum defined in
(9). Now suppose we define any stopping time Ti, bounded
by M, for each sequence Si1, . . . , SiM (this may or may not be
related to the SPRT). Then define estimates p̃i = p̂iI{Ti =
M} + I{Ti < M}, with p̂i = (|{ΛP

i ≥ Λobs}| + 1)/(M + 1).
For a fixed MTP, the estimates p̂1, . . . , p̂K would replace

the true values in (11), yielding estimated adjusted P-values
p̂ai while for the stopped MTP adjusted P-values p̃ai are
produced in the same manner using p̃1, . . . , p̃K . It is easily
seen that p̃i ≥ p̂i while the rankings of p̃i (accounting
for ties) are equal to the rankings of p̂i. Furthermore, the
formulae in (11) are monotone in pi, so we must have
p̃ai ≥ p̂ai . Thus, the stopped procedure may be seen as being
embedded in the fixed procedure. It inherits whatever error
control is given for the fixed MTP, with the advantage that
the calculation of the adjusted P-values p̃ai uses only the first
Ti replications for the ith test.

The procedure will always be correct in that it is strictly
more conservative than the fixed MTP in which it is
embedded, no matter which stopping time is used. The
remaining issue is the selection of Ti which will equal M
for small enough values of pi but will also have E[Ti]  M

for larger values of pi. It is a simple matter, then, to modify
the SPRT described in Section 4.2 by eliminating the lower
bound A (equivalently A = 0). We will adopt this design in
this paper. This gives Algorithm 2.

Algorithm 2. (1) Same as Algorithm 1, step 1.

(2) Same as Algorithm 1, step 2.

(3) Simulate replicates ΛP
i in Algorithm 1, step 3, until

the following stopping criterion is met. Set Si =∑i
i′=1 I{ΛP

i′ ≥ Λobs}|, and let λi = [θ1/θ0]Si[(1 −
θ1)/1 − θ0]i−Si , where θ0 ≤ α < θ1. Stop sampling
at the ith replication if λi ≥ B, where B > 1, or until
i =M, whichever occurs first.

(4) Let T′ be the number of replications in step 3. If T′ =
M, set

p̃ =
∣∣∣
{
ΛP
i ≥ Λobs

}∣∣∣ + 1

M + 1
, (12)

otherwise set p̃ = 1.

The values p̃ generated by Algorithm 2 can then be used in a
stopped MTP as described in this section.

5. Gene-Set Analysis

A recent trend in the analysis of microarray data has been
to base the discovery of phenotype-induced DE on gene sets
rather than individual genes. The reasoning is that if genes
in a given set are related by common pathway membership
or other transcriptional process, then there should be an
aggregate change in gene expression pattern. This should give
increased statistical power, as well as enhanced interpretabil-
ity, especially given the lack of reproducibility in univariate
gene discovery due to the stringent requirements imposed
by multiple testing adjustments. Thus, the discovery process
reduces to a much smaller number of hypothesis tests with
more direct biological meaning. Some objections may be
raised concerning the selection of the gene sets when theses
sets are themselves determined experimentally. Additionally,
gene sets may overlap. While these problems need to be
addressed, it is also true that such gene set methods have been
shown to detect DE not uncovered by univariate screens.

A crucial problem in gene set analysis is the choice
of test statistic. The problem of testing against equality of
random vectors in Rd, d > 1, is fundamentally different
from the univariate case d = 1. The range of statistics one
would consider for d = 1 is reasonably limited, the choice
being largely driven by distributional considerations. For
d > 1, new structural or geometric considerations arise. For
example, we may have differential expression between some
but not all genes in the gene set, which makes selection of
a single optimal test statistic impossible. Alternatively, the
experimental random vectors may differ in their level of
coexpression independently of their level of marginal DE.

In fact, almost all GS procedures directly measure
aggregate DE, so an important question is whether or
not phenotypic variation is almost completely expressible
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as DE. If so, then a DE based statistic will have fewer
degrees of freedom, hence more power, than one based on
a more complex model. Otherwise, a reasonable conjecture
is that a compound GS analysis will work best, employing
a DE statistic as well as one more sensitive to changes in
coexpression patterns.

Correlations have been used in a number of gene
discovery applications. They may be used to associate
genes of unknown function with known pathways [29,
30]. Additionally, a number of GS procedures exist which
incorporate correlation structure into the procedure [31–
33]. However, a direct comparison of correlations is not
practical due to the large number (d(d − 1)/2) of distinct
correlation parameters. Therefore, there is a considerable
advantage to the statistic (7) based on the reduced BN model,
in that the correlation structure can be summarized by the
d correlation parameters output by the MST algorithm,
yielding a transitive dependence model similar to that
effectively exploited in [29].

