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Modelling in systems biology often involves the integration of component models into larger composite models. How to do
this systematically and efficiently is a significant challenge: coupling of components can be unidirectional or bidirectional,
and of variable strengths . We adapt the waveform relaxation (WR) method for parallel computation of ODEs as a general
methodology for computing systems of linked submodels. Four test cases are presented: (i) a cascade of unidirectionally and
bidirectionally coupled harmonic oscillators, (ii) deterministic and stochastic simulations of calcium oscillations, (iii) single cell
calcium oscillations showing complex behaviour such as periodic and chaotic bursting, and (iv) a multicellular calcium model for
a cell plate of hepatocytes. We conclude that WR provides a flexible means to deal with multitime-scale computation and model
heterogeneity. Global solutions over time can be captured independently of the solution techniques for the individual components,
which may be distributed in different computing environments.
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1. Introduction

A component-based methodology is explicitly or implicitly
widely applied to the understanding and modelling of
biological systems. For example, to represent a cell and its
wide range of functions, we have to integrate individual
models for relevant metabolic, signalling, and gene expres-
sion pathways, as well as the associated biophysical processes
for intracellular, intercellular and extracellular transport.
At the next scale up, a tissue or organism level model
requires the integration of different kinds of cell function
and cell-cell communication in their intra-and extracellular
environments. This is typical of the bottom-up approach
to systems biology, in contrast to the top-down approach,
which tends to start from the system as a whole (see [1] for a
thorough discussion of such general issues).

Living systems are maintained by a continuous flow of
matter and energy, and thus any biological system inevitably
will be a subsystem of a larger one. Therefore, the biological
modeller typically has to deal with an open, multilevel
and multicomponent system, the perceived nature of which
evolves with our increasing understanding. A key feature

of such a system is the interactions (or coupling in mathe-
matical terminology) among its heterogeneous components
and with the external environment, in which a variety of
spatial and temporal scales may exist. These interactions
may be strong or weak, unidirectional or multidirectional,
depending on the current state of the system, and often
generate emergent properties through nonlinear interac-
tions. The diversity of existing modelling techniques adds a
further layer of complexity to this situation. Thus models of
individual components can be based on different modelling
formalisms, such as differential equations, discrete time or
discrete event simulations, different levels of abstraction of
system behaviours, the extent of available knowledge, and the
nature of the phenomena being studied.

It can take many years and enormous effort by many
researchers across disciplines to build up a model of a
complex biological system, and this only on a coarse-grained
level consistent with current understanding, which therefore
is constantly in need of refinement as techniques and
understanding improve. A general issue, therefore, naturally
arises: how do we systematically integrate both existing and
well-established, as well as new, or more refined versions of
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Figure 1: A cascade of harmonic oscillators with unidirectional
coupling. Xi = (xi, yi)

T with yi = ẋi/ki.

old, model components in order to build up a larger model
system with minimal modification of the internal structure
of component submodels?

When describing the behaviour of a complex model
system, traditionally we tend to view the system as a whole,
implying that the coupling between component parts is
implicitly represented. This is driven, in part, by the need to
specify suitable mathematical spaces in which whole-system
solutions should lie. However, from a computational point
of view, it is unnecessary to solve a system as a whole.
In contrast to this traditional approach, it is often more
natural to construct whole-system behaviours by solving
individual components separately, and then to consider the
coupling explicitly. This is also often more consistent with
developing understanding of the system through the study
of separate, isolated components, and makes it possible
to update model components individually as knowledge
of the detailed biology evolves. Moreover, this approach
provides a framework for integrating heterogeneous models
(as components of a larger system), which can be distributed
in different computational environments.

In the context of integrating biological models, a com-
putational framework under a multicomponent system speci
cation (see [2] for a formal definition) should possess the
following features.

(i) It must be able to represent biological scales both
faithfully and economically. This requires a mul-
tiscale algorithm, which aims not only to capture
the individual biological scales associated with each
component but also to resolve the differences of scale
between components in a computationally efficient
way.

(ii) The framework should provide the flexibility for
integrating models based on different mathematical
formalisms, such as deterministic and stochastic
simulation. Different mathematical formalisms are
often forced upon us by the existence of different
spatial or temporal scales.

(iii) The framework should support encapsulated com-
ponents. When a new model for a component is
developed, we should be able to include it easily,
without changing the rest of the framework. This
requirement can be termed “plugability”, for example
[3].

(iv) It should also support linking components repre-
sented in different software environments, so as to
allow new models to be constructed from existing
models with minimal changes.

These basic requirements call for a general framework based
on a combination of modular, object-oriented design and

agent-oriented design. Modular and object-oriented design
provide the flexibility for plugability, and agent-oriented
design facilitates the interoperability of coupled models
[4]. However, all these designs should be based on a solid
theoretical foundation, and also provide a practical means to
capture the global dynamic solutions independently of the
solution techniques that might be employed for individual
components. Suggesting such a methodology is the aim of
this work.

Work towards these aims has been published in [3],
where a novel algorithm based on a discrete event scheduler
was presented in an attempt to meet some of the above
requirements. Although successful in many respects, this
algorithm is unable to achieve multitime-scale computa-
tion for a system with bidirectionally coupled components
because of the excessive computational cost of very frequent
communication between components. However, bidirec-
tional coupling is common in biological systems due to
the ubiquity of feedback mechanisms. For example, in cell
signalling, signals are tightly regulated with positive and
negative feedbacks that are bidirectional, with commands
travelling both from outside-in and inside-out [5].

Here, we offer an approach to deal with bidirectionally
coupled components that meets the requirements listed
above: waveform relaxation (WR), a flexible numerical
method for computing solutions to a system of ordinary
differential equations (ODEs) that enables the integration
of independently treated subsystems, by using outputs of
subsystems as inputs to others and vice versa [6]. When the
idea behind the WR method is generalised to a wide range of
modelling techniques, it supports a multiscale algorithm that
can integrate models of different mathematical forms and
provides a way to characterise the dynamical solutions over
time and space, independently of the solution technique that
might be employed for individual components. However,
here we restrict attention to ODE models.

In Section 2, we present a general formulation of the
problem of model composition from component models
in the context of ODE systems, and in Section 3, the WR
method is briefly introduced and generalised, accompa-
nied by some general discussion of how the method is
implemented, especially when employed for a discrete event
strategy. In Section 4, four case studies are presented to show
the capability of the method to cope with different aspects of
simulating biological systems. Finally, in Section 5 the results
are summarised and discussed.

2. Model Formulation

For simplicity, we consider ODE models to describe briefly
our model formulation.

