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1. Introduction

Currently, one of the most important research problems in
molecular biology and bioinformatics consists of finding out
the mechanisms that govern the gene regulations, which
are considered to play fundamental roles in the operation
of all processes taking place in living cells. Learning the
structure and machinery of gene regulations opens up the
possibility for understanding and controlling the functioning
of organisms at the molecular level, and for designing
intelligent therapies and drugs. In a biological process such
as cell cycle or environmental response, a gene’s product, the
protein, can serve as a transcription factor of a target gene by
binding to the target gene’s regulatory region on chromatin
and affect its transcription. The protein can also influence
another gene’s expression in subsequent stages, for example,
through splicing or translation. Alternatively, these protein-
gene relationships can be viewed as gene-gene interactions,
and are modeled in general as genetic regulatory networks.

Recent years have witnessed a number of different frame-
works for modeling genetic regulatory networks, ranging
from fine-scale modeling at the molecular level in terms
of partial differential equations and stochastic equations,

to large scale modeling at the gene and protein-level in
terms of Boolean and probabilistic Boolean networks, and
(dynamic) Bayesian networks; see, for example, [1–6] and
their toolboxes [7–9]. The small scale modeling techniques
are used to capture the detailed biochemical aspects of
molecular interactions and are in general very computational
demanding. On the other side, the large-scale models provide
a global vision of the interactions among the constituent
elements of genetic regulatory networks and are generally
represented in terms of graphs.

In the middle of 1990s, the birth of DNA microarrays
equipped the industry with the capability to measure
simultaneously the concentration of genome-wide mRNA
expressions. The gene expression data produced thereafter
by gene chips have attracted extensive research on the
inference of genetic regulatory networks based on various
network models [10–18]. There are two types of DNA
microarray data sets: time series (or time dependent) and
time independent (also called steady-state or single point
time series) data sets. In general, the time-independent
gene expression profiles are capable of recovering steady-
state attractors, but fail to recover the direct and oriented
(temporal regulating) relationships. On the other side, time
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series data sets can improve the inference greatly in contrast
to time-independent data sets [13]. However, the financial
costs, ethnical concerns, and implementation issues prevent
collecting beneficial time series data. Recent statistics show
that about 70% of published data are time independent [19].
Therefore, the steady-state analysis is highly valuable despite
the difficulty of making accurate inference of temporal
relationships.

Inference of gene regulatory networks based solely on
the information provided by microarray data is limited by a
number of factors: number of available microarrays, quality
of data samples, experimental noise, and errors (cross-
hybridizations). It is also known that post-transcriptional
modifications and transcripts that are present at low levels
are generally not detectable by microarrays. Since the gene
activity is measured by the mRNA level, the underlying
assumption is that there is a significant correlation between
the mRNA level and the amount of protein associated with
mRNA. However, the magnitude of such a correlation varies
significantly depending on the type of protein involved.
Therefore, a combined approach which, besides gene expres-
sion data, exploits additional data sources is likely to enhance
the inference process.

The advent of in vivo chromatin immunoprecipitation
(ChIP) assays has enabled to test whether a protein acting as a
transcription factor binds to a specific DNA segment. Hence,
ChIP assays serve as a promising mechanism to examine the
regulatory relationships. In ChIP experiments, the protein is
immobilized on the chromatin, then the chromatin is broken
into DNA fragments, and the DNA-protein complexes are
immunoprecipitated by using antibodies corresponding to
the tested protein. Afterwards the DNA bound by the protein
in question can be isolated and identified by using a cDNA
microarray chip. The whole process is also called a ChIP-chip
experiment, and inherits several disadvantages. The protein
to be tested has to possess a specific antibody, which might
not be synthesized, discovered, or exist. In addition, the tran-
scriptional regulation is a complex process that is expressed
in several different aspects. The binding of the transcription
factor to the promoter region of the target gene is the most
pristine mode. Especially for eukaryotic organisms, some
regulatory bindings take place at a region far away from
the regulated gene. This fact makes the binding information
questionable for determining the regulation relationships.
Furthermore, the experimental results are represented by p-
values and the determination of the binding relationship
is achieved through threshold comparison. However, the
selection of the p-value threshold introduces a dilemma. A
high threshold not only identifies the most probable binding
relationships but also might miss many true relationships
with lower p-values, while a low threshold infers more
relationships, among which more might be false alarms. A
good tradeoff is not easy to make. Besides, the cost factor
has also to be considered. Generally, ChIP-chip experiments
are very expensive and testing thousands of proteins is not
affordable.