It is important to refer to a methodological character-
ization given in [34]. A distinction is made between two
types of null hypotheses. Suppose we are given samples of
expression levels from a gene set G from two phenotypes.
Suppose also that for each gene in G and its complement
Gc, a statistical measure of differential expression is available.
For a competitive test, the null hypothesis H

comp
0 is that the

prevalence of differential expression inG is no greater than in
Gc. For a self-contained test, the null hypothesisHself

0 is that no
genes in G are differentially expressed. In the GSEA method
of [4, 5] concern is withH

comp
0 . In most subsequent methods,

including the one proposed here, Hself
0 is used.

For general discussions of the issues raised here, see
[35–37]. Comprehensive surveys of specific methods can be
found in [38] or [39].

5.1. Experimental Data. We will demonstrate the algorithm
proposed here on two data sets examined elsewhere in
the literature. These were obtained from the GSEA website
www.broad.mit.edu/gsea [6]. In [5], a data set p53 is extracted
from the NCI-60 collection of cancer cell lines, with 17
cell lines classified as normal, and 33 classified as carrying
mutations of p53. We also examine the DIABETES data set
introduced in [4], consisting of microaray profiles of skeletal
muscle biopsies from 43 males. For the DIABETES data set
used here, there were 17 normal glucose tolerance (NGT)
subjects and 17 diabetes (DMT) subjects. For gene sets, we
used one of the gene set lists compiled in [5], denoted C2,
consisting of 472 gene sets with products collectively involved
in various metabolic and signalling pathways, as well as
50 sets containing genes exhibiting coregulated response to
various perturbations. In our analyses, FDR will be estimated
using the BH procedure.

5.1.1. P53 Data. A t-test was performed on each of the
10,100 genes. Only 1 gene had an adjusted P-value less than
FDR = 0.25 (bax, P = 5 × 10−6, Padj = 0.05). Several GS
analyses for this data set (using C2) have been reported.
We cite the GSEA analysis in [5] and a modification of the
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Figure 1: Scatterplot of correlations for all gene pairs in
cell cycle checkpoint II pathway, using wildtype and mutation
axes. Genes with nominal significance levels for differential coex-
pression P ∈ (.01, .05] (×) and P ≤ .01 (+) are indicated separately.

GSEA proposed in [40]. Also, in [38], this data set is used
to test three procedures, each using various standardization
procedures. Two are based on logistic regression (Global test
[41] ANCOVA Global test [42]). The third is an extension of
the Significance Analysis of Microarray (SAM) procedure [43]
to gene sets proposed in [44] (SAM-GS).

Table 1 lists pathways selected from C2 for the analysis
proposed here using FDR ≤ 0.25, including unadjusted and
adjusted P-values. For each entry we indicate whether or
not the pathway was selected under the analyses reported
in [5] (Sub, FDR ≤ 0.25), [40] (Efr, FDR ≤ 0.1) and [38]
(Liu, nominal P-value ≤ .001 in at least one procedure). It is
important to note that the results indicated with an asterisk
(∗) are not directly comparable due to differing MTP control,
and are included for completeness.

The first five pathways are directly comparable. Of these,
two were not detected in any other analysis. Our procedure
was repeated for these pathways using the sum of the squared
t-statistics across genes. The nominal P-values for g2 Pathway
and cell cycle checkpoint II were.0044 and >.05, respectively.
Since we are interested in identifying pathways which may be
detectable by pathway methods, but not DE based methods
we will examine cell cycle checkpoint II more closely. Applying
a univariate t-test to each of the 10 genes yields one P-
value of 0.001 (cdkn2a), with the remaining P-values greater
than 0.1 hence a DE-based approach is unlikely to select this
pathway. Furthermore, P-values under 0.05 for change in
correlation are reported for rbbp8/rb1, nbs1/ccng2, atr/ccne2,
nbs1/tp53, and ccng2/tb53 (P = .002, .006, .008, .035, and
.036). Clearly, the difference in gene expression pattern is
determined by change in coexpression pattern. In Figure 1,
the correlations for all gene pairs for wild-type and mutation
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tp53 ccne2 fancg rbbp8 atr

nbs1 rb1 cdc34 ccng2

cdkn2a

(a)

tp53 ccne2 fancg rbbp8 atr

nbs1 rb1 cdc34 ccng2

cdkn2a

(b)

Figure 2: Bayesian network fits for mutation data for cycle
checkpoint II pathway using (a) Minimum Spanning Tree algorithm
(maximum indegree of 1); (b) Bayesian Information Criterion
(maximum indegree of 2).

groups are indicated. A clear pattern is evident, by which
correlation structure present in the wildtype class does not
exist in the mutation class.

