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An approximate representation for the state space of a context-sensitive probabilistic Boolean network has previously been
proposed and utilized to devise therapeutic intervention strategies. Whereas the full state of a context-sensitive probabilistic
Boolean network is specified by an ordered pair composed of a network context and a gene-activity profile, this approximate
representation collapses the state space onto the gene-activity profiles alone. This reduction yields an approximate transition
probability matrix, absent of context, for the Markov chain associated with the context-sensitive probabilistic Boolean network.
As with many approximation methods, a price must be paid for using a reduced model representation, namely, some loss
of optimality relative to using the full state space. This paper examines the effects on intervention performance caused by
the reduction with respect to various values of the model parameters. This task is performed using a new derivation for the
transition probability matrix of the context-sensitive probabilistic Boolean network. This expression of transition probability
distributions is in concert with the original definition of context-sensitive probabilistic Boolean network. The performance of
optimal and approximate therapeutic strategies is compared for both synthetic networks and a real case study. It is observed
that the approximate representation describes the dynamics of the context-sensitive probabilistic Boolean network through the
instantaneously random probabilistic Boolean network with similar parameters.
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1. Introduction

In biology, there are numerous examples where the
(in)activation of one gene or protein can lead to a certain
cellular functional state or phenotype. For instance, in a
stable cancer cell line, the reproductive cell cycle is repeated,
and cancerous cells proliferate with time in the absence of
intervention. One can use the p53 gene if the intervention
goal is to push the cells into apoptosis, or programmed cell
death, to arrest the cell cycle. The p53 gene is the most
well-known tumor suppressor gene, encoding a protein that
regulates the expression of several genes such as Bax and
Fas/APO1, which function is to promote apoptosis [1, 2].
In cultured cells, extensive experimental results indicate that
when p53 is activated, for example, in response to radiation,
it leads to cell growth inhibition or cell death [3]. The p53
gene is also used in gene therapy, where the target gene

(p53 in this case) is cloned into a viral vector. The modified
virus serves as a vehicle to transport the p53 gene into
tumor cells to generate intervention [4, 5]. As this and many
other examples suggest, it is prudent to use gene regulatory
models to design therapeutic interventions that expediently
modify the cell’s dynamics via external signals. These system-
based intervention methods can be useful in identifying
potential drug targets and discovering treatments to disrupt
or mitigate the aberrant gene functions contributing to the
pathology of a disease.

The main objective of intervention is to reduce the
likelihood of encountering the undesirable gene-activity pro-
files associated with aberrant cellular functions. Probabilistic
Boolean networks (PBNs), a class of discrete-time discrete-
space Markovian gene regulatory networks, have been used
to derive such therapeutic strategies [6]. These classes of
models, which allow the incorporation of uncertainty into
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the inter-gene relationships, are probabilistic generalizations
of the standard Boolean networks introduced by Kauffman
[7–9]. In a PBN model, gene values are quantized into
some finite range. The values are updated synchronously at
each time step according to regulatory functions. Stochastic
properties are introduced into the model by allowing several
possible regulatory functions for each gene and allowing
random modification of the activity factors. If the regulatory
functions are allowed to change at every time point, then the
PBN is said to be instantaneously random [10]. On the other
hand, in a context-sensitive PBN, function updating only
occurs at time points selected by a binary switching random
process [11, 12]. This framework incorporates the effect of
latent variables outside the model, whose behaviors influence
regulation within the system. In essence, a PBN is composed
of a collection of networks; between switches it acts like
one of the constituent networks, each being referred to as a
context. The switching frequency of the context differentiates
the instantaneously random PBN from the context-sensitive
PBN.

