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1. Introduction

Nested effects models (NEMs) are a class of probabilis-
tic models. They aim to reconstruct a hidden signalling
structure (e.g., a gene regulatory system) by the analysis of
high-dimensional phenotypes (e.g., gene expression profiles)
which are consequences of well-defined perturbations of the
system (e.g., RNA interference). NEMs have been introduced
by Markowetz et al. [1], and they have been extended by
Fröhlich et al. [2] and Tresch and Markowetz [3], see also
the review of Markowetz and Spang [4]. There is an open-
source software package “nem” available on the platform
R/Bioconductor [5, 13], which implements a collection of
methods for learning NEMs from experimental data. The
utility of NEMs has been shown in several biological applica-
tions (Drosophila melanogaster [1], Saccharomyces cerevisiae
[6], estrogen receptor pathway, [7]). The model in its original
formulation suffers from some ad hoc restrictions which
seemingly are only imposed for the sake of computability.
The present paper gives an NEM formulation in the con-
text of Bayesian networks (BNs). Doing so, we provide a
motivation for these restrictions by explicitly stating prior
assumptions that are inherent to the original formulation.
This leads to a natural and meaningful generalization of the
NEM model.

The paper is organized as follows. Section 2 briefly recalls
the original formulation of NEMs. Section 3 defines NEMs
as a special instance of Bayesian networks. In Section 4, we
show that this definition is equivalent to the original one if
we impose suitable structural constraints. Section 5 exploits
the BN framework to shed light onto the learning problem
for NEMs. We propose a new approach to parameter
learning, and we introduce structure priors that lead to the
classical NEM as a limit case. In Section 6, a simulation
study compares the performance of our approach to other
implementations. Section 7 provides an application of NEMs
to synthetic lethality data. In Section 8, we conclude with an
outlook on further issues in NEM learning.

2. The Classical Formulation of
Nested Effects Models

For the sake of self-containedness, we briefly recall the
idea and the original definition of NEMs, as given in [3].
NEMs are models that primarily intend to establish causal
relations between a set of binary variables, the signals S.
The signals are not observed directly rather than through
their consequences on another set of binary variables, the
effects E . A variable assuming the value 1, respectively, 0 is
called active, respectively, inactive. NEMs deterministically
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Figure 1: Example of a Nested effects model in its Bayesian network
formulation. The bold arrows determine the graph Γ, the solid
thin arrows encode Θ. Dashed arrows connect the effects to their
reporters.

predict the states of the effects, given the states of the signals.
Furthermore, they provide a probabilistic model for relating
the predicted state of an effect to its measurements. NEMs
consist of a directed graph T the nodes of which are the
variables S ∪ E . Edges represent dependencies between their
adjacent nodes. An arrow pointing from a to b means that b
is active whenever a is active. To be more precise, the graph
T can be decomposed into a graph Γ, which encodes the
information flow between the signals, and a graph Θ which
relates each effect to exactly one signal, see Figure 1. The
effects that are active as a consequence of a signal s are those
effects that can be reached from s via at most one step in Γ,
followed by one step in Θ. Let δs,e denote the predicted state
of e when signal s is activated, and let Δ = (δs,e) be the matrix
of all predicted effects.

For the probabilistic part of the model, let ds,e be
the data observed at effect e when signal s is activated
(which, by the way, need not be binary and may comprise
replicate measurements), and let D = (ds,e) be the matrix
of all measurements. The stochastic model that relates the
predictions Δ to the experimental data D is given by a set
of “local” probabilities L = {p(ds,e | e = δs,e), s ∈ S, e ∈
E}. There are several ways of specifying L, depending on
the kind of data and the estimation approach one wants to
pursue (see [1–3]). An NEM is completely parameterized by
T and L, and, assuming data independence, its likelihood is
given by

p(D | T , L) =
∏

s∈S,e∈E

p
(
ds,e | e = δs,e

)
. (1)

