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This paper presents a novel feature vector based on physicochemical property of amino acids for prediction protein structural
classes. The proposed method is divided into three different stages. First, a discrete time series representation to protein sequences
using physicochemical scale is provided. Later on, a wavelet-based time-series technique is proposed for extracting features from
mapped amino acid sequence and a fixed length feature vector for classification is constructed. The proposed feature space
summarizes the variance information of ten different biological properties of amino acids. Finally, an optimized support vector
machine model is constructed for prediction of each protein structural class. The proposed approach is evaluated using leave-one-
out cross-validation tests on two standard datasets. Comparison of our result with existing approaches shows that overall accuracy
achieved by our approach is better than exiting methods.
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1. Introduction

Determination of protein structure from its primary seq-
uence is an active area of research in bioinformatics. The
knowledge of protein structures plays an important role
in understanding their functions. Understanding the rules
relating the amino acid sequence to the three-dimensional
structure of the protein is one of the major goals of
contemporary molecular biology. However, despite more
than three decades of both experimental and theoretical
efforts prediction of protein structure still remains one of the
most difficult issues.

The concept of protein structural classes was originally
introduced by Levitt and Chothia [1] based on a visual
inspection of polypeptide chain topologies in a dataset of
31 globular proteins. A protein (domain) is usually classified
into one of the following four structural classes: all-α, all-β,
α/β, and α + β. Structural class categorizes various proteins
into groups that share similarities in the local folding
patterns. The all-α and all-β classes represent structures that
consist of mainly α-helices and β-strands, respectively. The
α/β and α + β classes contain both α-helices and β-sheets

where the α/β class includes mainly parallel α-helices and
β-strands and α + β class includes those in which α-helices
and β-strands are largely segregated. Prediction of structural
classes is based on identifying these folding patterns based
on thousands of already categorized proteins, and applying
these patterns to unknown structures but known amino acid
sequences. Structural Classification of Proteins (SCOP) [2] is
one of the most accurate classifications of protein structural
classes and has been constructed by visual inspection and
comparison of structures by experts.

In the past two decades several computational techniques
for prediction of protein structural classes have been pro-
posed. Prediction is usually a two-step process. In the first
step a fixed length feature vector is formed from protein
sequences which are of different length. The second step
involves a classification algorithm. Klein and Delisi [3]
proposed a method for predicting protein structural classes
from amino acid sequence. Later on, Klein [4] presented
a discriminant analysis based technique for this problem.
Zhou et al. [5] in 1992 proposed a weighting method
to predict protein structural class from amino acids. A
maximum component coefficient method was proposed by
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Zhang and Chou [6]. A neural network based approach
[7] for protein structural classes was also developed using
six hydrophobic amino acid patterns together with amino
acid composition. A new algorithm that takes into account
the coupling effect among different amino acid components
of a protein by a covariance matrix is proposed in [8].
In [9], Chou and Zhang introduced Mahalanobis distance
to reflect the coupling effect among different amino acids
components, improving the accuracy of the current problem.
A support vector machine (SVM) method using amino acid
composition features for prediction of protein structural
class was presented by Cai et al. [10] in 2001 and is one of
the most accurate methods for classification. A supervised
fuzzy clustering approach based on amino acid composition
features was introduced by Shen et al. [11]. A combined
approach, LogitBoost, was proposed by Feng et al. [12].
It combines many weak classifiers together to build a
stronger classifier. In 2006, Cao et al. [13] proposed a rough
set algorithm based on amino acid compositions and 8
physicochemical properties data.

In this paper, a three step procedure is proposed for
prediction of protein structural class. The main contribution
of this paper is in providing a novel feature vector which
is obtained by applying a wavelet-based time-series analysis
approach. The proposed feature extraction from protein
sequence is inspired from the work of Vannucci and Lio [14]
on transmembrane proteins. The fixed length feature vector
for classification proposed is derived from ten physicochem-
ical properties of protein sequences. The physicochemical
properties are used to convert the protein sequences from
symbolic domain to numeric domain and to derive a time
series representation for protein sequences. Features are
extracted by applying a wavelet-based analysis technique
for time series data on mapped protein sequences. The
feature vector summarizes the variation of physicochemical
properties in the protein sequence. Finally, a support vector
machine is trained using the novel feature vector and the
parameters are optimized for generating accurate model
(providing highest prediction accuracy).