Suppose a given whole-system ODE model S describing a
complex biological system. We assume that the state space is
an open subset B of an m-dimensional Euclidean space Rm,
and that the model takes the form of a nonautonomous ODE
system:

dY

dt
= F(Y , t), Y(0) = Y0 ∈ B, t ∈ [0,T], (1)
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where F : B × R+ → Rm satisfies some suitable Lipschitz
condition to ensure existence and uniqueness of solutions
for t ∈ [0,T]. We assume that S may be decomposed into
N component subsystems Si, i = 1, . . . ,N , in the following
sense. Si is specified by a state space Bi ⊆ Rni of dimension
ni, together with a linear embedding θi : Rni ⊂ Rm

which expresses state variables for the component Si as state
variables for the composite system S. The set of component
systems Si then forms a decomposition of the system S
provided that every state variable of S can be expressed as
a sum of state variables of component subsystems. More
formally, if Y ∈ B is a state vector for the whole system, then
we can find state vectors Yi ∈ Bi for i ∈ I(Y) ⊆ {1, . . . ,N},
such that Y = ∑

i∈I(Y)θi(Yi) (this expression need not be
unique). This formulation allows the possibility that different
components can share some of the same state variables, a
device that can facilitate more efficient computation. In what
follows, we drop explicit reference to the embeddings θi to
keep the notation simple.

Using Yi ∈ Bi as a component state vector, and Y ∈ B
for the whole-system state, we obtain a decomposed model
of the form

dYi

dt
=Fi(Y , t), Yi(0)=Yi0 ∈ Bi, t ∈ [0,T], i=1, . . . ,N.

(2)

Now consider the inverse problem of integrating ODE
components Si into a single, composite system S. In this case,
we have to supply the functions that define the way in which
the components are coupled together.

First, consider an individual (i.e., uncoupled or isolated)
ODE component. Let Bi, Pi denote subsets of finite-
dimensional Euclidean spaces, and let fi : Bi ×Pi → Rni be
a locally Lipschitz function. Then, the ith ODE component is
assumed to be specified in the form

dYi

dt
= fi

(
Yi,αi

)
, Yi(0) = Yi0 ∈ Bi, t ≥ 0. (3)

Here, Yi is the internal state vector belonging to the state
space Bi, whose elements are the internal state variables
associated to the ith component. The second component,
αi, is a supplied time-dependent input that will be used to
communicate intercomponent interactions and to represent
parameter values, such as internal parameters and external
forcing functions (i.e., a vector of control variables in the
language of control theory). For a completely isolated,
autonomous component, the αi ∈ Pi would be just the
parameter values needed to run the component alone. How-
ever, when not isolated, say as part of an integrated system
consisting of N components, the vector function αi can be
further decomposed into two parts, αi = (Y̆i, α̂i), one being
the external state vector Y̆i, whose elements (the external
state variables of component i) are internal state variables
belonging to other components via the intercomponent
coupling, and the other being a vector α̂i, representing other
internal and external parameters and controls. Thus we
assign two types of state variable to each component: internal
state variables and external state variables, with the internal

state variables being always state variables of the component
independent of whether the component is isolated or not,
while the external state variables become state variables (of
some other subsystem) only when these components are
combined to form a composite system.

For example, in an isolated metabolic system without
protein synthesis and degradation, the parameters αi are the
concentrations and the kinetic and binding constants of the
enzymes involved, as well as the concentration of external
substrates, which are determined by external conditions but
not controlled by the system, and can be time dependent. The
internal state variables are then the time-dependent concen-
trations of the intermediary metabolites. When the system
is combined with relevant signalling and gene regulatory
pathways, parts of the parameters αi, say the concentrations
of the enzymes in the metabolic system, actually become the
state variables (i.e., internal state variables) of the signalling
and gene regulatory pathways. Thus when we are considering
behaviours of the whole system, some parameters originally
attributed to these subsystems should not be treated as
parameters of the whole system. However, these biologically
distinguishable pathways have their disparate time scales, and
a variable in one subsystem with a low-relaxation time may
be viewed as a bifurcation parameter for the others when the
subsystems are isolated.

For such a composed system, once Y̆i, i = 1, . . . ,N , are
specified, a dependence digraph can be constructed, which
represents the connectivity of the network, and the bidi-
rectional coupling between components can be rigorously
defined in terms of graph theory. Here, for the purpose of
representing the WR method in its generic form, we define
instead an influence set for each i. That is, if I = {1, . . . ,N}
indexes the component subsystems, then Ii ⊆ I − {i} is a set
of (external) component indices that influence component
i. Thus Ii is the collection of indices of those components,
some internal state variables of which are the external state
variables of component i.

In terms of this conceptualisation, and in order to allow
for additional flux transfer between the subsystems modelled
by components, we assume that the ith component function
fi in (3) is specified in the form

fi = f̂i
(
Yi, Y̆i, α̂i

)
+ ϕi

(
Yi, Y̆i

)
, (4)

where the function ϕi(Yi, Y̆i) is reserved for representing
flux transfer with other components. It can be constructed
from mass action or some other representation, such as Hill
functions, of the fluxes due to the interactions of linked
components that contribute to the overall flux balance in
the whole system. For example, when we write reaction
equations using mass action, introducing a new molecular
species will result in new flux terms to the original equations,
that is, the second term in (4) will appear, while the first term
will keep the same meaning as in the original, isolated system.

A composition of the components Si into a single
system S results from a specification of the control vari-
ables in αi = (Y̆i, α̂i) and the flux transfer function
ϕi(Yi, Y̆i). Once these are given, the composed system
provides an appropriate set of (time-dependent) functions
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αi : B ×R+ → Pi (i = 1, . . . ,N). The velocity of Yi is then
given by the functional composition of the supplied com-
ponent functions fi and the interaction functions Y̆i. The
resulting composed system S is therefore described by the
dynamical system (4).

The above formulation suggests that a generic form for
any submodel should be provided with the form (4) with
a dummy flux term. As an isolated system, this term is set
to zero, but as a component in an integrated model, this
term can be formed according to flux contributions from
the interactions of linked components. The advantage of
this formulation is to provide the flexibility to link to other
potential models without altering the internal structure of
the original model when the WR method, which will be
introduced in Section 3, is applied.

3. Computational Approach

In this section, we first provide a brief introduction to the
waveform relaxation method (WR), originally developed
for the parallel computation of ODEs [6]. We formally
generalise the method and discuss some issues relevant to its
implementation and efficient computation.

3.1. The Waveform Relaxation Method

We illustrate the WR method using a system decomposed
into communicating components. Thus suppose we have a
system described by a set of differential equations, decom-
posed into two subsystems (components) 1 and 2 of the form

dY1

dt
= F1

(
Y1,Y2

)
, Y1

(
t0
) = Y10,

dY2

dt
= F2

(
Y1,Y2

)
, Y2

(
t0
) = Y20, t ∈ [t0,T

]
,

(5)

where Y1 = (y11, y12, . . . , y1n1 )T and Y2 = (y21, y22, . . . ,
y2n2 )T are the state vectors for components 1 and 2,
respectively. Then we have two iterative implementation
schemes for WR as follows.

(1) Jacobi WR Method

dY (k+1)
1

dt
= F1

(
Y (k+1)

1 (t),Y (k)
2 (t)

)
, Y (k+1)

1

(
t0
) = Y10,

dY (k+1)
2

dt
= F2

(
Y (k)

1 (t),Y (k+1)
2 (t)

)
, Y (k+1)

2

(
t0
) = Y20,

(6)

for k = 0, 1, . . . .