A combination of both steady-state microarray data
and ChIP-chip data might help in making more accurate
inferences. Intuitively, these two different types of data com-

plement the shortcomings of each other. This motivates us to
propose a Bayesian approach to analyze jointly both data sets
and to establish a confidence measure of gene interactions.
The proposed scheme possesses six key features which make
it different from the existing algorithms. First, gene expres-
sion data in steady-state are considered, while time course
data are used in other works like [11, 13, 20]. Second, most
of the current schemes recover a unique genetic network
represented by a graph which best fits the observed data in
a certain metric, while the proposed approach determines
the posterior probabilities for all gene-pair interactions and
avoids to make a dichotomous decision that classifies each
gene interaction as being either connected or disconnected.
The proposed approach can be easily transformed into a
dichotomous scheme by only preserving the highly probable
gene interactions. Third, the underlying structural model is
assumed to be a directed cyclic graph, which allows cycles
(feedback loops) and directed acyclic graphs are treated as
special cases. This contrasts to Bayesian networks, which
are directed acyclic graphs. Feedback loops are a common
network motif in biological processes and their function is to
yield the necessary redundancy and stability for the system
[1]. Therefore, methods based on Bayesian networks, for
example, [21–23], lose their validity in the inference of cyclic
graphs. Fourth, the proposed approach assumes continuous-
valued variables, and this prevents the information loss
incurred by data quantization. This represents an advantage
compared with the discrete-valued networks such as [21–23].
Fifth, the proposed connectivity score is oriented and has a
very clear meaning, in the sense of posterior probabilities,
while the existing scores based on the mutual information
[14, 18, 24] are vague and lack orientation information.
Sixth, in the proposed approach the system kinetics are
assumed to be nonlinear, while linear models are commonly
utilized for the purpose of simplification [12, 15]. Besides,
the proposed scheme establishes a general framework whose
components can be customized to fit the nature of the
underlying biological system.

The rest of the paper is organized as follows. Section 2
discusses the graphical model and system dynamics that
govern the genetic expressions. Section 3 translates the p-
values of ChIP-chip experiments into regulation probabilities
and formulates the inference algorithm through Bayesian
analysis. In Section 4, the proposed algorithm and other
three schemes are simulated on a set of artificial networks.
Performance comparisons illustrate that the proposed algo-
rithm exceeds in terms of several metrics. The robustness
of kinetics model is also discussed via simulations. Realistic
data sets are exploited in the proposed inference framework
and a genetic network is presented to account for the
genetic response to environmental changes. Finally, Section 5
concludes the paper with remarks on possible future works.

2. Methods

Genetic regulatory networks can be represented by a
parameterized graph (G,Θ), where G and Θ stand for the
graph structure and parameter set, respectively. The graph
structure qualitatively explains the direct gene interactions,
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while the parameter set quantitatively describes the system
kinetics.

2.1. Structural Model

The graph G(V, E) is employed to map gene interactions
at transcriptional level, where V denotes the set of vertices
(genes) and E stands for the set of edges (regulation
relationships). If gene X regulates gene Y , graphically such
a relation is represented in terms of an oriented edge X→Y ,
where X is a parent of Y and Y is considered a child of X .
All genes that present incidence edges with gene X represent
the set of parental genes of X , and are compactly denoted
in terms of the notation ΠX . If two genes X and Y interact
with each other but the regulation orientation cannot be
determined, an undirected edge is laid between the two
genes as X-Y , which means both orientations are possible. A
sequence of consecutive-oriented edges constitutes a directed
path. If there is no directed path which starts and ends at the
same vertex, in other words, the graph contains no loops,
the graph is called a directed acyclic graph (DAG). DAGs
lie at the basis of Bayesian networks, which are commonly
employed to model causal relationships [25].

General directed graphs (with possibly cycles) will serve
as our structural model since they are consistent with the
features exhibited by biological systems, in which loops
account for system redundancy and stability. Given the graph
structure G, the parent set Π is specified for any gene X . For
conciseness, the subscript X associated with some variables
is omitted in the analysis procedure when the context has
clearly specified the gene in question. Next, we discuss the
system kinetics and parameters defined in Θ.

2.2. System Kinetics

The system kinetics represents the dynamics that governs
the gene mRNA concentrations in terms of gene-gene
interactions. It can be modeled by a set of differential
equations (DEs). A simplified form is a set of linear DEs.
However, we accept the more complex model which was
employed previously by [16, 17] since it is much more
realistic and accounts for the expression saturation. Given a
gene X , its parent set Π can be further partitioned into two
disjoint subsets: the activator set A and the repressor set R,
that is, Π = A∪R and A∩R = φ. The kinetics of gene X can
be explained by the following differential equation:

dx

dt
= −λx +

δ +
∑|A|

i=1a
αi
i

1 +
∑|A|

i=1a
αi
i +

∑|R|
j=1r

γj
j

, (1)

where x is the concentration of gene X ’s transcriptional
product, namely, mRNA. In this paper, to simplify the
exposition, the gene name and its expression are used
interchangeably. The changing rate of gene X is controlled
by its activating and repressing parents, denoted individually
by ai ∈ A and r j ∈ R. α and γ serve as the regulating
factors corresponding to each activator and repressor. α
and γ assume positive values, and hence can be modeled
by a gamma distribution with shape and scale parameters