The context switching that occurs at every time step in an
instantaneously random PBN corresponds to changing the
wiring diagram of the system at every instant. In contrast,
context-sensitive PBNs can better represent the stability of
biological systems by capturing the period of sojourning in
constituent networks [11]. Hence, this class of models is
more suitable for the analysis of gene regulation and the
design of intervention methods. To formulate the problem
of intervention in a context-sensitive PBN, a transition
probability matrix must be derived. This transition matrix
acts on the possible states of the system. Once this is accom-
plished, the task of finding the most effective intervention
strategy can be formulated as a classical sequential decision
making problem. For a predefined cost of intervention and
a cost-per-stage function that discriminates between the
states of the system, the objective of the decision maker
becomes minimizing the expected total cost associated with
the progression of the system. That is, given the state
of the system, an effective intervention strategy identifies
which action to take so as to minimize the overall cost.
Consequently, the devised intervention strategy can be used
as a therapeutic strategy that alters the dynamics of aberrant
cells to reduce the long-run likelihood of undesirable gene-
activity profiles favorable to the disease. It is evident that
the intervention strategy specified by the sequential decision
maker is directly affected by the form of the transition
probability matrix associated with a context-sensitive PBN.
For an instantaneously random PBN, the state consists of a
gene-activity profile; while for a context-sensitive PBN, the
state includes a gene-activity profile and a context.

The effectiveness of an intervention strategy depends,
partly, on how accurate the model represents the reality of
the underlying pathological cellular functions. It is therefore
important to adopt a model that captures the subtleties of the
biological system of interest. In the framework of context-
sensitive PBNs, this entails defining a transition probability
matrix that is an accurate representation of system dynamics.
Context-sensitive PBN models have been considered in

[13, 14]. In [13], an intervention strategy is devised for
a limited window of observations. Although this method
lowers the likelihood of undesirable gene-activity profiles
within the control window, it may not alter the probability
of visiting these gene expression profiles in the long run.
To address this issue, [14] derives a stationary strategy that
affects the long-run behavior of gene-activity profiles.

Common to [13, 14] is the assumption that the active
constituent network of the context-sensitive PBN is not
observable at each instant. This means that decisions must
be made without explicit knowledge of the context, and
therefore without full knowledge of the system state, which
is composed of a context and a gene-activity profile. As such,
the authors of [13, 14] elect to proceed using a transition
probability matrix in which the context is removed from
the state space and system dynamics. This reduction is
accomplished by computing a weighted sum of the gene-
activity profile behaviors over all the possible constituent
networks. At every step, the reduced system exhibits an
expected behavior by averaging over the various contexts.
As such, the gene-activity profile determines the status
of the approximate system, and the collapsed transition
probability matrix specifies its evolution. The corresponding
intervention strategy is based on the approximate transition
probability matrix with the collapsed state space. Not only
does the reduction eliminate the need to know the context at
each time point, but it also reduces the dimensionality of the
control problem. For instance, in a binary context-sensitive
PBN with n genes andm contexts, the full state space consists
of 2n × m states, whereas the reduced system possesses 2n

states. Consequently, the computational complexity of each
iteration of the intervention design algorithm is O(22n m2)
for the context-sensitive PBN, whereas it is O(22n) for the
reduced system [15].

Although the reduction in [13, 14] has benefits, as with
many approximation methods, a price must be paid, and
here it arises from the intervention standpoint. Specifically,
what is the cost in terms of the effectiveness of the
resulting intervention strategy? This issue is not addressed
in [13, 14]. Our aim here is to determine, under various
network parametric assumptions, the loss of intervention
performance resulting from removing the context from the
state space of a context-sensitive PBN. This must be done
by comparing the performance of the intervention strategies
derived from the full state space and the reduced state
space when both are individually applied to the full state
space. In [13, 14], the strategy devised on the reduced
space was never actually applied to the original system.
It was only applied to the approximate model. The point
is that the performance of the approximate strategy was
tested on the reduced model, not on the original one. As
such the cost of the reduction was never assessed. This
is accomplished below. This approximation simplifies the
task of finding intervention strategies by describing the
dynamics of a context-sensitive PBN via the instantaneously
random PBN with similar parameters, and hence it should
be expected to be accurate mostly when contexts switch
frequently.
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In Section 2, we review the definition of a context-
sensitive PBN. We briefly explain a method to design strate-
gies for controlling the dynamical behavior of the model in
the long run using classical Markov decision processes. A new
derivation for the transition probability matrix of a context-
sensitive PBN is presented in Section 2.3. In Section 2.4, we
review the reduction method proposed in [13, 14] and derive
the corresponding approximate transition probability matrix
using the results of Section 2.3. We compare the performance
of approximate and optimal intervention strategies through
extensive numerical studies in Section 3. In this section, we
also formulate a seven-gene context-sensitive PBN model for
a melanoma case study [16]. The performance of the optimal
and approximate intervention strategies for this network is
compared under various model parameters.