To further clarify the procedure, we compare the BN
model obtained from the data for the ten genes associated
with the cell cycle checkpoint II pathway, separately for muta-
tion and wildtype conditions. If there is interest in a post-hoc
analysis of any particular pathway, the rational for the MST
algorithm no longer holds, since only one fit is required. It
is therefore instructive to compare the MST model to a more
commonly used method. In this case, we will use the Bayesian
Information Criterion (BIC) (see, e.g., [7]), with a maximum
indegree of 2. To fit the model we use a simulated annealing
algorithm adapted from [45]. The resulting graphs are shown
in Figures 2 (mutation) and 3 (wildtype). The MST and BIC
fits are labelled (a) and (b) respectively. For the mutation fit,
there is a very close correspondence between the topologies
produced by the respective methods. For the wildtype data,
some correspondence still exists, but less so then for the
mutation data. The topologies between the conditions differ
more significantly, as predicted by the hypothesis test.

5.1.2. Diabetes. No pathways were detected at a FDR of 0.25.
The two pathways with the smallest P-values were atrbrca
Pathway and MAP00252 Alanine and aspartate metabolism
(P = .0026, .003). In [33] the latter pathway was the single
pathway reported with PFER = 1. The comparable PFER

tp53 ccng2 nbs1 cdc34

rbbp8 fancg ccne2

atrrb1

cdkn2a

(a)

tp53 ccng2 nbs1 cdc34

rbbp8 fancg ccne2

atrrb1

cdkn2a

(b)

Figure 3: Bayesian network fits for wildtype data for cycle
checkpoint II pathway using (a) Minimum Spanning Tree algorithm
(maximum indegree of 1). (b) Bayesian Information Criterion
(maximum indegree of 2).

rate of the two pathways reported here would be 1.36 and
1.57. The atrbrca Pathway contains 25 genes. Of these, only
fance differentially expressed at a 0.05 significance level
(P = .0059). For each gene pair, correlation coefficients were
calculated and tested for equality between classes NGT and
DMT. Table 2 lists the 10 highest ranking gene pairs in terms
of correlation magnitude within the NGT class. Also listed
is the corresponding correlation within the DMT class, as
well as the two-sample P-value for correlation difference. The
analysis is repeated after exchanging classes, also in Table 2.
We note that for a sample size of 17, an approximate 95%
confidence interval for a reported correlation of R = 0.6
is (0.17, 0.84) whereas the standard deviation of a sample
correlation coefficient of mean zero is approximately 0.27.
There is likely to be considerable statistical variation in
graphical structure under the null hypothesis.

Examining the first table, differences in correlation
appear to be explainable by sampling variation. In the second
there are two gene pairs fanca/fance and fanca/hus1 with
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Table 1: P53 pathways, with GS size (N), unadjusted and FDR adjusted P-values (P,Pa). Inclusion in analyses cited in Section 5.1
indicated. †The complete name of DNA DAMAGE is DNA DAMAGE SIGNALLING. ‡The complete name of MAP00562 is
MAP00562 Inositol phosphate metabolism. ∗Inclusion criterion based on control rate of original analysis.

Pathway N P Pa Sub Efr Liu

SA G1 AND S PHASES 14 <.001 .08 n y n

atmPathway 19 <.001 .08 n n y

g2Pathway 23 <.001 .08 n n n

p53Pathway 16 <.001 .08 y y y

cell cycle checkpointII 10 <.001 .08 n n n

SA FAS SIGNALLING 9 .002 .14 n n∗ n∗

cellcyclePathway 23 .002 .16 n n∗ n∗

DNA DAMAGE† 90 .003 .17 n n∗ n∗

SA TRKA RECEPTOR 16 .003 .17 n n∗ y∗

radiation sensitivity 26 .003 .17 y y∗ y∗

ngfPathway 19 .004 .17 n y∗ n∗

GO ROS 23 .004 .17 n n∗ n∗

etsPathway 16 .004 .17 n n∗ n∗

ck1Pathway 15 .006 .21 n n∗ n∗

erkPathway 29 .007 .23 n n∗ n∗

MAP00562‡ 18 .007 .23 n n∗ n∗

arfPathway 13 .007 .23 n n∗ n∗

Table 2: Correlation analysis for DIABETES data. For each pathway and phenotype, 10 gene pairs with the largest correlation (×100)
magnitudes; correlation (×100) of alternative phenotype; and P-value (×1000) against equality.