3. The Bayesian Network Formulation of
Nested Effects Models

A Bayesian network describes the joint probability distribu-
tion of a finite family of random variables (the nodes) by a
directed acyclic graph T and by a family of local probability
distributions, which we assume to be parameterized by a

set of parameters L (for details, see, e.g., [8]). We want to
cast the situation of Section 2 in the language of Bayesian
networks. Assuming the acyclicity of the graph Γ of the
previous section, this is fairly easy. A discussion on how to
proceed when Γ contains cycles is given in Section 4. We
have to model a deterministic signalling hierarchy, in which
some components (E) can be probed by measurements, and
some components (S) are perturbed in order to measure the
reaction of the system as a whole. All these components H =
S ∪ E will be hidden nodes in the sense that no observations
will be available for H , and we let the topology between
these nodes be identical to that in the classical model. In
order to account for the data, we introduce an additional
layer of observable variables (observables, O) in an obvious
way: each effect node e ∈ E has an edge pointing to a
unique (its) observable node e′ ∈ O (see Figure 1). Hence,
O = {e′ | e ∈ E}, and we call e′ the observation of e.

Let pa(x) be the set of parents of a node x, that is, the
set of nodes that are direct predecessors of x. For notational
convenience, we add a zero node z, p(z = 0) = 1, which has
no parents, and which is a parent of all hidden nodes (but
not of the observables). Note that by construction, pa(x) is
not empty unless x is the zero node. For the hidden nodes, let
the local probabilities describe a deterministic relationship,

p
(
x = 1 | pa(x)

) =
{

1, if any parent of x is active,

0, otherwise,

= max
(
pa(x)

)
for x ∈H .

(2)

We slightly abuse notation by writing max
(
pa(x)

)
for

the maximum value that is assumed by a node in pa(x).
Obviously, all hidden nodes are set to 0 or 1 deterministically,
given their parents. The local probabilities p(e′ | e), e ∈ E ,
remain arbitrary for the moment. Assume that we have made
an intervention into the system by activating a set of nodes
I ⊂ S. This amounts to cutting all edges that lead to the
nodes in I and setting their states to value 1. When an
intervention I is performed, let δI,h ∈ {0, 1} be the value
of h ∈ H . This value is uniquely determined by I, as the
next lemma shows.

Lemma 3.1. δI,h = 1 if and only if h can be reached from one
of the nodes in I by a directed path in T (i.e., there exists a
sequence of directed edges in T , possibly of length zero, that
links an s ∈ I to h). When performing an intervention I, we,
therefore, have

p(h = 1) = δI,h for h ∈H . (3)

Proof. The proof is straightforward though somewhat tech-
nical and may be skipped for first reading. Let H =
{h1, . . . ,hn} be an ordering of the nodes compatible with T ,
which means pa(hj) ⊆ {h1, . . . ,hj−1}, j = 1, . . . ,n. Such
an ordering exists because the graph connecting the states
is acyclic. The proof is by induction on the order, the case
p(h1 = 1) = δI,h1 being trivial. If hj ∈ I, there is nothing to
prove. Hence, we may assume pa(hj) /=∅ in the graph which
arises from T by cutting all edges that lead to a node in I.
Since p(hj = 1) = max(pa(hj)), it follows that δI,hj = 1 if



EURASIP Journal on Bioinformatics and Systems Biology 3

and only if hk = 1 for some hk ∈ pa(hj). This holds exactly
if δI,hk = 1 for some k ∈ pa(hj) (in particular, k < j). By
induction, this is the case if and only if there exists an hi ∈ I
and a directed path from hi to hk, which can then be extended
to a path from hi to hj .

Let DI = (e′ = de′,I; e ∈ E) be an observation of the
effects generated during intervention I. Marginalization over
the hidden nodes yields

PBN
(
DI
) =

∑

(bh)∈{0,1}H
P
(
D | h = bh;h ∈H

)

·P(h = bh;h ∈H
)
.

(4)

Since by (3) there is only one possible configuration for the
hidden nodes, namely, s = δI,s, s ∈ S, (4) simplifies to

PBN
(
DI
) = P

(
DI | h = δI,h;h ∈H

)

= P
(
DI | e = δI,e; e ∈ E

) (5)

=
∏

e∈E

p
(
e′ = de′,I | e = δI,e

)
. (6)

This formula is very intuitive. It says that if an intervention
I has been performed, one has to determine the unique
current state of each effect node. This, in turn, determines the
(conditional) probability distribution of the corresponding
observable node, for which one has to calculate the proba-
bility of observing the data. The product over all effects then
gives the desired result.