2. Intervention in Context-Sensitive
Probabilistic Boolean Networks

We begin this section with a review of context-sensitive
PBNs and then formulate the problem of intervention as
an infinite-horizon sequential decision making problem.
We derive a new expression for the transition probability
matrix that specifies the dynamics of the system based on
its regulatory functions. This expression for the transition
probability matrix is in concert with the original definition
of context-sensitive PBNs [12]. As noted previously, the
state space of the associated transition probability matrix is
composed of all possible context and gene-activity profile
pairs. We conclude this section by presenting an approximate
transition probability matrix derived by performing a state
collapse over the various contexts. This approximation
method was used in [13, 14]. Mathematically, this is a
Markov approximation to a hidden-Markov model. In the
approximate transition probability matrix, the probability
of moving from one gene-activity profile to another is the
weighted sum of the probability transitions between these
two states under the various contexts. The coefficients of the
weighted summation are the selection probabilities of the
contexts.

2.1. Definition. A context-sensitive probabilistic Boolean
network consists of a sequenceV = {xi}ni=1 of n nodes, where
xi ∈ {0, . . . ,d − 1}, and a sequence {fl}kl=1 of vector-valued
functions defining constituent networks. In the framework
of gene regulation, each element xi represents the expression
value of a gene. It is common to abuse terminology by refer-
ring to xi as the ith gene. Each vector-valued function fl =
( fl1, . . . , fln) represents a constituent network of the context-
sensitive PBN. The function fli : {0, . . . ,d−1}n → {0, . . . ,d−
1} is the predictor of gene i, whenever context l is selected.
The number of quantization levels for gene expressions is
denoted by d. At each updating epoch, a random variable
determines whether the constituent network is switched or
not. The switching probability q is a system parameter. If
the context remains unchanged, then the context-sensitive
PBN behaves like a fixed Boolean network where the values
of all the genes are updated synchronously according to the

current constituent network. On the other hand, if a switch
occurs, then a constituent network is randomly selected from
{fl}kl=1 according to the selection probability distribution
{rl}kl=1. Once the predictor function fl is determined, the
values of the genes are updated using the new constituent
network, that is, according to the rules defined by fl.

Two quantization levels have thus far been used in
practice. If d = 2 (binary), then the constituent networks
are Boolean networks with 0 or 1 meaning OFF or ON,
respectively [10]. The case where d = 3 (ternary) arises
when we consider individual genes to be downregulated (0),
upregulated (2), or invariant (1). This situation commonly
occurs with cDNA microarrays, where a ratio is taken
between the expression values on the test channel (red)
and the base channel (green) [16]. In this paper, we will
develop the methodology for d = 2, so that gene values are
either 0 or 1. The methodology can be extended to other
finite quantization levels, albeit, at the expense of tedious
mathematical expressions. All the binary operations in this
section would need to be replaced by case statements, and
the perturbation process should be articulated on a case by
case basis.

We focus on context-sensitive PBNs with perturbations,
meaning that each gene may change its value with small
probability p at each epoch. If γi(t) is a Bernoulli random
variable with parameter p and the random vector γ at instant
t is defined as γ(t) = (γ1(t), γ2(t), . . . , γn(t)), then the value
of gene i is determined at each epoch t by

xi(t + 1) = 1(γ(t + 1) /= 0)(xi(t)⊕ γi(t + 1))

+ 1(γ(t + 1) = 0) fli(x1(t), . . . , xn(t)),
(1)

where operator⊕ is componentwise addition in modulo two
and fli is the predictor of gene i according to the current
context of the network l. Such a perturbation captures the
realistic situation where the activity of a gene is subject to
random alteration.