atr brca pathway Alanine pathway

NGT cor NGT cor

genes ngt dmt P genes ngt dmt P

fancc/rad17 83 69 349 crat/got1 81 30 031

fancc/brca2 76 44 156 nars/dars 80 −24 <1

rad9a/rad17 76 87 338 crat/gpt 75 15 028

chek2/rad17 71 35 172 got2/adss −75 −02 012

brca1/hus1 −69 −29 148 got2/abat −73 34 001

rad17/brca2 67 56 632 ddx3x/got1 72 −17 004

atr/mre11a −64 −41 403 crat/ass 72 12 037

chek1/nbs1 −62 09 030 ddx3x/dars 71 12 043

rad51/rad1 −62 −23 198 gpt/got1 70 33 175

rad9a/fancc 59 76 388 ddx3x/abat −68 −41 305

DMT cor DMT cor

genes dmt ngt P genes dmt ngt P

rad9a/rad17 87 76 338 ddx3x/aars −76 −55 325

fanca/fance 81 14 009 crat/nars 74 26 074

rad9a/fancc 76 59 388 ddx3x/nars 73 66 715

fanca/hus1 −72 27 002 asns/ddo 60 42 502

brca1/mre11a 71 11 039 pc/aars −58 15 031

fancc/rad17 69 83 349 crat/pc 58 53 862

fancf/hus1 67 53 563 crat/ddx3x 58 51 813

brca1/atr −67 16 011 got1/dars −56 40 006

rad17/mre11a 64 11 086 pc/nars 55 18 244

fancg/rad51 64 22 160 asns/gad2 −54 −44 723
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Table 3: For stopped (St) and fixed (Fx) procedures, the table gives computation times; mean number of replications; % gene sets completely
sampled; number of pathways with P-values ≤.01; and number of such pathways in agreement.

Data
Time (hrs) Mean rep % comp #P ≤ .01

St Fx St Fx St Fx St Fx Both

diab 3.7 35.8 341.0 5000 5.4 100 6 6 6

p53 2.1 30.0 612.3 5000 10.5 100 18 19 18

small P-values (.009, .002). We note that they share a
common gene fanca and that they involve the only gene fance
exhibiting differential expression. The correlation patterns
within the two samples are otherwise similar, suggesting a
specific alteration of the network model.

The situation differs for the pathway MAP00252 Alanine
and aspartate metabolism, summarized in Table 2 using the
same analysis. The change in correlation is more widespread.
The 8 gene pairs with the highest correlation magnitudes
within the NGT sample differ between NGT and DMT at
a 0.05 significance level. Furthermore, the number of gene
pairs with correlation magnitudes exceeding 0.7 is 9 in the
NGT sample, but only 3 in the DMT sample.

5.1.3. Comparison of Fixed and Stopped Procedures. Both the
fixed and stopped procedures were applied to the preceding
analysis. The SPRT used parameters A = 0, B = 99.9,
θ0 = 0.05, θ1 = 0.07, and truncation at M = 5000. Table 3
summarizes the computation times for each method as well
as the selection agreement. In these examples, the stopped
procedure required significantly less computation time with
no apparent loss in power.

6. Conclusion

We have introduced a two-sample general likelihood ratio
test for the equality of Bayesian network models. Significance
levels are estimated using a permutation procedure. The
algorithm was proposed as an alternative form of gene-set
analysis. It was noted that the fitting of Bayesian networks
is computationally time consuming, hence a need for the
efficient calculation of a model fit was identified, particularly
for this application.

Two procedures were introduced to meet this require-
ment. First, we implemented a version of a minimum
spanning tree algorithm first proposed in [15] which permits
the polynomial-time calculation of the maximum likelihood
Bayesian network among those with maximum indegree of
one. Second, we introduced sequential testing principles to
the problem of multiple testing, finding that a straight-
forward stopping rule could be developed which preserves
group error rates for a wide range of procedures.

We may expect this form of test to be especially sensitive
to changes in coexpression patterns, in contrast to most gene-
set procedures, which directly measure aggregate differential
expression. In an application of the algorithm to two data sets
considered in [5], a number of selected gene-sets exhibited
clear differences in coexpression patterns while exhibiting
very little differential expression. This leads to the conjecture

that the optimal approach to gene-set analysis is to couple a
test which directly measures aggregate differential expression
with one designed to detect differential coexpression.
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