(2) Gauss-Seidel WR Method

dY (k+1)
1

dt
= F1

(
Y (k+1)

1 (t),Y (k)
2 (t)

)
, Y (k+1)

1

(
t0
) = Y10,

dY (k+1)
2

dt
= F2

(
Y (k+1)

1 (t),Y (k+1)
2 (t)

)
, Y (k+1)

2

(
t0
) = Y20,

(7)

for k = 0, 1, . . . .

Roughly speaking, the Jacobi WR method updates a
component based upon the states of all components in the
previous iteration, while in the Gauss-Seidel WR method,
the new state may also depend on the newly updated states of
the current iteration, in addition to states from the previous
iteration. The Jacobi and Gauss-Seidel methodologies are
widely employed in numerical computation, such as for
solving linear or nonlinear algebraic equations and finite
difference equations in addition to ODEs. A classical cellular
automaton simulation is an example of the Jacobi WR
method.

A very important message obtained from the WR
method is that a large system can be split into small
components, which can be computed independently, while
the coupling between components can be realised by an iter-
ative procedure. Conversely, components can be computed
independently and by specifying the interfaces between the
components and performing an iterative procedure, we
are actually simulating a larger system formed by these
components. Therefore, we interpret the WR method as
an iterative procedure to represent bidirectionally coupled
components in such a way that each component can be
calculated independently. Of course, if components are
unidirectionally coupled, then there is no need to do the
iteration and a sequential calculation is sufficient.

Following the notation of Section 2, we can write the WR
method in its generic form. For the Jacobi WR method, we
have

dY (k+1)
i

dt
= fi

(
Y (k+1)
i (t), Y̆ (k)

i (t)
)
, Y (k+1)

i

(
t0
) = Yi0,

(8)

for i = 1, 2, k = 0, 1, 2, . . . , with Y̆ (k)
1 = Y (k)

2 and Y̆ (k)
2 = Y (k)

1 .
In this iterative procedure, the external state variables

take their values from the previous iteration and determine
the internal state variables in the current iterate. Thus the
iteration loop itself does not play a role, since it does not take
account of the specific topological structure of the network.

Of course, initial guesses for Y (0)
i , i = 1, 2, have to be given in

order to start the iteration.
Much of the complexity of the iterative procedure comes

from the Gauss-Seidel WR method, and it should be defined
in terms of the dependence digraph to take account of the
topological structure of the network. For simplicity, for an
N-component system, we assume an iterative loop has been
predetermined, say, in the sequential order of I = {1, . . . ,N}
(by relabelling components if necessary), with influence set
for the ith component Ii = {i1, i2, . . . , is}, where i1 < i2 <
· · · < is. The method can be formally defined by

dY (k+1)
i

dt
= fi

(
Y (k+1)
i (t), Y̆ (m)

i (t)
)
, Y (k+1)

i

(
t0
) = Yi0,

(9)

i = 1, 2, . . . ,N , k = 0, 1, 2, . . . , where

Y̆ (m)
i (t) = ( y̆(m)

i1 , y̆(m)
i2 , . . . , y̆(m)

is

)T
,

y̆(m)
id =

⎧
⎨

⎩

y̆(k+1)
id , id < i,

y̆(k)
id , id > i.

(10)
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These two methods are examples of continuous waveform
relaxation (continuous referring to the time variable). In a
numerical implementation of the method, each set of contin-
uous differential equations has to be discretised into a set of
difference equations, and this results in a discrete waveform
relaxation. Under fairly general conditions, both continuous
and discrete WRs are convergent to the theoretical solutions
[6]. Thus we have

Y (k)
i (t) −→ Y∗i (t) as k −→ ∞

uniformly for t ∈ [0,T], i = 1, 2, . . . ,N ,

for any set of initial conditions Y (0)
i : [0,T] → Rni , i =

1, 2, . . . ,N . Moreover, the limit functions Y∗i : [0,T] → Rni

satisfy the original system (1). The rate of convergence of
the iterates depends on the length T of the time interval on
which the iteration is performed, and the way the system is
partitioned into subsystems.

Splitting a large system into smaller components has
another advantage other than the obvious one for parallel
computation. Fast and slow varying components may exist,
and these can be solved economically by integrating the slow
components using larger step sizes than the fast components,
with adaptive step size methods employed to realise this.
Otherwise, if we solve the system as a whole, integration
must be performed with a single time step, which will
be determined by the fastest time scale among all the
components.

Although here we present the WR method for a system
specified by ODEs, the methodology is applicable to many
kinds of system specification. In particular, WR has been
generalised to stochastic differential equations (SDEs) [7].
The most widely applied numerical method for simulating
stochastic systems is the famous Gillespie method [8]. This
method can also be interpreted in terms of WR using Gibson
and Bruck’s formulation [9]. Specifically, we can treat each
reaction as a component of the system of interest, and the
iteration procedure in WR can be interpreted as updating
states following the dependence graph, since this is a discrete
event simulation and there are no simultaneous events; that
is, there are no bidirectionally-coupled events. However, such
an interpretation is not practically useful without further
exploration of efficiency issues.

A more practical application of the WR method lies
in simulation for hybrid models, which combine stochastic
descriptions (say, for gene expression) and deterministic
descriptions (say, for signal transduction). The requirement
for such model heterogeneity is common in modelling
biological systems [10, 11] and is a significant challenge. In
fact, the dynamical systems theory for such hybrid models
has been identified as an important future research direction
[12]. For such hybrid simulation, the WR method can be
applied in a straightforward manner so long as interfaces
between deterministic and stochastic submodels can be
clearly defined, allowing the WR iteration procedure to
be applied to simulate the bidirectional coupling between
submodels. In the case studies to be developed in Section 4
below, we will provide examples of this kind of simulation.

The key idea of the WR method is to provide a way to
compose a system from its components, or to decompose
a system into components, by an explicit specification of
the coupling relations among components, independent of
the internal specification of these components. The explicit
specification of the coupling facilitates an iterative procedure
that in one iteration sweeps over the components, updating
them based upon the states of other components. In this
way, the states of individual components can be computed
independently, and their bidirectional communication with
states of other components is achieved by this iterative
procedure.

Moreover, WR provides a means to compute global
solutions over time independently of the solution techniques
that might be employed for individual components. Such
independence also implies that any multiscale method can
be applied to solve components that involve a variety of
spatial, as well as temporal scales. Another implication from
the WR method is that two different models can be linked
together by specifying an interface between them, even
without significantly modifying the components (e.g., by
adding new flux contributions to the system as in equation
(4)) or the solution techniques. That is, WR facilitates model
encapsulation. This is because communication between com-
ponents in the implementation of the WR method is carried
out by data input and output. Thus when adaptive grid
methods both in time and space, stiff solvers, and multirate
methods [13] are suitably chosen for all components, a wide
range of multiscale computation becomes possible.