The gene-activity profile (or GAP) is an n-digit binary
vector x(t) = (x1(t), . . . , xn(t)) giving the expression values of
the genes at time t, where xi(t) ∈ {0, 1}. We denote the set of
all possible GAPs by X. The dynamic behavior of a context-
sensitive PBN can be modeled by a Markov chain whose
states are ordered pairs consisting of a constituent network
κ and a GAP x. The evolution of the context-sensitive PBN
can therefore be represented using a stationary discrete-time
equation

z(t + 1) = f (z(t),w(t)), t = 0, 1, . . . , (2)

where state z(t) is an element of the state space Z = {(κ, x) :
κ ∈ {1, . . . , k}, x ∈ X}. The disturbance w(t) is the

manifestation of uncertainties in the biological system, due
either to context switching or a change in the GAP resulting
from a random gene perturbation. It is assumed that both the
gene perturbation distribution and the network switching
distribution are independent and identically distributed over
time. The switching frequency of the context differentiates
the instantaneously random PBN from the context-sensitive
PBN. If the contexts change at every instant, that is, q = 1,
then the PBN is instantaneously random.
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We note that a bijection can be drawn between the gene-
activity profile x(t) or the states z(t) and their decimal repre-
sentations x(t) and z(t) based on their binary expansion. The
integers x(t) and z(t) take values in X = {0, 1, . . . ,dn − 1}
and Z = {0, 1, . . . , k × dn − 1}, respectively. These decimal
representations facilitate the depiction of our numerical
results in Section 3.

2.2. Infinite-Horizon Intervention. We can formulate the task
of finding the most effective intervention strategy as a
sequential decision making problem, when the dynamics of
a context-sensitive PBN are expressed according to (2). To
this end, we can specify the Markov chain that describes
the dynamics of the context-sensitive PBN by defining its
transition probability matrix and initial state distribution.

In the presence of an external regulator, we suppose that
the context-sensitive PBN has a binary intervention input
ug(t) on the control gene g. The intervention input ug(t),
which takes values in set C = {0, 1}, specifies the action
on the control gene g. Treatment alters the status of the
control gene g, which can be selected from all the genes in
the network. If treatment is applied, ug(t) = 1, then the state
of the control gene g is toggled; otherwise the state of the
control gene g remains unchanged.

For the case of a single control gene g, the system evolu-
tion is represented by a stationary discrete-time equation

z(t + 1) = f (z(t),ug(t),w(t)), t = 0, 1, . . . , (3)

where the state z(t) is an element of Z, and similar to
the context-sensitive PBN without control, w(t) is the
manifestation of uncertainties in the model. The transition
probability matrix for the controlled context-sensitive PBN
can be defined easily, once the transition probability matrix
of the uncontrolled system is known. We derive an expression
for this matrix in Section 2.3. Originating from a state z1, the
successor state z2 is selected randomly within set Z according
to the transition probability P(z1, z2,u);

P(z1, z2,u) = Pr(z(t + 1) = z2 | z(t) = z1, ug(t) = u) (4)

for all z1, z2 ∈ Z and all u ∈ C.
To define the problem of intervention in a context-

sensitive PBN, we associate a cost-per-stage c(z1, z2,u) to
each possible event. In general, the cost-per-stage can depend
on the origin state z1, the successor state z2, and the control
input u. We define the average immediate cost in state z1,
when control u is selected, by

c(z1,u) =
∑

z2∈Z

P(z1, z2,u)c(z1, z2,u). (5)

We consider a discounted formulation of the expected total
cost. The discounting factor, λ ∈ (0, 1), ensures convergence
of the expected total cost over the long run [17]. In the case
of cancer therapy, the discounting factor also emphasizes that
obtaining treatment at an earlier stage is favored over later
stages.