(κ,β). Here we can unbiasedly assume that the activators
and repressers share the same gamma distribution for
their regulation factors. Other light-tail distributions, such
as Weibull and lognormal distributions, could also be
employed. However, since gamma distribution is popular in
modeling the reaction rate or molecular concentration [26],
the gamma distribution is chosen here. λ stands for the gene
degradation rate and the time scale can be properly chosen in
order to normalize λ to the unit value (λ = 1). δ represents
the expression baseline rate, taht is, the expression rate for X
when there is neither activator nor repressor regulating the
target gene X . Suppose that y represents the observation of
x, then y assumes the form y = x + ε, where ε incorporates
all noise sources and is modeled by an additive Gaussian
random variable with zero mean and variance σ2.

As the response to environmental changes or incitations,
a mature biological system always converges to a certain
steady-state, in which all genes stay in equilibrium and do
not change their expressions. In this context, the periodic
processes, for example, cell cycle and circadian rhythm, are
excluded from our research interest. By setting dx/dt = 0 and
λ = 1, the observation y of the steady-state gene expression
for gene X can be expressed as

y = δ +
∑|A|

i=1a
αi
i

1 +
∑|A|

i=1a
αi
i +

∑|R|
j=1r

γj
j

+ ε. (2)

Given a parent structure Π for gene X , the parameters in
Θ can be summarized as follows.

(1) For each parent π ∈ Π, a binary variable is demanded
to specify whether the parent is an activator or
repressor, that is, 1A(π), where 1 is the indicator
function and it assumes the value 1 when π ∈ A, and
0 otherwise. It can be modeled by a Bernoulli random
variable with known success probability ρ.

(2) For each activator a ∈ A and repressor r ∈ R,
it is assumed that the regulating factors α, γ∼
Gamma(κ,β), where κ, β are known.

(3) The baseline parameter δ is usually known.

(4) The noise ε∼N(0, σ2), where σ2 can be set to a
specific value or estimated.

It is worth to note that the choice of nonlinear differential
equation and parameter priors does not influence the flow
of analysis. Our scheme stands for a general framework
and the detailed parameters can be easily customized to fit
different scenarios. There are various mathematical models
for system kinetics, such as [27–29]. The kinetics in 1 is
chosen as our dynamic model because it possess the property
of saturation, a key idea of Michaelis-Menten kinetics [29].
Besides, it is fairly simple and it also takes account of most
other biological properties. Therefore, in the simulation of
the real data set, we are assuming the proposed kinetics is
true.

3. Inference Method

Consider a system composed of n genes indexed by {1,
2, . . . ,n}. ChIP-chip experiments can be conducted to
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examine whether gene i’s corresponding protein binds gene
j’s regulatory region. Usually this regulatory sequence is
a promoter region which is located within 600 base pairs
upstream of the coding region of gene j. The experimental
results are represented in terms of p-values. In the first step,
it is necessary to translate the p-value p into the probability
of existence of a regulation relationship from gene i to gene
j, which is denoted as P (i→ j | p). This probability will act
as the prior knowledge to integrate gene expression data.

3.1. Incorporating ChIP-Chip Data

The p-value is within the range of [0, 1]. After studying the
properties of the microarray data, Allison proposed to exploit
mixed Beta distribution to model the p-value [30]. If the
transcription factor i regulates gene j, it is assumed that the
ChIP-chip experiment produces a p-value p which conforms
to a Beta distribution with parameters (φ, ζ),

f (p | i −→ j) = pφ−1(1− p)ζ−1

B(φ, ζ)
, (3)

where f (·) stands for the probability density function and
B(·, ·) represents the beta function. On the other hand, if
i does not regulate j, the p-value assumes a different Beta
distribution with parameters (ψ, ξ):

f (p | i � j) = pψ−1(1− p)ξ−1

B(ψ, ξ)
. (4)

Based on the knowledge provided by established and verified
genetic networks, one can infer a prior knowledge about the
probability of connectivity between arbitrary genes, denoted
as η(i→ j), for all i, j. Such statistics regarding the network
connectivity can be found in the open literature, for example,
the data sets for yeast [31], and Drosophila [32]. By applying
Bayes theorem, we obtain

P (i −→ j | p)

= ηB(ψ, ξ)pφ−1(1− p)ζ−1

ηB(ψ, ξ)pφ−1(1− p)ζ−1 + (1− η)B(φ, ζ)pψ−1(1− p)ξ−1 .