3.2. Practical Implementation of WR

In the implementation of WR, the time interval [t0,T] is
partitioned into a set of L subintervals {[Ti,Ti+1] : i =
0, 1, . . . ,L − 1, T0 = t0, TL = T}. The iteration for
bidirectionally coupled components is performed on each
subinterval sequentially, that is, starting from [t0,T1] and
moving to the next after the convergence of the iteration on
the current interval is achieved, and so on. This is called
a “windowing technique” and its application is necessary
to avoid the requirement for excessive storage as well as to
reduce the number of iterations. In principle, the subinter-
vals can be chosen adaptively, say representing the largest
time scale among all the components in order to maximise
the efficiency of a multiscale computation, but here, for
illustrative purposes, we suppose that each subinterval is of
equal length.

A numerical method is chosen for each component; there
is no requirement for the same method to be applied to all
components. An interpolation method is also required to
facilitate the communication between components through
external state variables, which are the inputs to the compo-
nent under execution. The reason for such a requirement is
that when an adaptive method is applied to each component
on each iteration, the input values from the external state
variables associated to a given component are normally not
available. This is because the resulting grid points are not the
same for each component and each iteration, and therefore
have to be obtained by interpolation for a given component.
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As observed earlier, the abstract formulation of a
system decomposition in Section 2 allows the possibility
of overlapping components; that is, different components
sharing some of the same internal state variables. This
can potentially result in better convergence properties of
the waveform iterates by ameliorating the effects of strong
coupling between components [14].

While there is considerable flexibility in the choice of
numerical methods for solving individual components and
interpolating the solution output, some general rules should
be followed in order to obtain high accuracy and efficiency.
First, an adaptive step size method should be used to capture
the right time scale of each component, and this is where
the multitime scale efficiency of WR lies. If models for
some components are stiff, then stiff solvers should be used.
Second, both the orders of accuracy of integration methods
for different components, and the orders of accuracy of
the interpolation methods should be consistent so that
the accuracy of the whole computation is not lost. In
our implementation, we employ both Gear’s stiff solver
and Prince-Dormand’s embedding explicit Runge-Kutta 5(4)
[15], and three-point Hermite polynomial interpolation for
the differential equation specified system, while Gillespie’s
method is employed for the stochastic simulation with linear
interpolation.

3.3. Monitoring and Utilising Varying
Coupling Strengths

Coupling among components is a dynamical property of
the system, in the sense that two components bidirectionally
coupled together by the specification of a network structure
does not mean that the two components are strongly coupled
for all time. For example, in the simulation of very large-scale
integrated (VLSI) circuits, it was found that strong coupling
between components only occurs over short-time intervals
[16].

Updating all components even when the coupling
between some components is found to be weak would be
computationally inefficient. Thus we apply the strategy of
discrete event simulation to the WR iteration loop [2].
Specifically, in each iteration loop, before executing any
component, we examine the variation between the previous
iterate and the present one of both internal and external
state variables for that component. If the change of these
variables is sufficiently small relative to the value of present
iterate, then we skip the calculation of the component.
The multitime-scale efficiency of a WR algorithm will be
dependent on the computational cost for the iteration, and
essentially dependent on the coupling strength among the
components. The stronger the coupling, the more iterations
are needed. On the other hand, the coupling strength
of components is dynamically changeable, and therefore
the discrete event strategy proposed actually allows us
dynamically to follow the change by adaptively reducing or
increasing the number of iterations for each component.
In the case studies given below, we will demonstrate this
by an example. Further issues related to the application

of the WR method will be discussed along with each case
study.

4. Case Studies

We now demonstrate the application of the WR method
with four models. The first is a simple cascade of har-
monic oscillators discussed in [3]. Although the model is
not inspired by a biological system, it serves well as a
simple example of the improvement the WR method offers
over a standard integration algorithm (i.e., one that does
not rely on explicit decomposition and coupling of the
model). This model is then modified to include feedback
from faster components to slower components giving a
bidirectionally coupled system. The second model is based
on Höfer’s calcium oscillation model [17], reformulated
so that a combination of deterministic and stochastic
simulation can be executed within the WR framework.
The third model is a single-cell calcium model [18] that
generates different oscillation patterns ranging from simple
periodic oscillations to periodic and chaotic bursting in
response to agonist stimulation. The model also has a
natural decomposition into 2 modules with distinct time
scales. This model therefore provides a suitable test case for
validating the convergence property of WR, and the benefits
of model decomposition based on time scale differences.
Finally, the fourth model, which is also based on Höfer’s
calcium oscillation model, is a genuinely multicellular model
that deals with the synchronisation of calcium oscilla-
tions within a plate of heterogeneously coupled hepato-
cytes.

4.1. A Cascade of Harmonic Oscillators

A system of N unidirectionally, linearly coupled harmonic
oscillators is defined by the following equations:

d 2x1

dt 2
+ k 2

1 x1 = 0,

d 2xi
dt 2

+ k 2
i xi = ki−1kixi−1, i = 2, 3, . . . ,N ,

(11)

where the frequency of the ith harmonic oscillator is ki = 2i.
See Figure 1.

The time scale difference among components is explicit
in this model. For instance, the total time scale difference
across the frequencies ki is about 6 orders of magnitude for
N = 20.

The application of the Gauss-Seidel WR to this unidi-
rectional model results in a sequential execution of each
component, and no iteration loop is necessary. This is
because the system has triangular structure owing to the
unidirectional coupling, and the solution can be obtained
sequentially by solving for the ith oscillator as driven by the
(i− 1)th oscillator.

The efficiency of this multitime scale computation can be
easily understood. We consider the solution on a fixed time
interval [0,T]. Using a WR method based on an adaptive
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Figure 2: Computed amplitudes of units 7, 8, 9, 14 in a cascade of N = 20 harmonic oscillators with unidirectional coupling with the initial
conditions: xi(0) = 0, yi(0) = 1.

grid method, which precisely follows time-scale variations
of component solutions, the number of time steps taken to
cover this interval for the ith component is proportional
to the frequency ki. Thus the total number of time steps
used for all components is proportional to k1 + · · · +
kN = 2(2N − 1) 	 2 × 2N for large N . On the other
hand, when a standard adaptive grid method is applied to
the whole system, the number of time steps used to reach
the end of the interval will be determined by the fastest
component (component N in this example), to resolve the
variation for this component, regardless of slower variations
in other components. That is, the total number of time
steps used is proportional to N × 2N . Thus the WR method
is approximately (1/2)N times faster than a standard flat
algorithm. In particular, for N = 20, the WR method is
approximately 10 times faster. This comparison is based on
the cost of evaluation of the right-hand functions of the
system, with the computational cost of interpolation, which
is fixed for a particular interpolation method, neglected.
Figure 2 shows the calculated solutions for oscillators 7, 8,
9, 14.