For initial state i and strategy πg = {μg(·, 0),μg(·, 1), . . .},
where μg(·, t) : Z → C denotes the decision rule at epoch t,
the infinite expected total discounted cost is defined by

Jπg (i)= lim
N→∞

E

[N−1∑

t=0

λtc(z(t), z(t+1),μg(z(t), t)) | z(0)= i

]
.

(6)

The sequential decision maker must identify an optimal
strategy π∗g = {μ∗g (·, 0),μ∗g (·, 1), . . .} such that the Jπg (i) is
minimized for each state i ∈ Z. Mathematically, an optimal
strategy π∗g is a solution of the optimization problem

π∗g (i) = arg min
πg

Jπg (i), ∀i ∈ Z. (7)

For the specifics of our formulation, an optimal strategy
always exists [17]. It is given by the fixed-point solution of
the Bellman optimality equation

J∗(z1) = min
u∈C

[
c(z1,u) + λ

∑

z2∈Z

P(z1, z2,u)J∗(z2)

]
. (8)

Moreover, this optimal strategy is stationary and indepen-
dent of the initial state i [17]. Standard dynamic pro-
gramming algorithms can be used to find a fixed-point
of the Bellman optimality equation. In our model, gene
perturbation ensures that all the states communicate with
one another. Hence, the Markov decision process associated
with any stationary policy is ergodic and has a unique
invariant distribution equal to its limiting distribution [18].

2.3. Transition Probability Matrix of a Context-Sensitive Prob-
abilistic Boolean Network. For a given cost of intervention
and cost-per-stage, the solution to (8) depends on the
transition probability matrix in (4). The latter can be found
by observing that two mutually exclusive events may occur
at any epoch: the current context of the network remains the
same for two consecutive instants, or the context of the net-
work changes to a new one at the time instant t+1. Moreover,
the context may remain unchanged in two mutually exclusive
ways: the binary switching variable is 0, which means that
no change is possible, or the binary switching variable is 1,
and the current network is picked again through random
selection [11, 12]. In particular, when the switching variable
is 1, a new context is selected independent of the current
system state. Thus, the same network can be active twice
in a row. This interpretation of switching the context in a
PBN is in concert with the original definition of context-
sensitive PBNs in [12]. Before proceeding, we note that
transitioning was defined differently in [13, 14], where it was
assumed that, whenever the switching variable is 1, a change
of context must occur; the result being that context selection
is conditioned on the current context. While this contrast
produces a difference in the transition probabilities, it does
not change the underlying issue in this paper, that being
analyzing the effects of the state-space reduction proposed
in [13, 14] on the performance of therapeutic interventions.
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Letting z1 = (κ1, x1) and z2 = (κ2, x2) be two states in Z,
we derive the transition probability

P(z1, z2) = Pr(z(t + 1) = (κ2, x2) | z(t) = (κ1, x1)), (9)

from z1 to z2 in the absence of intervention. Note that we can
rewrite expression (9) as

P(z1, z2)

= Pr(x(t + 1) = x2, κ(t + 1) = κ2 | x(t) = x1, κ(t) = κ1).
(10)

Using the Bayes theorem, we get

P(z1, z2)

= Pr(x(t + 1) = x2 | κ(t + 1) = κ2, x(t) = x1, κ(t) = κ1)

× Pr(κ(t + 1) = κ2 | x(t) = x1, κ(t) = κ1)

= Pr(x(t + 1) = x2 | κ(t + 1) = κ2, x(t) = x1, κ(t) = κ1)

× Pr(κ(t + 1) = κ2 | κ(t) = κ1)

= 1(κ2 = κ1) Pr(κ(t + 1) = κ1 | κ(t) = κ1)

× Pr(x(t + 1) = x2 | κ(t + 1) = κ(t) = κ1, x(t) = x1)

+ 1(κ2 /= κ1) Pr(κ(t + 1) = κ2 | κ(t) = κ1)

× Pr(x(t + 1)=x2 | κ(t + 1)=κ2, x(t)=x1, κ(t) = κ1),
(11)

where 1(·) is the indicator function. Furthermore, we have

Pr(κ(t + 1) = κ1 | κ(t) = κ1) = (1− q) + qrκ1 , (12)

and when κ1 /= κ2, we get

Pr(κ(t + 1) = κ2 | κ(t) = κ1) = qrκ2 . (13)

Here, q is the probability of switching context, and rκi is the
probability of selecting context κi during a switch.