(5)

For simplicity, a uniform distribution can be alternatively
employed to account for the p-value when i � j. In this case,
ψ = 1, ξ = 1, and (5) takes the form

P (i −→ j | p) = ηpφ−1(1− p)ζ−1

ηpφ−1(1− p)ζ−1 + (1− η)B(φ, ζ)
. (6)

The determination of φ and ζ depends on the experimen-
tal knowledge of the accuracy of selecting p-value thresholds.
In the first step, a p-value threshold pt is imposed, then
the validity of all bindings with p-values less than pt is
corroborated by biological experiments. In this way, we can

gain knowledge of the probability P (i→ j | p < pt), which
can be written in the form of

P
(
i −→ j | p < pt

)

= ηP
(
p < pt | i −→ j

)

ηP
(
p < pt | i −→ j

)
+ (1− η)P

(
p < pt | i � j

)

= η
∫ pt

0 p
φ−1(1− p)ζ−1dp

η
∫ pt

0 p
φ−1(1− p)ζ−1dp + pt(1− η)B(φ, ζ)

.

(7)

Some works in the literature, for example, [33], have
made the observation that at a p-value threshold of 0.001, the
frequency of false positives is 6%–10%, that is, P (i � j | p <
pt) ∈ [6%, 10%]. Taking into account these special points,
we can determine the pair (φ, ζ) in a small range. In our case,
φ ≈ 0.1 and ζ ≈ 100. Finally, a table can be set up to map
the p-value into the edge existence probability, which can be
computed only once. It is an overhead for the computational
system but it does not assume much computational resource
in the runtime.

3.2. Exploiting Steady-State Gene
Expression Data

Assume that m observations of expression vector are
obtained and stored in matrixDn×m. Next, we develop a com-
putational approach to establish the posterior probability of
the regulation i→ j, that is, the probability of the existence
of the edge i→ j, which is represented by P (i→ j | D, p). This
posterior can be obtained through integration over the whole
parental gene set and parameter space for gene j:

P (i −→ j | D, p) =
∑

Π j

∫

Θ j

f
(
i −→ j,Π j ,Θ j | D, p

)
dΘ j

=
∑

Π j

∫

Θ j

1Π j (i) f
(
Π j ,Θ j | D, p

)
dΘ j ,

(8)

where the function 1Π j (i) is the indicator function, which
takes 1 if i ∈ Π j and 0 otherwise. Applying Bayes theorem,
f (Π j ,Θ j | D, p) can be expressed as

f
(
Π j ,Θ j | D, p

)

= f
(
D | Π j ,Θ j , p

)
f
(
Π j ,Θ j | p

)

f (D | p)

= f
(
D | Π j ,Θ j

)
f
(
Π j ,Θ j | p

)

f (D)

= f
(
D | Π j ,Θ j

)
f
(
Π j ,Θ j | p

)

∑
∏

j

∫
Θ j
f
(
D | Π j ,Θ j

)
f
(
Π j ,Θ j | p

)
dΘ j

= f
(
Dj | D j ,Π j ,Θ j

)
f
(
Π j ,Θ j | p

)

∑
∏

j

∫
Θ j
f
(
Dj | D j ,Π j ,Θ j

)
f
(
Π j ,Θ j | p

)
dΘ j

,

(9)
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where Dj denotes the observations of gene Xj , and D j

represents the collection of all the observations pertaining to
all genes excluding those of gene Xj . f (Π j ,Θ j | p) denotes
the probability density of the high-dimensional parental
model given the observation of ChIP-chip data. f (Dj |
D j ,Π j ,Θ j) stands for the gene expression likelihood given
the parental values and the graphical model. It is a Gaussian
distribution with known variance and mean determined by
the first part of (2). The second equality in (9) holds because
we believe the ChIP-chip experiment and steady-state gene
expression measurements are independent. By plugging (9)
into (8), it can be inferred that

P (i −→ j | D, p)

=
∑
∏

j

∫
Θ j

1Π j (i) f
(
Dj | D j ,Π j ,Θ j

)
f
(
Π j ,Θ j | p

)
dΘ j

∑
∏

j

∫
Θ j
f
(
Dj | D j ,Π j ,Θ j

)
f
(
Π j ,Θ j | p

)
dΘ j

.

(10)

The integrations at the numerator and denominator of (10)
cannot be generally performed in a closed-form expression.
However, the Monte Carlo methods enable to numerically
evaluate the posterior probabilities. We can generate Monte
Carlo samples based on the model probability density
f (Π,Θ | p) and the integration can be obtained by averaging
over these samples. Then the posterior probabilities can be
estimated by

P (i −→ j | D, p) ≈
∑
∏

j ,Θ j
1Π j (i) f

(
Dj | D j ,Π j ,Θ j

)

∑
∏

j ,Θ j
f
(
Dj | D j ,Π j ,Θ j

) .

(11)

Assuming that the selection of a parent as an activator
is performed in an independent manner, and that the
selection of the regulation factor value is also performed
independently, the model probability density f (Π,Θ | p)
can be further expanded by using the chain rule

f (Π,Θ | p) = f (Θ | Π)P (Π | p)

=
|A|∏

i=1

[
ρ f
(
αi
)] |R|∏

j=1

[
(1− ρ) f

(
γj
)]

P (Π | p).