This simple picture changes when we modify the
model by adding feedbacks from faster components to
their neighbouring slower components (Figure 3), thereby
rendering the coupling bidirectional. The ability to cope
efficiently with such bidirectional feedback is an important
property of any numerical methodology, since feedbacks are
important features of biological control systems. This system
has no specific biological interpretation. Nevertheless, like
the unidirectional system considered above, it provides a
significant test case for the WR methodology.

The modified system is given by

d 2x1

dt 2
+ k 2

1 x1 = εk1k2x2,

d 2xi
dt 2

+ k 2
i xi = ki−1kixi−1 + εkiki+1xi+1, 2 ≤ i ≤ N − 1,

d 2xN
dt 2

+ k 2
NxN = kN−1kNxN−1.

(12)
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X1 X2 X3 · · · XN

Figure 3: The harmonic oscillators with bidirectional coupling.
Xi = (xi, yi)

T with yi = ẋi/ki, i = 1, 2, . . . ,N .

The parameter ε measures feedback strength. Stability
requirements constrain this parameter. For real ε, the
stability interval is defined as the range of ε for which the
system is composed of N stable harmonic oscillators, and is
(−∞, ε∗N ), where ε∗N = (1/4)[1+tan 2(π/(N+1)]. The detailed
stability analysis is given in the Appendix. Interestingly, the
stability is independent of specific values of the k’s so long as
all of them are positive. Numerical computations done by the
Gauss-Seidel WR algorithm verify these stability conditions,
as illustrated in Figure 4.

This modified system not only introduces the mutual
dependency of neighbouring components but also retains the
same multitime-scale character as the original unidirectional
system for a suitably chosen ε. Therefore, it provides a model
to test the efficiency of the WR algorithm.

First, the computation is performed for N = 20
and ε = 0.25, a case with very strong coupling among
all neighbouring components. For this computation, there
is a tradeoff between the multiscale efficiency and the
number of iterations used. The number of iterations will
depend on the coupling strength and the length of the time
subinterval over which each iteration is performed (i.e., the
windowing technique mentioned earlier). For this case, since
the coupling is very strong, we have to reduce the subinterval
to as small as 10−4 to achieve convergence with ten iterations.
Here, the convergence criterion is defined by the maximum
relative differences between current and previous iterates
among all components, which is less than the given error
constant 10−4.

Note that there always exits a small subinterval on which
the WR iteration is convergent, provided that each submodel
satisfies a Lipschitz condition. This can be seen from the
proof of WR convergence [6]. However, it is not easy to
quantify this subinterval in a general and practical way since
it is context dependent. Nevertheless, in real computation
this is not a significant issue, since just a few test runs will
give an idea about the choice of a suitable subinterval.

However, the analysis of the computational efficiency
for the unidirectional coupling above shows that the WR
method is approximately 10 times faster than the standard
algorithm on a single interval. Hence if the method is
applied successively more than 10 times, the WR method
is no longer efficient compared to the standard algorithm.
Therefore, we further reduce the length of subinterval
to 10−5. In this case, the average number of iterations
required for convergence is 6 and the resulting computa-
tional efficiency is comparable with the standard algorithm.
Here, we may argue that if components in a system are
all coupled very strongly, then separating the system into

components and performing the WR iteration would be
not a good choice, and instead multirate methods [13]
should be applied to the whole system. Nevertheless, it is
a reasonable assumption for a biological system with an
identified modular structure to exclude the existence of
such strong coupling among components over long-time
intervals, since the notion of modularity itself implies strong
coupling within components, but weaker coupling between
components.

If we reduce the coupling strength ε to 0.01, then
a subinterval with length 10−4 will result in 5 iterations
for convergence, on average. Therefore, for this weaker
coupling the algorithm has a better performance than a
standard algorithm. In addition, if we assume that the
couplings among some of the slower components are strong,
but are weak for the remaining faster components, our
WR algorithm still gives a better performance than a
standard algorithm. Figure 5 shows the computation for
this mixed weak and strong coupling. The scenario is
arranged by setting ε = 0.25 for the first 10 components
(i = 1, 2, . . . , 10) and ε = 0.001 for the remaining
faster components (i = 11, 12, . . . , 20). In this situation,
a discrete event-scheduled strategy applied to the iteration
loops is very efficient, since it effectively senses the coupling
strength and bypasses the components with very small
variations.

Notice that all the comparisons above are done in terms
of sequential computation, though the WR method has the
obvious additional advantage of parallel computation. More
precisely, the Jacobi WR method can be directly implemented
in a parallel computer, that is, different processes in the
computer can deal with different components simultane-
ously.

Because this system has purely imaginary eigenvalues,
some of which have very large magnitude, Gear’s method
[19] based on backward differentiation is unsuitable. Instead,
Prince-Dormand’s embedding explicit Runge-Kutta 5(4)
[20] was implemented for each component. The compu-
tations were compared with the solutions obtained with a
single algorithm and agreement is achieved for all the cases
discussed above (not shown).

4.2. Nonlinear Oscillators with Nonlinear
Coupling in a Calcium Model

In [18], a model for cell calcium dynamics is presented. The
main feature of the model is its ability to generate complex
oscillations such as periodic bursting and chaotic bursting
in response to agonist stimulation, in qualitative agreement
with the complex phenomena observed in experiments.
The model includes the mechanisms of feedback inhibition
on the initial agonist receptor complex by calcium and
activated phospholipase C (PLC), as well as receptor type-
dependent self-enhanced behaviour of the activated Gα
subunit. Specifically, let x1 denote the concentration of active
Gα subunits, x2 the concentration of active PLC, x3 the
concentration of free calcium in the cell cytosol, and x4 the
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Figure 4: The harmonic oscillators with bidirectional coupling. N = 6. (a) and (b): ε = 0.31, unstable; (c) and (d): ε = 0.30, stable.
ε∗6 = (1/4)[1 + tan 2(π/7)] ≈ 0.3080. The initial conditions: xi(0) = 0, yi(0) = 1.

concentration of calcium in the intracellular stores. Then this
model is given by the following four nonlinear ODEs:

dx1

dt
= k1 + k2x1 − k3

x1x2

x1 + K4
− k5

x1x3

x1 + K6
,

dx2

dt
= k7x1 − k8

x2

x2 + K9
,

dx3

dt
= k10

x2x3x4

x4 + K11
+ k12x2 + k13x1

− k14
x3

x3 + K15
− k16

x3

x3 + K17
,

dx4

dt
= −k10

x2x3x4

x4 + K11
+ k16

x3

x3 + K17
.

(13)

In the component integration approach, a natural question
is how do we detect the time-scale differences among state
variables so that we can define suitable components each
with its own characteristic time scale? Obviously this is

the key for the efficiency of multiscale algorithms. The
answer comes from understanding the biology underlying
the components. In this calcium model, we expect that the
activity changes of Gα and PLC in the cell membrane are
relatively slow compared with the variation of calcium within
the cell [21]. Therefore, we choose to partition the system
into just two components, one for Gα and PLC and the other
for calcium compartments inside the cell, see Figure 6. Then
we perform Gauss-Seidel WR iteration for these two coupled
components. The computation confirms the supposed large
difference in time scales between the two components. For
example, in the computation of periodic oscillations the
average adaptive step size for the first component is about
0.4 and for the second component is approximately 0.004;
that is, two orders of magnitude difference. For the cases with
periodic or chaotic bursting, there is still over one order of
magnitude difference between the time scales of these two
components.