4. Specialization to the Original
NEM Formulation

In fact, (6) can be written as

PBN
(
DI
) =

∏

e∈E |δI,e=1

p
(
e′ = de′,I | e = 1

)

·
∏

e∈E |δI,e=0

p
(
e′ = de′,I | e = 0

)

=
∏

e∈E |δI,e=1

p
(
e′ = de′,I | e = 1

)

p
(
e′ = de′,I | e = 0

)

·
∏

e∈E

p
(
e′ = de′,I | e = 0

)
.

(7)

Let re,I = log(p(e′ = de′,I | e = 1)/p(e′ = de′,I | e = 0)), e ∈
E , and tI = log

∏
e∈E p(e′ = de′,I | e = 0). Following

the NEM formulation of [3], we consider all replicate
measurements of an intervention I as generated from its own
Bayesian network, and we try to learn the ratio re,I separately
for each intervention I. Therefore, we include I into the
subscript. Taking logs in (7), it follows that

logPBN
(
DI
) =

∑

e∈E |δI,e=1

re,I + tI =
∑

e∈E

δI,e · re,I + tI. (8)

Suppose that we have performed a series I1, . . . , IN ⊆
S of interventions, and we have generated observations

D1, . . . ,DN , respectively. Assuming observational indepen-
dence, we get

logPBN
(
D1, . . . ,DN

) =
N∑

j=1

logP
(
Dj
)

=
N∑

j=1

∑

e∈E

δI j ,e · re,I j +
N∑

j=1

tI j

=
N∑

j=1

(ΔR) j, j +
N∑

j=1

tI j

= tr(ΔR) +
N∑

j=1

tI j ,

(9)

with the matrices Δ = (δI j ,e) j,e and R = (re,I j )e, j .
The importance of (9) lies in the fact that it completely
separates the estimation steps for L and T . The information
about the topology T of the Bayesian network enters the
formula merely in the shape of Δ, and the local probability
distributions alone define R. Hence, prior to learning the
topology, one needs to learn the local probabilities only for
once. Then, finding a Bayesian network that fits the data well
means finding a topology which maximizes tr(ΔR).

In the original formulation of NEMs, it is assumed that
the set of interventions equals the set of all single-node
interventions, Is = {s}, s ∈ S. As pointed out in Section 2,
the topology of the BN can be captured by two graphs Γ
andΘ, which we identify with their corresponding adjacency
matrices Γ and Θ by abuse of notation. The S × S adjacency
matrix Γ = (Γs,t)s,t∈S describes the connections among
signals, and the S × E adjacency matrix Θ = (Θs,e)s∈S,e∈E

encodes the connection between signals and effects. For
convenience, let the diagonal elements of Γ equal 1. Denote
by Γ the adjacency matrix of the transitive closure of Γ. Check
that by Lemma 3.1, Δ = ΓΘ. Therefore, we seek

arg max
(Γ,Θ); Γacyclic

tr(ΓΘR), (10)

which for transitively closed graphs Γ = Γ is exactly the
formulation in [3]. It has the advantage that given Γ, the
optimal Θ can be calculated exactly and very fast, which
dramatically reduces the search space and simplifies the
search for a good graph Γ. The BN formulation of NEMs
implies via (10) that two graphs Γ1,Γ2 are indistinguishable
(likelihood equivalent, they fit all data equally well) if they
have the same transitive closure. It is a subject of discussion
whether the transitive closure of the underlying graph is a
desirable property of such a model (think of causal chains
which are observed in a stable state) or not (think of the
dampening of a signal when passed from one node to
another, or of a snapshot of the system where the signalling
happens with large time lags), see [9].