(12)

Equation (12) conveys the idea that the random samples
of graphical models can be sequentially created and pro-
cessed. First the network structure is created based on the
binding probability of gene regulation obtained in the ChIP-
chip experiment, then each parent is randomly assigned to
represent an activator or repressor, and finally regulation
factors are generated.

3.3. Algorithm Formulation

Our computational procedure can be briefly formulated in
terms of Algorithm 1, where the Matlab coding convention
is used to write the pseudocode. There exist n genes in the
system. An n × n matrix is created to represent the p-values

produced in the ChIP-chip experiment. We collect m steady-
state gene expression samples. The output entry Cij stands
for P (i→ j | D, p), and M denotes the number of Monte-
Carlo iterations. Lines 1 and 2 deal with the ChIP-chip
experimental data and translate p-values into the binding
probabilities by using (5). The results are stored in matrix
B. Lines 3 and 4 perform the preprocessing of the gene
expression data. Let Y(1),Y(2),Y(3), . . . ,Y(m−2),Y(m−1),Y(m) be
the values of a specific gene expression in ascending order.
The smallest two values, Y(1), Y(2), and the largest two
values, Y(m−1), Y(m), are treated as outliers and discarded.
The dynamic range is defined as R = Y(m−2) − Y(3). The
gene expressions are normalized as follows: the smallest two
samples are assigned the null value and the largest two
samples are assigned the unit value; the intermediary samples
Y(i) are normalized as (Y(i) − Y(3))/R; if there is a missing
sample, it is recovered through interpolation by gene’s mean
expression. Lines 12 through 16 implement the numerator of
(11), and Line 17 computes the denominator of (11).

The algorithm can be easily reorganized into a parallel
form so that we can exploit efficiently the distributed
computational resources. The entries of output matrix C
represent the posterior probabilities of regulation relation-
ships between any two genes. It is directional (asymmetrical),
and it possesses a clear probabilistic meaning compared with
other vague connectivity metrics, for example, mutual infor-
mation. It grants the biologists the flexibility first to examine
the most significant interactions, then to proceed with less
evidenced edges. Therefore, it is advantageous relative to
a purely dichotomous scheme, in which genes are treated
as being either connected or disconnected. A probability
threshold can be imposed to change the algorithm into a
dichotomous classifier. Since the posterior probability has
a universal meaning, this threshold can be easily selected,
usually within the range of [0.3–0.9]. A tradeoff has also to
be made for different performance metrics.

4. Results

The simulation consists of two parts. In the first part,
artificial networks are created and the performance of the
proposed algorithm is compared with other representative
algorithms available in the literature, namely the relevance
network (RN) method [14], Chow-Liu algorithm [24], and
ARACNE [18]. In the second part, the algorithm is tested on
the real Saccharomyces cerevisiae (budding yeast) data set and
a biologically meaningful genetic network is inferred for the
genetic response to environmental changes.

4.1. Simulation on Artificial Networks

The proposed algorithm is compared with other three
algorithms to evaluate its capability of recovering genetic
networks based on gene expression data alone. The relevance
network (RN) model [14] represents a robust inference
method based on gene expression profiles. In the first step, it
computes the mutual information between any two genes X
and Y , denoted as I(X ;Y). Then it suggests two genes X and
Y to be relevant if their mutual information assumes a larger
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(1) Input ChIP-chip data set pn×n;
(2) Translate p-values to construct the binding probability matrix Bn×n.
(3) Input gene expression data set Dn×m;
(4) Normalize the expression data so that each expression is within the range

of [0, 1];
(5) Initialize n, L= 01×n, C= 0n×n;
(6) for k = 1 to M do
(7) Randomly create a directed graph and the adjacency matrix J based on

B;
(8) for i = 1 to n do
(9) For gene i’s parents specified in J(:, i), randomly assign them to be

activators or repressers;
(10) For each parent, randomly create their regulation factor α or γ;
(11) l ⇐ likelihood(Di | Di,Πi,Θi);
(12) for j = 1 to n do
(13) if j ∈ Πi then
(14) Cj,i = Cj,i + l;
(15) end if
(16) end for
(17) L(i) = L(i) + l;
(18) end for
(19) end for
(20)∀i, j,Cj,i = Cj,i/Li;
(21) return C.