Leave-one-out cross-validation also called jackknife test
was performed on the datasets that were constructed by
Zhou [15] from SCOP. The datasets were also used by
Cai et al. [10], Cao et al. [13] for their experiments. An
overall accuracy of 82.97% and 93.94% was achieved for 277
domains and 498 domains datasets, respectively, using the
proposed approach.

The paper is organized as follows. In Section 2, we
describe the steps followed for extracting wavelet variance
features from protein sequences. A brief introduction to
support vector machine (SVM) is also provided in this
section. Section 3 provides the experiment results obtained
for datasets of structural protein sequences. Conclusion
follows in Section 4.

2. Method

The proposed approach for identification of structural
classes of proteins is divided into three different stages:
amino acid mapping, feature extraction, and classification.

In the first stage the protein sequences are mapped to various
physicochemical scales as provided in the literature. After this
mapping procedure the protein sequences become discrete
time series data. The second stage involves construction
of fixed length feature vector for classification. The feature
vector is generated by combining wavelet variance [16]
features extracted from different physicochemical scales used
for mapping stage. Finally, an SVM-based classification is
performed based on the novel extracted features to identify
the structural class of a protein sequence.

2.1. Amino Acid Mapping

In this stage, ten different physicochemical amino acid
properties were used. The first is the average flexibility
indices provided by Bhaskaran and Ponnuswamy [17]. The
second is the normalized hydrophobicity scales provided
by Cid et al. [18]. The third is the transfer free energy
given by M. Charton and B. I. Charton [19] and cited by
Simon [20]. The fourth is the residue accessible surface area
in folded protein provided by Chothia [21]. The fifth is
the relative mutability obtained by multiplying the number
of observed mutations by the frequency of occurrence of
the individual amino acids and is provided by Dayhoff
et al. [22]. The sixth is the isoelectric point provided by
Zimmerman et al. [23]. The seventh is the polarity of amino
acids provided by Grantham [24]. The eight is the volume
of amino acid provided by Fauchere et al. [25]. The ninth is
the composition of the amino acids provided by Grantham
[24]. The tenth is the molecular weight of the amino acids
given by Fasman [26]. The numerical indices representing
physicochemical property of amino acids were downloaded
from http://www.genome.jp/dbget/.

2.2. Feature Construction

The representation of a protein sequence by a fixed length
feature vector is one of the primary tasks of any protein
classification technique. In this section, we present a wavelet-
based time-series approach for constructing feature vector.
Wavelet transform is a technique that decomposes a signal
into several groups (vectors) of coefficients. Different coeffi-
cient vectors contain information about characteristics of the
sequence at different scales. The proposed feature vector con-
tains information about the variability of ten physiochemical
properties of protein sequences over different scales. The
variability of physiochemical properties is represented in
terms of wavelet variance [16].

In the present work, a variation of the orthonormal
dis-crete wavelet transform (DWT) [27, 28], called the
maximal overlap DWT (MODWT) [29] is applied for feature
extraction. In past, MODWT has been applied for analysis
of atmospheric data [30] and economic time series data [31,
32]. The MODWT is a highly redundant and nonorthogonal
transform. The MODWT was selected over DWT because
it can handle any sample size N, while Jth order DWT
restricts the sample size to multiple of 2J . The property is very
useful for analysis of protein sequences, as the length of the
sequences is not a multiple of 2J . In addition, MODWT yields
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an estimator of the variance of the wavelet coefficients that is
statistically more efficient than the corresponding estimator
based on the DWT.