A transition from GAP x1 to GAP x2 may occur either
according to the constituent network at instant t + 1 or
through an appropriate number of random perturbations,
but not both. Let us define Fl by

Fl(x1, x2) = 1(fl(x1) = x2). (14)

Then, we have

Pr(x(t + 1) = x2 | κ(t + 1) = κ(t) = κ1, x(t) = x1)

= [(1− p)nFκ2 (x1, x2)

+ (1− p)(n−D(x1,x2))pD(x1,x2)1(D(x1, x2) /= 0)
]
,

(15)

and, for κ1 /= κ2, we obtain

Pr(x(t + 1) = x2 | κ(t + 1) = κ2, x(t) = x1, κ(t) = κ1)

= [(1− p)nFκ2 (x1, x2)

+ (1− p)(n−D(x1,x2))pD(x1,x2)1(D(x1, x2) /= 0)
]
,

(16)

where D(x1, x2) is the Hamming distance between two gene-
activity profiles x1 and x2.

The first parts of (15) and (16) correspond to the
probability of transition from GAP x1 to GAP x2 according to
the predictor functions defined by the constituent network at
time instant t+1. The remaining terms account for transition
between GAPs that are due to random gene perturbation.

By replacing the terms of expression (11) by their
equivalents from (12), (13), (15), and (16), it can be shown
that the probability of transition from any state z1 = (κ1, x1)
to z2 = (κ2, x2) is given by

P(z1, z2) = [(1− p)nFκ2 (x1, x2)

+ (1− p)(n−D(x1,x2))pD(x1,x2)1(D(x1, x2) /= 0)
]

× [1(κ2 = κ1)((1− q) + qrκ1 ) + 1(κ2 /= κ1)qrκ2

]
.

(17)

The elements of the transition probability matrix of the
controlled context-sensitive PBN given by (4) can then be
expressed through (17). The value of state after intervention
z1 = (κ1, x1) can be determined according to the status of
the control signal and the value of the state prior to the
intervention ẑ1 = (κ̂1, x̂1). Here, κ1 is equated to κ̂1, and the
value of the GAP is updated according to the value of the
control signal in the devised strategy according to

x1 = (x̂1 ⊕ eg)1(ug(ẑ1) = 1) + x̂11(ug(ẑ1) = 0). (18)

All the 2n elements of vector eg are zeros except the element
at the gth position, which is set to one.

2.4. Approximate Transition Probability Matrix of a Context-
Sensitive Probabilistic Boolean Network. Following the reduc-
tion method proposed in [13, 14], we derive an expression
for the approximate transition probability matrix in which
the context is removed from the state space of the system. We
base our derivation on the stochastic matrix defined by (17).
The approximate stochastic model describes the dynamics
of the system solely based on the GAPs, and its state space
takes values from the set X. The probability of transition
from GAP x1 to GAP x2 in two consecutive epochs is derived
from the weighted sum of the actual transition probabilities
with respect to the selection probabilities of the contexts. If
we denote the probability of transition between two GAPs by

P(x1, x2) = Pr(x(t + 1) = x2 | x(t) = x1), (19)

then under the reduction assumptions, we define

P(x1, x2)
Δ=
∑

κ1

∑

κ2

rκ1 Pr(z(t + 1) = (κ2, x2) | z(t) = (κ1, x1)).