It should be mentioned that the graph topology in our
BN formulation of NEMs is necessarily acyclic, whereas the
original formulation admits arbitrary graphs. This is only
an apparent restriction. Due to the transitivity assumption,
effects that connect to a cycle of signals will always react in the
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same way. This behaviour can also be obtained by arranging
the nodes of the cycle in a chain and connecting the effects to
the last node of the chain. This even leaves the possibility for
connecting other effects to only a subset of the signals in the
cycle by attaching them to a node higher up in the chain. As
a consequence, admitting cycles does not extend the model
class of NEMs in the Bayesian setting.

Although the original NEM model is algebraically and
computationally appealing, it has some drawbacks. Learning
the ratio re,I = log(p(e′ = de′,I | e = 1)/p(e′ = de′,I | e = 0))
separately for each intervention I entails various problems as
follows.

(1) Given an observation de′ at observable e′ together
with the state of its parent e, the quantity p(e′ = de′ | e)
should not depend on the intervention I during which the
data were obtained, by the defining property of Bayesian
networks. However, we learn the ratio re,I separately for each
intervention, that is, we learn separate local parameters L,
which is counterintuitive.

(2) Reference measurements p(e′ = de′,I | e = 0) are
used to calculate the ratio re,I, raising the need for a “null”
experiment corresponding to an unperturbed observation
I0 = ∅ of the system, which might not be available. The
null experiment enters the estimation of each ratio re,I. This
introduces an unnecessary asymmetry in the importance of
intervention I0 relative to the other interventions.

(3) The procedure uses the data inefficiently since for a
given topology, the quantities of interest p(e′ = de′ | e = 1),
respectively, p(e′ = de′ | e = 0) could be learned from all
interventions that imply e = 1, respectively, e = 0, providing
a broader basis for the estimation.

The method proposed in the last item is much more
time-consuming, since the occurring probabilities have to
be estimated individually for each topology. However, such
a model promises to better capture the real situation, so we
develop the theory into this direction.

5. NEM Learning in the Bayesian
Network Setting

Bear in mind that a Bayesian network is parameterized by
its topology T and its local probability distributions, which
we assume to be given by a set of local parameters L. The
ultimate goal is to maximize P(T | D). In the presence
of prior knowledge, (we assume independent priors for the
topology and the local parameters), we can write

P(T , L | D) = P(D | T , L)P(T , L)
P(D)

∝ P(D | T , L)P(T )P(L),
(11)

from which it follows that

P(T | D) =
∫
P(T , L | D)dL

∝ P(T )
∫
P(D | T , L)P(L)dL.

(12)

If it is possible to solve the integral in (12) analytically, it
can then be used by standard optimization algorithms for

the approximation of arg maxT P(T | D). This full Bayesian

approach will be pursued in Section 5.1. If the expression in
(12) is computationally intractable or slow, we resort to a
simultaneous maximum a posteriori estimation of T and L,
that is,

(T̂ , L̂) = arg max
T ,L

P(T , L | D)

= arg max
T

(
arg max

L
P(D | T , L)P(L)

)
P(T ).

(13)

The hope is that the maximization L̂(T ) = arg maxLP(D |
T , L)P(L) in (13) can be calculated analytically or at least
very efficiently, see [3]. Then, maximization over T is again
done using standard optimization algorithms. Section 5.2 is
devoted to this approach.

5.1. Bayesian Learning of the Local Parameters. Let the
topology T and the interventions I j be given. LetNeik denote
the number of times the observable e was reported to take the
value k, while its true value was i, and let Nei be the number
of measurements taken from e when its true value is i:

Neik =
∣∣{ j | δI j ,e = i,de′,I j = k

}∣∣,

Nei =
∣∣{ j | δI j ,e = i

}∣∣.
(14)

Binary Observables. The full Bayesian approach in a multi-
nomial setting was introduced by Cooper and Herskovits
[10].

The priors are assumed to follow beta distributions:

β0∼Beta
(
α0,β0

)
, β1∼Beta

(
α1,β1

)
. (15)

Here, α0,α1,β0, and β1 are shape parameters, which, for
the sake of simplicity, are set to the same value for every effect
e. This assumption can be easily dropped and different priors
may be used for each effect.