Let P be an N-dimensional column vector containing the
mapped protein sequence series P0,P1, . . . ,PN−1, where N is
the length of the protein sequence. It is assumed that Pt was
collected at time tΔt, where Δt is the time interval between
consecutive observation (in the present case Δt is equal to 1
amino acid). The MODWT of P for maximum level J is given
by

Q = ˜W P, (1)

where Q is a column vector of length (J + 1)N , and ˜W is an
(J+1)N×N real-valued nonorthogonal matrix. The vector of
MODWT coefficients given in (1) may be decomposed into
J + 1 vectors:

Q = [Q1,Q2, . . . ,QJ ,RJ
]T

, (2)

where Qj (where j = 1, 2, . . . , J) and RJ are column vectors
of length N. The vector Qj contains the MODWT wavelet
coefficients associated with change in P on scale of length
τj = 2 j−1, while RJ is a vector containing the MODWT
scaling coefficients associated variation at scales of length 2J

and higher. In addition to MODWT coefficients, the matrix
˜W can be decomposed into J + 1 submatrices, each of them
N ×N and is given by

˜W = [˜W 1, ˜W 2, . . . , ˜W J , ˜VJ
]T
. (3)

Instead of using the wavelet and scaling filters, the MODWT

utilizes the rescaled filters, that is, ˜hj = hj/2 j and g̃ j = gj/2 j

(where, j = 1, 2, . . . , J). The terms hj and gj are wavelet and
scaling filters, respectively. The wavelet filter approximates
high-pass filter, and the scaling filter approximates low pass
filter. Details regarding wavelet and scaling filters can be
found in [29]. The N × N dimensional submatrix ˜W 1 is
constructed by circularly shifting the rescaled wavelet filter
˜h1 by integer units to the right so that

˜W 1 =
[

˜h (1)
1 , ˜h (2)

1 , . . . , ˜h (N−1)
1 , ˜h (0)

1

]T
. (4)

Similarly, ˜W 2, ˜W 3, . . . , ˜W J can be obtained. The MODWT
is an energy-preserving transform [29, 33] and is given as

‖P‖2 = ‖Q‖2 =
J
∑

j=1

∥

∥Qj

∥

∥

2
+
∥

∥RJ
∥

∥

2
. (5)

The sample variance (empirical power) of P is decomposed
into pieces that are associated with scales τ1, τ2, . . . , τJ

σ̂2
P ≡

1
N
‖P‖2 − P2 = 1

N

J
∑

j=1

∥

∥Qj

∥

∥

2
+

1
N

∥

∥RJ
∥

∥

2 − P2
, (6)

where σ̂2
P is the sample variance of P, and P is its mean.

The term ‖Qj‖2/N represents the contribution to the sample
variance of P due to change at scale τj . For example, the

Table 1: Dataset for the current study.

all-α all-β α/β α + β Total

Dataset1 69 61 81 65 276

Dataset2 105 126 135 129 495

average flexibility indices property of a protein sequence in
terms of wavelet variance vector is given as follows:

FFlex =
[

σ̂2
Flex(1), σ̂2

Flex(2), . . . , σ̂2
Flex(J)

]T
, (7)

where J is the maximum level of decomposition of the time
series data, that is, protein sequence. Similarly, wavelet vari-
ance vectors for hydrophobicity, transfer free energy, residue
accessible surface area, relative mutability, isoelectric point,
polarity, volume, composition, and molecular weight are cal-
culated and are represented by FHyp, FFree, FArea, FMut, FIso,
FPol, FVol, FComp, and FMol, respectively. The feature vector
FPFold is constructed by concatenating all seven wavelet
variance vectors and is given as follows:

FPFold = FFlex ⊕ FHyp ⊕ FFree ⊕ FArea ⊕ FMut ⊕ FIso

⊕ FPol ⊕ FComp ⊕ FVol ⊕ FMol.
(8)

The physiochemical variation of a protein sequence is
summarized in the proposed feature vector. The dimension
of FPFold is equal to 10∗J and is dependent on the number of
levels (J) to which the time series data (i.e., protein sequence)
has to be decomposed. The value of J is further dependent on
the length of time series data (i.e, protein sequence length)
and J ≤ log2N , where N is the number of observation
points in the time series or the length of protein. As most
of the protein sequences taken up for the experiment have
length greater than 32, we have selected J = 5. In this study,
Daubechies [27] wavelet has been used for analysis.