(20)
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Moreover, we can expand this expression as

P(x1, x2)

=
∑

κ1

∑

κ2

{
rκ1 1(κ2 = κ1)× ((1− q) + qrκ1 )

× [(1− p)nFκ1 (x1, x2)

+ (1− p)(n−D(x1,x2))pD(x1,x2)1(D(x1, x2) /= 0)
]

+ rκ1 1(κ2 /= κ1)qrκ2

× [(1− p)nFκ2 (x1, x2)

+(1− p)(n−D(x1,x2))pD(x1,x2)1(D(x1, x2) /= 0)
]}

,
(21)

which in turn can be presented as

P(x1, x2) = (1− p)nΛ, (22)

where

Λ =
∑

κ1

rκ1 ((1− q) + qrκ1 )

×
[
Fκ1 (x1, x2) +

(
p

1− p

)D(x1,x2)

1(D(x1, x2) /= 0)

]

+
∑

κ1

rκ1q

⎡
⎢⎣
∑

κ2
κ2 /= κ1

rκ2Fκ2 (x1, x2)

+
∑

κ2
κ2 /= κ1

rκ2

(
p

1− p

)D(x1,x2)

1(D(x1, x2) /= 0)

⎤
⎥⎦ .

(23)

The above expression for Λ can be further simplified as

Λ =
∑

κ1

Fκ1 (x1, x2)
(
(1− q)rκ1 + qr2

κ1

)

+ q
∑

κ1

rκ1

∑

κ2
κ2 /= κ1

rκ2Fκ2 (x1, x2)

+
(

p

1− p

)D(x1,x2)

1(D(x1, x2) /= 0)

×
[

1− q + q
∑

κ1

r2
κ1

+ q
∑

κ1

rκ1 − q
∑

κ1

r2
κ1

]
.

(24)

Thus, we have

Λ =
(

p

1− p

)D(x1,x2)

1(D(x1, x2) /= 0)

+ (1− q)
∑

κ1

rκ1Fκ1 (x1, x2)

+ q
∑

κ2

rκ2Fκ2 (x1, x2)
∑

κ1

rκ1 .

(25)

The last expression for Λ can be further reduced to

Λ =
(

p

1− p

)D(x1,x2)

1(D(x1, x2) /= 0)

+
∑

κ2

rκ2Fκ2 (x1, x2),
(26)

by setting
∑

κ1
rκ1 = 1.

Equations (22) and (26) express the approximate transi-
tion probability matrix associated with the reduced model.
Although we have started from a different expression for
the transition probability matrix of a context-sensitive PBN
owing to a different interpretation of switching contexts,
our final expression for the approximate transition prob-
ability matrix is similar to the one in [13, 14]. Averaging
over the various contexts in (20) reduces the transition
probability distributions associated with a context-sensitive
PBN to transition probability distributions arising from the
corresponding instantaneously random PBN, the fact that
is overlooked in [13, 14]. The transition probability matrix
of the corresponding instantaneously random PBN with the
similar parameters can be obtained from expression (17),
when the context is allowed to switch at each epoch by setting
q = 1. Hence, the optimal and approximate intervention
strategies perform similarly whenever the switching proba-
bility approaches to value one. This observation is supported
by our numerical studies.

3. Numerical Results

In this section, we compare the performance of algorithms
based on the exact and approximate expressions for the
transition probability matrix associated with a context-
sensitive PBN. We perform this comparison first through
extensive simulations based on randomly generated context-
sensitive PBNs. We then compare these methods for a
network obtained from a melanoma gene-expression data
set, which is similar to the one used in [13, 14].

3.1. Synthetic Networks. In our numerical studies, we postu-
late the following cost-per-stage:

c(z,u) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if u = 0, z ∈D ,

10 if u = 0, z ∈U,

c if u = 1, z ∈D ,

10 + c if u = 1, z ∈U,

(27)