Algorithm 1: Inference of connectivity significance.

value than a prespecified threshold and it lays down an undi-
rected edge as X-Y . Hence, RN measures the significance of
gene interactions in terms of mutual information between
the gene expressions and produces an undirected cyclic
graph. Chow-Liu algorithm [24] approaches the inference
problem by finding the maximum spanning tree in which
the edge weights stand for the mutual information. However,
it loses validity if the underlying model is a cyclic graph. In
addition, when the graph is densely connected, this scheme
might falsely miss too many edges. ARACNE algorithm [18]
exploits the data processing inequality (DPI). It starts with a
fully connected graph and a predefined mutual information
threshold. Whenever the mutual information between two
genes X and Y , that is, I(X ;Y), is less than a threshold, it
disconnects the two genes. Next, in the preliminary graph if
there exists Z so that I(X ;Y) < min(I(X ;Z), I(Y ;Z)), then
it disconnects X and Y . In our simulations, we resort to an
already available but efficient Matlab toolbox [34] to estimate
the mutual information.

4.1.1. Performance Definition

Before making performance comparisons, we define infer-
ence errors and performance metrics. Because RN, Chow-
Liu, and ARACNE algorithms all construct undirected
graphs, we have to disregard the orientation information
inferred by the proposed algorithm. The synthetic and
inferred graphs are represented by G(V ,E) and Ĝ(V , Ê),
respectively. The two graphs share the same set of vertices
but differ in the set of edges.

There are two types of inference errors. The type-1 errors
are false positives (FP) and are also called false alarms. If
the inference algorithm determines an interaction for two
vertices X and Y in the inferred graph, denoted as X-Y ∈
Ê, but there is no such edge in the synthetic graph, that
is, X-Y /∈E, then an FP is produced. The number of FPs,
represented by NFP, can be counted as follows:

NFP =
∑

∀X ,Y

(
(
X − Y ∈ Ê

)⋂
(X-Y /∈E)

)

, (13)

where
⋂

stands for the logic and operator. The type-2
errors are false negatives (FN) and also named misses. If
the inference does not discover the connectivity X-Y which
resides in the synthetic network, an FN is generated. The
number of FNs, depicted by NFN, is obtained by

NFN =
∑

∀X ,Y

(

(X-Y ∈ E)
⋂(

X-Y /∈ Ê )
)

. (14)

Correct inference can also be divided into two categories.
If X-Y ∈ Ê and X-Y ∈ E, the correctness is defined as a true
positive (TP). Its summation, annotated by NTP, is

NTP =
∑

∀X ,Y

(
(
X-Y ∈ Ê

)⋂
(X-Y ∈ E)

)

. (15)

On the other hand, if X-Y /∈ Ê and X-Y /∈E, this correctness
is called a true negative (TN). The number of TNs, repre-
sented by NTN, is defined as follows:

NTN =
∑

∀X ,Y

(
(
X-Y /∈ Ê )

⋂
(X-Y /∈E)

)

. (16)
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Different performance metrics are proposed in the
literature. Three most popular of them are considered here.
The first metric, referred to as the Hamming distance, is the
summation of all the inference errors and is given by

Hamming distance = NFP +NFN. (17)

The Hamming distance is widely accepted as a good measure
of the distance between two graphs.

The second metric is called the sensitivity, and is defined
as

Sensitivity = NTP

NTP +NFN
. (18)

The sensitivity describes the inference algorithm ability to
identify the regulation relationships among genes. The third
metric is called the specificity, and it assumes the form

Specificity = NTN

NTN +NFP
. (19)

The specificity represents the inference algorithm’s capability
to avoid falsely connecting two unrelated genes.

4.1.2. Simulation on the Proposed Kinetics

A set of artificial networks are created based on the system
dynamic equation (1). Each network has 30 vertices and
60 oriented edges. Such a network scale is selected for
the consideration of the computational resources and the
biological network that we are going to infer. The steady-
state data are sampled by emulating the gene knockout
experiment. A gene’s expression is mandatorily forced to 0
while all other genes are free to change their expressions. The
initial values of the system are randomly generated. When
the system converges to the equilibrium, a Gaussian noise
N(0, 0.03) is added and a few samples are obtained. All genes
are shut down one by one. An extra in silico experiment
is performed and no genes are shut down. These samples
correspond to the wild type strain.

Different numbers of steady-state samples were gener-
ated based on the adopted system kinetics. The transcription
factor is assumed to be an activator or repressor with equal
probability, that is, ρ = .5. The baseline parameter δ =
0.5 and the gamma parameters of regulation factors are
(κ = 16, β = 0.0625) so that the regulation factor has
a unit mean. Chow-Liu algorithm creates a spanning tree;
therefore, it preserves only 29 edges, while the original
synthetic network possesses 30 vertices and 60 edges. In
order to make comparisons, we tune the parameters for the
other three schemes so that the number of inferred edges
is around 30. For the RN method, we keep the 30 edges
with the highest mutual information. For ARACNE, the
mutual information threshold is adjusted. In our proposed
algorithm, the posterior probability thresholds are changed
in the range of [0.3, 0.9] so that approximately 30 edges are
obtained. It has to be noted that RN, ARACNE, and Chow-

Liu algorithms only preserve interactions but disregard
the interaction orientation. Therefore, in order to make
consistent comparisons, we have to sacrifice the orientation
information offered by the proposed algorithm. Besides,
these three schemes have no capability of processing ChIP-
chip data. Therefore, we have to configure the proposed
algorithm such that any two nodes are associated with a small
prior probability of connection (0.1). This reflects the fact
that the connection between two arbitrary nodes in the graph
is very unlikely, but not impossible. This also exemplifies how
the algorithm works in the absence of the ChIP-chip data.