2.3. Classification

The SVM was proposed by Cortes and Vapnik [34] as a very
effective technique for pattern classification. SVM is based on
the principle of structural risk minimization (SRM), which
bounds the generalization error to the sum of training set
error and a term depending on the Vapnik-Chervonenkis
dimension [34] of the learning machine. The SVM induction
principle minimizes an upper bound on the error rate of
a learning machine on test data (i.e., generalization error),
rather than minimizing the training error itself which is used
in empirical risk minimization. This helps them to generalize
well on the unseen data.

An open-source SVM implementation called LIBSVM
[35] was used for classification. It provides various kernel
types: radial basis function (RBF), linear, polynomial and
sigmoid. Experiments were conducted using different ker-
nels; however the RBF was selected because of its superior
performance for the current work. Further, for finding
the optimum values of parameters (C, γ) for RBF kernel,
LIBSVM provides an automatic grid search technique using
cross-validation. Basically various pairs of (C, γ) are tried
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Figure 1: The ROC curve for identification of four structural classes of dataset1, all-α domains (a), all-β domains (b), α/β domains (c), and
α + β domains (d).

Table 2: Experimental result of one-versus-others test on dataset1 evaluated using LOOCV.

all-α all-β α/β α + β

True positive (TP) 60 54 72 43

False negative (FN) 9 7 9 22

True negative (TN) 199 208 191 209

False positive (FP) 8 7 4 2

(TP + TN)/(TP + FN + TN + FP) in % 93.84% 94.93% 95.29% 91.67%

Area under curve (AUC) 0.947 0.970 0.986 0

Optimal SVM parameters
C = 20 C = 10 C = 10 C = 2

γ = 0.07 γ = 0.03 γ = 0.5 γ = 0.3

and the one that provides best cross-validation accuracy is
selected.

3. Experimental Results

To evaluate the performance of our approach two datasets of
protein sequences constructed by Zhou [15] are used. The
first dataset consists of 277 domains, of which 70 are all-α

domains, 61 all-β domains, 81 are α/β domains, and 65 are
α + β domains. The second dataset consists of 498 domains,
of which 107 are all-α domains, 126 all-β domains, 136 are
α/β domains, and 129 are α + β domains. The datasets were
preprocessed before using for the experiment. The protein
sequences having length less than 32 amino acids (as J = 5,
where J is the maximum level of decomposition for wavelet
transform) were removed from the dataset. The number of
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Figure 2: The ROC curve for identification of four structural classes of dataset2, all-α domains (a), all-β domains (b), α/β domains (c), and
α + β domains (d).

protein sequences obtained after preprocessing both datasets
is provided in Table 1.

The performance of the SVM classifier is measured
using leave-one-out cross-validation (LOOCV) technique.
LOOCV is n-fold cross-validation, where “n” is the number
of instances in the datatset. Each instance in turn is left out,
and the learning method is trained on all the remaining
instances. It is judged by its correctness on the remaining
instances-one or zero success or failure, respectively. The
results of all “n” judgments, one for each member of the
dataset, are averaged, and that average represents the final
error estimate.