In this special setting with binomial nodes with one
parent, the well-known formula of Cooper and Herskovitz
can be simplified to

P
(
D1, . . . ,DN | T

)

=
N∏

j=1

∏

e∈E

∏

i∈{0,1}

Γ
(
Nei0 + αi

)
Γ
(
Nei1 + βi

)
Γ
(
αi + βi

)

Γ
(
Nei + αi + βi)Γ

(
αi)Γ

(
βi)

∝
N∏

j=1

∏

e∈E

∏

i∈{0,1}

Γ
(
Nei0 + αi

)
Γ
(
Nei1 + βi

)

Γ
(
Nei + αi + βi

) .

(16)

Continuous Observables. Let us assume p(e′ | e = k) to be
normally distributed with mean aek and variance σ2

ek, e ∈ E ,
k ∈ {0, 1}. We refer to the work of Neapolitan [8] for the
calculation of this section. Let the prior for the precision
rek = 1/σ2

ek follow a Gamma distribution,

ρ
(
rek
) = Gamma

(
rek;

α

2
,
β

2

)
. (17)
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Given the precision rek, let the conditional prior for the mean
aek be

ρ
(
aek | rek

) = N
(
aek;μ,

1
vrek

)
. (18)

So the Data of observable e′ given its parent’s state δI j ,e = k
is

ρ
(
de′,I j | aek, rek

) = N
(
de′,I j ; aek,

1
rek

)
, δI j ,e = k. (19)

Then,

P
(
D1, . . . ,DN | T

)

=
∏

e∈E

∏

k∈{0,1}

(
1

2π

)Nek/2( v

v + Nek

)1/2

2Nek/2 Γ
(
(α+Nek)/2

)

Γ(α/2)

· |β|α/2
∣∣β + sek +

(
vNek/(v + Nek)

)(
xek − μ

)2∣∣(α+Nek)/2

∝
∏

e∈E

∏

k∈{0,1}

(
v

v + Nek

)1/2

× Γ
(
(α + Nek)/2

)

∣∣β + sek +
(
vNek/(v + Nek)

)(
xek − μ

)2∣∣(α+Nek)/2 .

(20)

The data enters this equation via

xek = 1
Nek

∑

j|δI j ,e=k
de′,I j , sek =

∑

j|δI j ,e=k

(
de′,I j − xek

)2
.

(21)

5.2. Maximum Likelihood Learning of the Local Parameters.
Let the topology T and the interventions I j be given. For
learning the parameters of the local distributions p(e′ | e),
we perform maximum likelihood estimation in two different
settings. The observables are assumed to follow either a
binomial distribution or a Gaussian distribution.

Binary Observables. For an effect e ∈ E , let its observable
e′ be a binary random variable with values in {0, 1}, and let
p(e′ = 1 | e = x) = βe,x, x ∈ {0, 1}. The model is then
completely parameterized by the topology T and L = {βe,x |
e ∈ E , x ∈ {0, 1}}.

Note that

P(D1, . . . ,DN | T , L)

=
N∏

j=1

∏

e∈E

p
(
e′ = de′,I j | e = δI j ,e

)

=
∏

e∈E

∏

x∈{0,1}

∏

j|δI j ,e=x
p
(
e′ = de′,I j | e = x

)

=
∏

e∈E

∏

x∈{0,1}
B
(
k = Nex1;n = Nex, p = βe,x

)
,

(22)

with B(k;n, p) = (
n
k

)pk(1− p)n−k. The parameter set L̂ that

maximizes expression (22) is

β̂e,x = Nex1

Nex
, e ∈ E , x ∈ {0, 1} (23)

(the ratios with a denominator of zero are irrelevant for the
evaluation of (22) and are set to zero).

Continuous Observables. There is an analogous way of doing
ML estimation in the case of continuous observable variables
if one assumes p(e′ | e = x) to be a normal distribution with
mean μe,x and variance σ2

e,x, e ∈ E , x ∈ {0, 1}.
Note that

P
(
D1, . . . ,DN | T , L

)

=
N∏

j=1

∏

e∈E

p
(
e′ = de′,I j | e = δI j ,e

)
,

=
∏

e∈E

∏

x∈{0,1}

∏

j|δI j ,e=x
p
(
e′ = de′,I j | e = x

)

=
∏

e∈E

∏

x∈{0,1}
N
({
de′,I j | δI j ,e = x

}
; μe,x, σe,x

)
,

(24)

with

N
({
x1, . . . , xk

}
; μ, σ

)

=
(

1
(√

2πσ
)k

)
· exp

(
−
( k∑

j=1

(
xj − μ

)2

2σ2

))
.