Figure 1(a) compares the performance in terms of
Hamming distance for the four schemes assuming different
sample sizes. The proposed method provides much better
inference accuracy because it achieves the lowest Hamming
distance. Larger sample size rewards a better inference pre-
cision. Chow-Liu’s algorithm and ARACNE do not perform
well. This can be attributed to the assumption of the network.
Our synthetic networks actually are cyclic networks in order
to reflect the real world scenario. However, cycles in the
network ruin the inference precisions of Chow-Liu and
ARACNE. Figure 1(c) illustrates the impact of sample size
on the sensitivity. The proposed scheme outperforms the
other three schemes. The sensitivities of all algorithms are
less than 0.5. This is mainly due to the constraint that we
pose on the number of inferred edges, that is, 30 edges. If we
relax the posterior probability threshold, the sensitivity will
be improved by sacrificing the specificity. Figure 1(e) depicts
specificity for all schemes. All of them have high specificities,
which are all greater than 0.90. The proposed scheme still
exceeds. This high specificity is mainly due to the stringent
constraint posed on the number of inferred edges. When
considering the orientation of the edges, we find that 90%
true positives inferred by the proposed algorithm are actually
oriented correctly. This represents a big advantage of the
proposed algorithm compared with the other three schemes.

4.1.3. Robustness of Inference

In the previous simulations, the proposed inference algo-
rithm assumes the system dynamic as depicted by (1).
Actually, for different biological processes, there exist various
mathematical models which achieve tradeoffs between the
sophistication of the underlying molecular reaction and the
simplification of the formula description (see [27, 29] for
model comparisons). Savageau [28] proposed an alternative
mathematical model to account for the gene control and
various forms of coupling among elementary gene circuits.
This model can be denoted as

dx

dt
= λA

|A|∏

i=1

aαii − λR
|R|∏

j=1

r
γj
j , (20)

where two new symbols λA and λR are activation and
degradation coefficients and all other symbols share the same
meanings as in (1).

Although the proposed inference framework can “plug
and play” with different models, it is still necessary to
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Figure 1: Performance comparison in terms of Hamming distance, sensitivity and specificity. Figures in the left column illustrate results
based on the same kinetics model employed in both data synthesization and network inference, while figures in the right column represent
results based on different kinetics models employed in the simulation process. The Monte Carlo iterations are fixed at 1, 000, 000 for the
proposed algorithm. Thresholds for different algorithms are selected to produce around 30 inferred edges.
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examine its robustness against the underlying model. We
evaluate this model dependence by the following steps:
configure the model as 13 and create a set of synthetic data,
then apply the proposed algorithm based on the dynamic
equation (1), finally determine the performance metrics for
different algorithms and compare the results with those in
the previous section.

The simulation results are plotted in Figures 1(b),
1(d), and 1(f). Each figure corresponds to a different
performance metric. All algorithms exhibit different values
for performance values. This shows that the inference is
dependent on the particular data sets and their underlying
model. Compared with other three schemes, the proposed
algorithm still achieves good performance in terms of three
metrics. However, the advantage of the proposed algorithm
are not significant now. ARACNE, Chow-Liu, and relevance
method do not degenerate much. This attributes mainly to
the nonparametric property of these three schemes. The
persistent good performance of the proposed algorithm is
due to the fact that both dynamic models have to convey
the basic properties of the gene interaction kinetics, such as
the activation and repression effects and the coupling of the
circuitry.

4.2. Simulation on Saccharomyces
Cerevisiae Data Sets

Saccharomyces cerevisiae (yeast) has been extensively studied
in the literature of molecular biology because it is a
unicellular eukaryotic organism, which shares similar cell
structure with plants and animals. Also, yeast presents a
short life cycle, which makes the experiments to be easily
conducted. Lee et al. [33] performed the ChIP-chip exper-
iment, in which 141 transcription factors were tested for
binding intergenetic regions corresponding to 6270 genes.
The gene expression data were published by Mnaimneh et al.
[35], who created promoter shut-off strains for 2/3 of all
essential genes. The data set contains 215 steady-state cDNA
microarray samples. The model parameters are assumed the
same as artificial networks.