Both Gear’s method and Prince-Dormand’s method, as
well as their combination were applied for the computation,
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Figure 5: The harmonic oscillators bidirectionally coupled with strength ε = 0.25 for components 1, 2, . . . , 10 and strength ε = 0.001 for
components 11, 12, . . . , 20. The initial conditions: xi(0) = 0, yi(0) = 1.

x1 x2

x3 x4

Slow components

Gα PLC

Cacty Caer

Fast components

Figure 6: Decomposition of Kummer’s Calcium model [18].

giving similar performance in terms of convergence, with, on
average, 2-3 iterations achieving convergence to within an
error constant of 10−4.

This case also indicates that the WR iteration is quite
robust even if we have nonlinear oscillators with nonlinear
coupling between them and both periodic and chaotic

bursting occur in the solutions. The results, shown in
Figure 7, agree qualitatively with the computations done in
the original paper [18] with a stiff ODE solver as a single
integrator.

4.3. Stochastic/Deterministic Simulations for
a Calcium Model

Höfer [17] formulated a calcium model for a hepatocyte,
based on flux balances between the endoplasmic reticulum
(ER) release (Jrel), the ER uptake (JSERCA), the plasma
membrane efflux (Jout), the calcium influx (Jin), and the
gap-junctional flux (JG), resulting in the following two-
dimensional system of equations

dx

dt
= APM

CC

(
Jin − Jout

)
+
AER

CC

(
Jrel − JSERCA

)
+
AG

CC
JG,

dz

dt
= APM

CC

(
Jin − Jout

)
+
AG

CC
JG,

(14)
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Figure 7: Kummer’s calcium model [18]. x1 is the activated Gα subunits, x3 is the concentration of free calcium in the cytosol. (a) and (b):
periodic oscillations with k2 = 1.3; (c) and (d): periodic bursting with k2 = 2.6; (e) and (f): chaotic bursting with k2 = 2.7738. The initial
conditions: x1 = 0.01, x2 = 0.01, x3 = 0.01, and x4 = 20.

where x represents the concentration of cytoplasmic free
calcium, APM, AER, and AG are the total areas of plasma
membrane, the ER membrane, and the gap-junctional
connections, respectively, and CC is the effective cytosolic
volume (calcium “capacity”). The free calcium content of the
whole cell is z = x+(CER/CC)y, with y being the free calcium
concentration in the ER. Here, we are concerned with a single
cell so JG is set to zero in what follows .

Stochastic simulation based on this model is done in
[22]. Our purposes here are (1) to generalize Gillespie’s
stochastic simulation to the context of WR methodology,
and (2) to show the feasibility of combining stochastic and
deterministic simulation based on WR methodology. For
these purposes, we reformulate the model using the variables
x and y, instead of x and z, and also split the system into two
components

Component 1:
dx

dt
= ρa(1)(P, x, y)− ρa(2)(P, x). (15)

Component 2:

dy

dt
= τa(3)(P, x)− τa(4)(P, x, y), (16)

where

a(1) = Jin + αJ+
rel,

a(2) = Jout + α
(
J−rel + JSERCA

)
,

a(3) = J−rel + JSERCA,

a(4) = J+
rel,

Jin = γ0 + γc
P

K0 + P
,

Jout = γ4
x 2

K 2
4 + x 2

,

JSERCA = γ3
x 2

K 2
3 + x 2

,
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kr(P, x) =k1

[
d2
(
d1 + P

)
Px

(
d1+P

)(
da+x

)(
d2
(
d1+P

)
+x
(
d3+P

))

]

+k2,

ρ = APM

CC
, α = AER

APM
,

β = CER

CC
, τ = AER

CER
,

Jrel = J+
rel − J−rel,

J+
rel = kr(P, x)y,

J−rel = kr(P, x)x
(17)

with P representing the concentration of inositol triphos-
phate (InsP3).

Based on the above model formulation, we can define
stochastic processes in terms of variables X and Y , which are
the numbers of calcium ions in the cell cytosol and the ER,
respectively. Thus

x = X

ΩC
, y = Y

ΩER
, (18)

where ΩC and ΩER are the volumes of the cytosolic and
ER cell compartments, respectively. Now, we can make three
choices of WR simulation methods.

Method 1:

The deterministic WR. That is, we solve (15) and (16) for
x and y separately and perform an iteration between the
intermediate solutions to resolve the bidirectional coupling
between two components.

Method 2:

The stochastic WR. Here, X and Y are treated as random
variables and corresponding stochastic processes are defined
by infinitesimal probabilities ã (i)dt. Thus for component 1,

ã (1) = ΩCρa
(1): X −→ X + 1,

ã (2) = ΩCρa
(2): X −→ X − 1,

(19)

and for component 2

ã (3) = ΩERτa
(3): Y −→ Y + 1,

ã (4) = ΩERτa
(4): Y −→ Y − 1.

(20)

Since the rate functions ã (1) and ã (4) are dependent on both
X and Y , these two components are actually bidirectionally
coupled and thus the WR method has to be used.

Method 3:

The combined deterministic and stochastic WR. Here, the
state variable X for component 1 is treated as a random
variable governed by the stochastic processes defined by (19),
and the state variable y for component 2 is treated as a

continuous variable governed by (16) and is related to Y by
(18). Such discrimination between components 1 and 2 is
based on the fact that the concentration of calcium in the
ER is much higher than that in the cytoplasm and hence is
likely to be less influenced by stochastic fluctuations.

Figure 8 shows the computational output of these three
methods. As expected, fluctuations appear in the stochas-
tic simulation results, especially for the cytoplasmic-free
calcium. Such a small size of fluctuations is generally
observed in experimental studies. The magnitude of these
fluctuations is controlled byΩC—the volume of the cytosolic
compartment of the cell. When ΩC is large enough, fluc-
tuations become unobservable and the solution approaches
the deterministic limit, in agreement with the theory and the
results obtained in [22].

4.4. Model for Calcium Dynamics in a Cell Plate
Mediated by Gap Junctions

In [17], the single cell model was extended to consider a
cell pair linked by a gap junction, and the synchronization
of heterogeneous cells was studied. Using our model linking
strategy, we computed a multicellular version of Höfer’s cell
pair.