(25)

The parameter set L̂ maximizing expression (24) is

μ̂e,x = 1
Nex

∑

j|δI j ,e=x
de′,I j ,

σ̂e,x = 1
Nex

∑

j|δI j ,e=x

(
de′,I j − μ̂e,x

)2
, e ∈ E , x ∈ {0, 1}

(26)

(quotients with a denominator of zero are again irrelevant
for the evaluation of (24) and are set to zero). Note that in
both the discrete and the continuous case, L̂ depends on the
topology T , since the topology determines the values of δI j ,e,
j = 1, . . . ,N , e ∈ E .

5.3. Structure Learning. It is a major achievement of NEMs
to restrict the topology of the underlying graphical structure
in a sensible yet highly efficient way, thus, tremendously
reducing the size of the search space. There is an arbitrary
“core” network consisting of signal nodes, and there is a
very sparse “marginal” network connecting the signals to
the effects. It is, however, by no means necessary that the
core network and the signal nodes coincide. We propose
another partition of the hidden nodes into core nodes C
and marginal nodes M, H = C ·∪M, which may be distinct
from the partition into signals and effects, H = S ·∪E . No
restrictions are imposed on the subgraph generated by the
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Figure 2: Results (specificity, sensitivity, and balanced accuracy) of simulation run. The continuous line (greedy (Bayes)) describes the
performance of the traditional NEM method, the dashed line stands for our new approach via Bayesian networks.
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Figure 3: Schematic reconstruction of a signalling pathway
through synthetic lethality data. (a) A situation in which there
are two pairs of complementary pathways ({A,B}, {X1,X2} and
{A,C}, {Y1,Y2}). (b) Model of the situation as follows: the primary
knockouts are considered signals {A,B,C} (they are not observed).
As those are our genes of interest, they will also form the core
nodes. The secondary effects are accessible to observation and,
therefore, represented by the effects X1,X2,Y1, and Y2. Each SL pair
is connected by a dashed line. (c) NEMs that might be estimated
from (b), using binary observables and one of the approaches in
Sections 5.1 or 5.2.

core nodes (except that the graph has to be acyclic). The key
semantics of NEMs is that marginal nodes are viewed as the
terminal nodes of a signalling cascade. The requirement that
the marginal nodes have only few or at most one incoming
edge can be translated into a well-known structure prior

P(T ) (see, e.g., [12]) which penalizes the number of parents
of marginal nodes:

logP(T ) = −ν ·
∑

m∈M

max
(∣∣pa(m)

∣∣− 1, 0
)
. (27)

For the penalty parameter ν = ∞, this is the original
NEM restriction. If ν = 0, each marginal node can be
assigned to all suitable core nodes. As a consequence, there
is always a best scoring topology with an empty core graph.
ν makes signalling to the marginal nodes “expensive” relative
to signalling in the core graph. It is unclear how to choose
ν optimally, so we stick to the choice ν = ∞ for the
applications. Simulation studies have shown that a simple
gradient ascent algorithm does very well in optimizing
the topology of the Bayesian network, compared to other
methods that have been proposed [7].