The classification of a protein sequence into one of the
four structural classes is a multi-class classification problem.
For identifying four different structural classes one-versus-
others approach was followed. Four different SVMs were
constructed, each specific to one class. The kth SVM was
trained with all the samples of the kth class with positive
labels and samples of remaining classes with negative labels.
For example (Table 2, column 1 and Table 3, column 1),
the SVMs for all-α domains protein sequences are positive

labeled where as all-β domains, α/β domains, and α + β
domains protein sequences are negative labeled. The exper-
imental results obtained from the four SVMs for dataset1
and dataset2 are presented in Tables 2 and 3, respectively.
The optimal SVM parameters obtained for the experiments
are also provided in Tables 2 and 3. The accuracies for the
current problem were calculated by applying the standard
definition provided by previous work for multiclass protein
sequence classification problem using SVM [36–38]. The
prediction accuracy of the structural classes and overall
prediction accuracy are given by

Accuracyk =
pk

obsk
,

Overall accuracy =
∑4

k=1 pk
M

,

(9)

where M is the total number of protein sequences, obsk
is the number of protein sequences of class “k,” pk is the
number of correctly predicted protein sequences of class
“k.” The accuracy of each class and overall accuracy for
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Table 3: Experimental result of one-versus-others test on dataset2 evaluated using LOOCV.

all-α all-β α/β α + β

True positive (TP) 98 119 131 117

False negative (FN) 7 7 4 12

True negative (TN) 387 367 352 362

False positive (FP) 3 2 8 4

(TP + TN)/(TP + FN + TN + FP) in % 97.98% 98.18% 97.58% 96.77%

Area under curve (AUC) 0.990 0.994 0.992 0.983

Optimal SVM parameters
C = 2 C = 2 C = 2 C = 1

γ = 0.1 γ = 0.1 γ = 0.2 γ = 0.2

Table 4: Comparison of Leave-one-out cross-validation accuracy obtained for protein structural classification problem on the two datasets
by our approach and existing approaches.

Dataset Method
Prediction accuracy for each structural class (%)

Overall accuracy (%)
all-α all-β α/β α + β

Dataset1

Our approach 86.96 88.52 88.89 66.15 82.97

Component coupled [6] 84.3 82.0 81.5 67.7 79.1

Neural network [7] 68.6 85.2 86.4 56.9 74.7

SVM [10] 74.3 82.0 87.7 72.3 79.4

Rough sets [13] 77.1 77.0 93.8 66.2 79.4

Dataset2

Our approach 93.33 94.44 97.04 90.7 93.94

Component coupled [6] 93.5 88.9 90.4 84.5 89.2

Neural network [7] 86.0 96.0 88.2 86.0 89.2

SVM [10] 88.8 95.2 96.3 91.5 93.2

Rough sets [13] 87.9 91.3 97.1 86.0 90.8

datset1 and dataset2 calculated using (9) are shown in
Table 4. The overall accuracy obtained by our approach for
dataset1 and dataset2 is 82.97% and 93.94% respectively. The
overall performance of our approach is better than existing
techniques. Further, the receiver operating characteristic
(ROC) curve and area under curve (AUC) for the proposed
protein structural classification task were also calculated. An
ROC curve is a plot of true positive rate as the ordinate
versus the false positive rate as the abscissa; for a classifier, it
is obtained by continuously varying the threshold associated
with the decision function [39]. The ROC and AUC obtained
for the one-versus-other experiment of dataset1 and dataset2
are presented in Figures 1 and 2, respectively. The ROC curve
shown in Figure 1(a) is obtained when all-α domains protein
sequences in dataset1 are positive labeled, where as all-β
domains, α/β domains, and α+β domains protein sequences
in dataset1 are negative labeled. Similarly, ROC curve for
other classifications is also obtained.

4. Conclusion

In this work, we have presented a novel wavelet variance
based feature vector for prediction of protein structural
class. The aim of this research is to provide a new and
complementary set of features for the current problem. Based
on pattern recognition framework, the proposed approach
is divided into three different tasks: amino acid mapping,

feature construction, and classification. The feature vector
summarizes the variation of ten different physicochemical
properties of amino acids. The feature extraction technique
is based on wavelet based time series analysis. Experiments
were performed on two standard datasets (constructed by
Zhou [15]). The result of LOOCV test shows that the
proposed method achieves accuracy better than existing
methods. The proposed approach can also be applied for
identification of membrane protein type, enzyme family
classification, and many others.
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