The model (see Figure 9) can be interpreted as repre-
senting a plate of hepatocytes spanning from the portal
space to the hepatic venule in the liver, in agreement with
the known anatomy. The liver plate is a sheet of cells
approximately 10 cells high and 15–25 cells long [23].
For the purposes of computation, each cell in a vertical
stack was taken to be equivalent and the spread of signal
computed for a line of cells with the signal travelling in one
dimension along the plate. The communication of cells in the
plate is through gap junctions, and the cell-surface receptor
density—the binding of hormone ligands to which activates
the calcium pathway—is allowed to vary along the plate. The
multicellular extension of Höfer’s model is summarised as
follows:

dxi
dt

= ρi
(
Fi − αiEi

)
+ γi+1,i

(
xi+1 − xi

)
+ γi−1,i

(
xi−1 − xi

)
,

dzi
dt
= ρiFi + γi+1,i

(
xi+1 − xi

)
+ γi−1,i

(
xi−1 − xi

)
,

Fi = ν0 + νC
Pi

K0 + Pi
− ν4

x 2
i

K 2
4 + x 2

i

,

Ei = kr
(
Pi, xi

)
β−1
i

(
zi −

(
1 + βi

)
xi
)− ν3

x 2
i

K 2
3 + x 2

i

.

(21)

Here, each cell acts as a (nonlinear) calcium oscillator
linearly coupled with its neighbours. The strength of the
coupling is γ, representing the scaled gap junction perme-
ability. The heterogeneity amongst cells comes from different
sources: the variation of InsP3 levels (represented by Pi in
the model) due to the density differences of receptors on dif-
ferent cell membranes, and the varying capacity of calcium
stores between cells represented by the structure parameters
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Figure 8: Calcium oscillations in the WR deterministic and/or stochastic versions of Höfer’s model [17] for a single cell. (a) The solutions
by the deterministic WR. (b) The solutions by the stochastic WR. (c) The solutions by the combined deterministic and stochastic WR. All
the parameter values are taken from Höfer’s original paper except for ΩC and ΩER, which are set to be 5000 μm3 and 1000 μm3, respectively.
The Initial conditions: rest state without agonist (P = 0).
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Figure 9: Model for the hepatic plate. A line of hepatic cells
is bidirectionally coupled by gap junctions. Heterogeneity of the
hepatocytes is controlled by the structure parameter β defined as
the ratio of the effective volume of the ER to the effective cytosolic
volume. The concentration of InsP3 is denoted by P. xi denotes
the concentration of cytoplasmic-free calcium in cell i. γ represents
the coupling coefficient as defined by the scaled gap junction
permeability. The model is based on Höfer’s calcium oscillation
model in hepatocytes [17].

βi, defined as the ratio of the effective volume of the ER to
the effective cytosolic volume. In the computations, InsP3
levels (Pi) among the cells are set up with a constant gradient,
reflecting an experimentally observed density gradient of cell
surface receptors between periportal and perivenous zones

[24]. The structure parameters βi are treated as constants or
random factors varying between 0.1 and 0.2 (these values are
chosen from Höfer’s estimation [17]).

Calcium oscillations are inherent to individual cells and
the frequency and the shape of oscillations are determined by
many factors, such as cell type, ligand and receptor densities,
and so forth. In this particular model for hepatocytes,
the oscillation frequency is governed by InsP3 levels and
structural parameters. Therefore, for weak gap-junctional
coupling (small values of γ), the calcium in each cell oscillates
at its own inherent frequency, as indicated in Figures 10 and
11. However, when the permeability of gap junctions γ is
increased, the computations show that the oscillations for
individual cells become synchronized towards the frequency
for the cell with the highest InsP3 level (Figures 10 and 11).
This implies that the cell with the highest InsP3 level will
direct the calcium waves in the liver lobule, in agreement
with Höfer’s analysis of a cell pair and also with experimental
studies [24].
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Figure 10: Synchronization of calcium oscillations in a plate of hepatocytes linked by gap junctions: Pi+1 = 1.05Pi, i = 1, 2, . . . , 19, P1 = 1.5,
βi = 0.2, ρi = 0.02, αi = 2, and i = 1, 2, . . . , 20. Initial conditions: rest state without agonist (P = 0).

When the Gauss-Seidel WR is applied to solve these
bidirectionally coupled components, the convergence rate
depends on the coupling strength γ. For a weak coupling,
say γ = 0.001, 2, or 3, iterations are sufficient to achieve
convergence, but for an increasing γ the number of iterations
increases.

5. Discussion and Conclusions

The main goal of systems biology and computational
physiology is to formulate predictive models of integrated,
functional biological systems which exploit the massive
increase in low-level (usually molecular) detailed under-
standing and data that has accumulated over the past few
decades. In parallel with biological developments, the history
of mathematical and computational modelling of biological
systems has largely concentrated on discrete, well-described,

single-scale, and isolatable subsystems. Taking the agenda
of systems biology forward will require the integration of
a number of these small-scale models of (comparatively)
well-understood mechanisms into larger models in order to
investigate the effects of dynamical interactions between the
model components (e.g., for discrete multicellular systems
such as organs). Further, several large and complicated mod-
els may need to be linked together to derive a biologically
sensible model at a still larger scale (e.g., for whole-organism
physiological systems).

A major challenge, therefore, is to take existing and new
mathematical models of biological subsystems and integrate
them together into new and larger systems. This is a difficult
task to achieve for a number of reasons. First is the difficulty
of delineating the appropriate biological modular structures,
and identifying (or constructing) models of each such
module. Second, the nature of biological interfaces between
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Figure 11: Synchronization of calcium oscillations in a plate of hepatocytes linked by gap junctions: Pi+1 = 1.05Pi, i = 1, 2, . . . , 19, P1 = 1.5,
and βi are randomly distributed between 0.1 and 0.2. In this particular computation, β1 = 0.2, β5 = 0.1, β14 = 0.13, and β20 = 0.18. Initial
conditions: rest state without agonist (P = 0).

modules, and their representation as couplings amongst
submodels must be formulated. A wide variation in the
mathematical representation and software implementation
of submodels often makes it impractical (or, at least,
inefficient) to integrate submodels by simply reformulating
them within a common computational paradigm. More
fundamentally, it is impractical to construct a general refor-
mulation framework to include all such potential variation.
Because of this, any such special case reformulation will have
limited generalizability. Third is designing an integration
methodology that allows for efficient computation. Thus
from both a practical point of view and a system level
perspective, a general methodology that provides a means
to capture the global solutions over time and space inde-
pendently of the solution techniques related to individual
submodels or components is required.

In this study, we propose waveform relaxation (WR)
as a general methodology to integrate biological models to
create large models of functional systems. The WR numerical
method for parallel integration of systems of coupled ODEs
is particularly useful because it allows the realisation of an
integrated model without reformulating the whole problem,
regardless of what formalisms were originally employed for
each of the component models. We have demonstrated by
case studies the multitime scale efficiency for bidirectionally
coupled components, the convergence robustness, the flexi-
bility, and the capability of tackling model heterogeneity of
the WR method.

In principle, the WR strategy can be applied to a
model system at any level of organisation, from the level
of elementary chemical reactions to that of interactions
in ecosystems. However, the efficiency of the method will
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depend on both the network structure and the dynamics
of the network, as we demonstrate in Section 4.1. This
closely relates to the difficulty associated with defining
the concept of modularity [25]. The main purpose of
this paper is to provide a practical means—the WR
method—for integrating model systems. Pragmatic, but
informed, judgement concerning these issues will always be
required.