6. Simulation

6.1. Network and Data Sampling. The ML and the Bayesian
method for parameter learning have been implemented
in the nem software [13], which is freely available at the
R/Bioconductor software platform [5]. To test the perfor-
mance of our method, we conducted simulations with
randomly created acyclic networks with n = 4 signals. The
out-degree d of each signal was sampled from the power-law
distribution

p(d) = 1
Z
d−2.5, (28)

where Z is an appropriate normalization constant. Binary
data (1 = effect, 0 = no effect) was simulated for the pertur-
bation of each signal in the created network using 4 replicate
measurements with type-I and type-II error rates α and β,
which were drawn uniformly from [0.1, 0.5] and [0.01, 0.2]
for each perturbation separately. This simulates individual
measurement error characteristics for each experiment.
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Figure 4: NEMs constructed from the SL data. Only core genes that have at least one edge are shown. (a) The ML estimate. (b) The Bayesian
estimate (the prior choice (see (15)) was βe0∼Beta(5, 2), respectively, βe1∼Beta(2, 5)). Nodes with the same shading pertain to the same
clusters that were defined by Ye et al. [11]. Bold arrows appear in both reconstructions, thin arrows reverse their direction, and dashed
arrows are unique to each reconstruction.

6.2. Results. We compared our Bayesian network model with
the classical NEM using a greedy hill-climbing algorithm
to find the best fitting connection between signals. We
simulated m = 25, 50, 100 and 250 effect nodes, and for
each number of effects, 100 random networks were created as
described above. Figure 2 demonstrates that both approaches
perform very similarly.

7. Application

We apply the BN formulation of the NEM methodology to a
dataset of synthetic lethality interactions in yeast. We reveal
hierarchical dependencies of protein interactions. Synthetic
lethality (SL) is the phenomenon that a cell survives the
single gene deletion of a gene A and a gene B, but the
double deletion of A and B is detrimental. In this case,
A and B are called SL partners or an SL pair. It has
been shown in [11] that it is not so much SL partners
themselves whose gene products participate in the same
protein complex or pathway, rather than genes that share
many SL partners. The detection of genetic interactions via
synthetic lethality screens and appropriate computational
tools is a current area of research, see [14]. Ye and Peyser
define a hypergeometric score function to test whether two
genes have many SL partners in common. They apply their
methodology to a large SL data set [15] for finding pairs
(and, consequently, clusters) of genes whose products are
likely to participate in the same pathway. We extend their
approach as explained in Figure 3. SL partnership arises
(not exclusively, but prevalently) among genes pertaining
to two distinct pathways that complement each other in a
vital cell function. If a gene A is upstream of gene B in
some pathway, a deletion of gene A will affect at least as
many pathways as a deletion of gene B. Hypothesizing a
very simplistic world, all SL partners of B will as well be
SL partners of A; but this subset relation can be detected
by NEMs. Take the primary knockout genes as core nodes,

and the secondary knockout genes as marginal nodes, which
are active given a primary knockout whenever SL occurs. We
used the dataset from [15] and chose 40 primary knockout
genes having the most SL interaction partners as core genes,
and included all their 194 SL partners as marginal nodes. An
NEM with binary observables was estimated, both with the
maximum likelihood approach and in the Bayesian setting. It
should be emphasized that NEM estimation for this dataset
is only possible in the new BN setting because there is no
canonical “null experiment,” which enables us to estimate the
likelihood ratios rI,e needed in the classical setting in (7), (8),
[14].

Figure 4 displays the results of the NEM reconstruction.
The NEMs estimated by both methods agree well as far as
the hierarchical organisation of the network is concerned.
However, they do not agree well with the clusters found in
[11]. We refrain from a biological interpretation of these
networks, since the results are of a preliminary nature. In
particular, the reconstruction does not take advantage of
prior knowledge, and the postulated edges were not validated
experimentally.

8. Summary and Outlook

Some aspects of the classical NEM concept appear in a
different light when stated in the BN framework. Mainly,
these are three folds: (1) the learning of the local parameters,
for which we proposed new learning rules; (2) the structural
constraints, they can be cast as priors on the NEM topology;
(3) the distinction between hidden and observable nodes,
which can be different from that of core nodes and marginal
nodes.

We proposed some new lines of investigation, like a
full Bayesian approach for the evaluation of P(T |D), and a
smooth structure prior with continuous penalty parameter
ν. It is much easier to proceed in the BN framework and
implement, for example, a boolean logic for the signal
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transduction, which is less simplistic than in the current
model. A straightforward application of NEMs in their
BN formulation to synthetic lethality data demonstrated
the potential of the NEM method, with the purpose of
stimulating further research in that field.
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