The intracellular signalling pathway in response to envi-
ronmental changes has been conserved through evolution.
Therefore, a study of this biological subsystem on the
Saccharomyces cerevisiae might help to decipher the cell
survival mechanism of other organisms. We select 30 genes
which are annotated to participate in the stress response
process. The given ChIP-chip experiment did not provide
full prior knowledge between any two genes (nodes in the
graph). We believe that, among these genes, there are some
genes whose protein products may also serve as transcription
factors. Therefore, if the binding between two genes was
not tested in the ChIP-chip experiment, a small probability
value 0.1 is assigned as the prior knowledge. The proposed
inference algorithm leads to the genetic network illustrated
in Figure 2.

The inferred genetic regulatory network shows strong
proneness toward a scale-free network instead of a random
network. Some genes possess especially high degree of

connectivity. Three hub genes CIN5, HSF1, MSN4 already
connect with more than 60% of all selected genes. Each of
them has a connectivity degree not less than 8 while on
average each gene in the network is connected with no more
than 4 genes. These hub genes constitute the backbone of the
network and they are potential control targets. This scale-
free property is advantageous in maintaining the system
robustness because a failure in one subsystem will not be
propagated to the whole body.

Multiple works, for example [36], have identified MSN4
and MSN2 as two of the most important genes in the
response to environmental changes. A recent work [37]
recognized the functionality of another crucial gene HSF1,
which is a heat shock transcription factor and functions in
a different domain than the one corresponding to MSN2/4.
Our inferred network confers this experimental result by
showing that HSF1 and MSN2/4 regulate different set of
genes except a weak connectivity between HSF1 and MSN4.
MSN2/4 are not conserved in humans, while HSF genes have
been preserved for various organisms such as Drosophila
melanogaster, chickens, and mammals. Therefore, a study of
the HSF1 pathway opens up the possibility of understanding
the mechanism that governs the survival of normal cells
under austere conditions.

CIN5 (YAP4) and YAP6 are two genes that play key
roles in controlling the resistance to drugs, for example,
cisplatin [38]. CAD1(YAP2), CIN5, YAP1, and YAP6 share
a structure motif called basic leucine zipper (bZIP) and they
are located closely in the network. However, they are not
neighboring the other two bZIP genes: YAP5 and YAP7. It
is hypothesized that although they have similar molecular
structures, their biological functionalities are in distinct
domains.

Several edges, discovered by imposing a stringent p-value
threshold 0.001 to the location data, were persevered in our
inferred network. Actually, these connections constitute
a small portion of the proposed network, and they are
CIN5→MSN1, CIN5→YAP6, CIN5→ROX1, YAP1→YAP6,
MAC1→CUP9, CUP9→YAP6, and HAL9→MSN4. Various
evidences are found to corroborate the recovered interac-
tions, which can not be obtained by employing a stringent
p-value for the location data. For example, YAP5 is recovered
to directly regulate STE50. This regulation relationship
has also been reported in the work of Horak [39]. The
relationship between MSN2 and SCH9 is studied in [40] in
the context of extending the life span.

It is worthwhile to note that gene expression data mainly
provide statistical relationships among genes, while location
data offer physical binding interactions at the molecular
level. By combining the two data sources, we are aiming to
refine the inferred network to be biologically more mean-
ingful. However, it also runs at a risk of confusing statistical
regulatory relationships with real binding interactions. When
such a case occurs, the proposed algorithm is capable of
constraining the interacting genes within the same biological
process and common functional relationships. A related
discussion about the meaning of inferred network can also
be found in [41].
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Figure 2: Recovered genetic regulatory network for yeast stress response. The Monte Carlo iterations are 1, 000, 000. Dashed edges represent
interactions preserved by using ChIP-chip data alone under the p-value threshold 0.001. Shadowed vertices are transcription factors tested
in the ChIP-chip experiment.

5. Conclusions

A novel algorithm is proposed to recover the genetic regu-
latory networks in the light of knowledge of transcriptional
kinetics, ChIP-chip, and gene microarray data. The analysis
is based on the Bayesian methodology and Monte Carlo
techniques. The proposed scheme is useful to compensate the
shortcomings of the utilization of only one data set alone.
Our in silico experiments corroborate that the algorithm
outperforms in specificity, sensitivity and Hamming distance
relative to three state-of-the-art schemes. A budding yeast
genetic regulatory network is proposed to account for the
stress response.

There are possible extensions to our current scheme. An
analysis of the error estimation is desired for the Monte
Carlo simulation in order to determine the appropriate
number of iterations. Several other knowledge sources are
to be integrated into the current framework. For example
protein-protein interactions are useful to identify cobinding
regulations. Genome sequencing data have been utilized
to find regulatory motifs. Protein structure knowledge can

be exploited to categorize the proteins and find similar
functionality. A cross-species research is also highly desirable
since similar regulation mechanisms are expected to be
conserved. If a gene is conserved in both humans and mice,
then the knowledge of the gene pathway in the mouse will
be an excellent reference for the study of human genetic
diseases. We expect a global distributed framework, in which
each data source acts as a separate component and its absence
does not interfere with the whole computational process.
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