Appendix

Stability of the Bidirectionally Coupled
Harmonic Oscillator System

Let yi = ẋi/ki. Then we can rewrite the system defined by
(12) as

Ẋ = DX, X = (X1, . . . ,XN
)T

, Xi =
(
xi, yi

)T
,

(A.1)

where the Jacobian matrix D is 2× 2 block triagonal:

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1 εB2

B1 A2 εB3

. . .
. . .

. . .

Bi−1 Ai εBi+1

. . .
. . .

. . .

BN−2 AN−1 εBN

BN−1 AN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.2)

with

Ai =
⎡

⎣
0 ki

−ki 0

⎤

⎦ , Bi =
⎡

⎣
0 0

ki 0

⎤

⎦ . (A.3)

We are required to find conditions under which D has
only complex eigenvalues, and hence that the system is
decomposable into a system of stable harmonic oscillators.
Thus if PN (λ) = |λI −D| is the characteristic polynomial of
D, we consider conditions under which PN (λ) > 0 for all real
λ.

Consider the LU-decomposition of the tridiagonal block
matrix λI−D = LU, where

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L1

−B1 L2

. . .
. . .

−Bi−1 Li

. . .
. . .

−BN−2 LN−1

−BN−1 LN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I2 U2

I2 U3

. . .
. . .

I2 Ui

. . .
. . .

I2 UN

I2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(A.4)

Then

L1 = λI2 − A1,

Li = λI2 − Ai − εBi−1L
−1
i−1Bi, 2 ≤ i ≤ N.

(A.5)

It now follows easily from (A.3) and (A.5) that

PN (λ) = |L||U| =
N∏

i=1

∣
∣Li
∣
∣, (A.6)

∣
∣L1(λ)

∣
∣ = λ 2 + k 2

1 ,

∣
∣Li(λ)

∣
∣ = λ 2 + k 2

i

(

1− εk 2
i−1∣

∣Li−1(λ)
∣
∣

)

, 2 ≤ i ≤ N.
(A.7)

From (A.6), we have Pi(λ) = |Li(λ)|Pi−1(λ) for i ≥ 1, where
we set P0(λ) = 1. It follows easily by induction from (A.7)
that |Li(λ)| ≥ |Li(0)| for all real λ and all i ≥ 1.

Set R0(ε) = 1 and

Ri(ε) = 1
∏i

j=1k
2
j

Pi(0), (A.8)

for i ≥ 1. Then Pi(0) = |Li(0)|Pi−1(0) implies that

∣
∣Li(0)

∣
∣ = k 2

i Ri(ε)
Ri−1(ε)

. (A.9)

It follows that |Li(λ)| > 0 for all real λ and i ≥ 1 if and only if
Ri(ε) > 0 for each i ≥ 0.
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Clearly, P0(λ) = P0(0) > 0 for all real λ. Assume
inductively that Pj(λ) > 0 for all real λ and 0 ≤ j < i. Then
Pi(λ) = |Li(λ)|Pi−1(λ) implies that

Pi(λ) > 0, for all real λ⇐⇒ ∣
∣Li(λ)

∣
∣ > 0,

for all real λ⇐⇒ Ri(ε) > 0.
(A.10)

Thus setting

Ωi =
{
ε ∈ R : Ri(ε) > 0

}
, (A.11)

it follows by induction that Pi(λ) > 0 for all real λ, and all
0 ≤ i ≤ N if and only if

ε ∈ ΓN =
N⋂

i=1

Ωi. (A.12)

We now obtain the following.

Theorem A.1. For ki > 0, i = 1, 2, . . . ,N , and real ε, the
system (A.1) consists of N stable harmonic oscillators if and
only if ε ∈ ΓN = (−∞, ε∗N ), where

ε∗N =
1
4

[

1 + tan 2
(

π

N + 1

)]

. (A.13)

Thus ε∗N is monotonically decreasing in N , and limN→∞ε∗N =
1/4.

Proof. It remains to identify the set ΓN ⊆ R. From (A.7), we
have

∣
∣Li(0)

∣
∣ = k 2

i

{

1− ε
k 2
i−1∣

∣Li−1(0)
∣
∣

}

. (A.14)

Substituting from (A.9) gives

k 2
i Ri(ε)
Ri−1(ε)

= k 2
i

{

1− ε
Ri−2(ε)
Ri−1(ε)

}

, (A.15)

for i ≥ 2, and hence

Ri(ε) = Ri−1(ε)− εRi−2(ε). (A.16)

The solution of the difference equation (A.16) with initial
condition R0(ε) = R1(ε) = 1 is

Ri(ε) =

⎧
⎪⎪⎨

⎪⎪⎩

(
1− r−
r+ − r−

)

ri+ −
(

1− r+

r+ − r−

)

ri−, ε /= 1
4

,

(i + 1)2−i, ε = 1
4

,
(A.17)

where r± are the roots of the quadratic r 2− r + ε = 0. That is,
r± = (1/2)(1 ± √1− 4ε). Clearly, these are real and distinct
for ε < 1/4 and complex for ε > 1/4.

Setting ε = 1/4− δ 2, for δ ≥ 0 transforms (A.17) to

Ri(ε) =

⎧
⎪⎨

⎪⎩

1
2δ

[
(1 + 2δ)i+1 − (1− 2δ)i+1], δ > 0,

(i + 1)2−i, δ = 0,
(A.18)

and we conclude that Ri(ε) > 0, for all i ≥ 0 and ε ≤ 1/4.
For ε > 1/4, set ε = 1/4+δ 2 with δ > 0. Then (A.17) gives

Rk(ε) = 1
2δi

[
(1 + 2δi)k+1 − (1− 2δi)k+1]

=
(
1 + 4δ 2

)(k+1)/2

2δ
sin
[
(k + 1)ϕ(δ)

]
,

(A.19)

where ϕ(δ) = tan−1(2δ). Thus Rk(ε) = 0 if and only if (k +
1)ϕ(δ) = mπ for positive integer m < (1/2)(k+ 1). This gives
a finite set of possible values δm = (1/2) tan[mπ/(k + 1)], for
m = 1, 2, . . . , [k/2], and hence a corresponding finite set of
real roots of Rk(ε) = 0:

ε(m)
k = 1

4

[

1 + tan 2
(

mπ

k + 1

)]

, m = 1, 2, . . . ,
[
k

2

]

. (A.20)

Clearly, ε(1)
k is the smallest of these roots. Also, ε(1)

k is

decreasing in k, and hence ε(1)
N ≤ ε(1)

k , for 1 ≤ k ≤ N . It,
therefore, follows that Rk(ε) > 0, for 1 ≤ k ≤ N and all
ε < ε∗N = ε(1)

N , which gives (A.13) and completes the proof of
the theorem.
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