where c is the cost of control, and U, D are the sets of
undesirable and desirable states, respectively. We set c =
1 to make the application of intervention more plausible
compared to visiting undesirable states. The target gene is
chosen to be the most significant gene in the GAP. We assume
that the upregulation of the target gene is undesirable.
Consequently, the state space is partitioned into desirable
states, D = {(κ, x) : κ ∈ {1, . . . , k}, x ∈ {0, . . . , 2n−1 − 1}},
and undesirable states, U = {(κ, x) : κ ∈ {1, . . . , k}, x ∈
{2n−1, . . . , 2n − 1}}, where n is the number of genes. We
use the natural decimal bijection of the GAP x to facilitate
the presentation of our results. We set the number of genes
to be five. The study of networks with larger numbers
of genes would be computationally prohibitive due to the
complexity of the corresponding dynamic program. The cost
values have been chosen in accordance with an earlier study
[14]. Since our objective is to downregulate the target gene,
a higher cost is assigned to destination states having an
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upregulated target gene. Moreover, for a given status of the
target gene, a higher cost is assigned when the control is
applied, versus when it is not. In practice, the cost values
have to mathematically capture the benefits and costs of
intervention and the relative preference of states. They must
be set with the help of physicians in accordance with their
clinical judgement. Although this is not feasible within the
realm of current medical practice, we do believe that such an
approach will become feasible when engineering approaches
are integrated into translational medicine.

We generate synthetic context-sensitive PBNs in the fol-
lowing manner. Each context-sensitive PBN consists of two
contexts. Each constituent network is randomly generated
with bias equal to 0.5. The bias is the probability that a
randomly generated Boolean function takes on a value of
one. To complete the specification of a context-sensitive
PBN, we need to specify the selection and switching prob-
ability distributions, along with its constituent networks.
We consider the selection and switching probabilities as
parameters during our numerical study. In the first set of
experiments, we assume that the constituent networks are
selected with equal probabilities. Then, we vary the value of
the switching probability. In the second set of simulations,
the switching probability is fixed but the selection probability
varies. We generate one thousand random synthetic context-
sensitive PBNs for each scenario. Our objective is to utilize
the statistics generated by these synthetic networks to evalu-
ate the effects of removing the context from the state space
of a context-sensitive PBN when designing an intervention
strategy.

For each context-sensitive PBN, the exact and approxi-
mate transition probability matrices are computed according
to (17) and (22), respectively. Thereafter, we solve the
optimal intervention problems for the original model and its
reduced approximation and find the corresponding optimal
strategies.

The devised strategy, μ∗g : Z → C, for the exact
transition probability matrix specifies the action that should
be taken at each time step. The second policy is based
on the reduced stochastic matrix and only takes the GAP
as its input. Since the performance of the approximate
strategy must be evaluated with respect to the dynamics
specified by the original model, we need to extend the
approximate strategy to elements of Z. This is achieved by
simply disregarding the context element of state z(t) and
determining the action based on its GAP element. We denote
the resulting intervention strategy obtained through state
collapse by μ̂g : Z → C.

In the first set of experiments, we determine the effect
of the switching probability q on overall performance.
To this end, we generate one thousand context-sensitive
PBNs for each value of the switching probability. The
selection probability is assumed to have uniform distribution
for all the generated context-sensitive PBNs. We set the
perturbation probability to 0.01 for all simulations.

For each context-sensitive PBN generated per the above
method, we select a random control gene. Then, we use
dynamic programming and derive an optimal intervention

strategy μ∗g based on the exact transition probability matrix
(17). Similarly, an optimal strategy based on the approximate
transition probability matrix (22) is derived for the same
control gene and is extended to the approximate strategy μ̂g .
For a context-sensitive PBN, we estimate the average total
discounted cost induced by the given optimal strategy μ∗g . To
this end, we generate synthetic time-course data for thousand
time steps from the transition probability matrix for the
context-sensitive PBN, while intervening based on optimal
strategy μ∗g . We estimate the total cost by accumulating
the discounted cost of each state given the action at that
state. This procedure is repeated ten thousand times for
random initial states, and the average of the induced total
discounted costs is computed. Following a similar procedure,
the approximate strategy μ̂g is applied to the system, and
the average total discounted cost is computed. Finally, we
compute the average total discounted cost for time-course
data when no intervention is applied. From here on, we omit
the subscript g from the notation of a strategy μg to simplify
our notations. Since the control gene is selected randomly,
this will not affect the following discussions.

The effectiveness of an intervention strategy can be
evaluated by computing the difference between its induced
cost and the cost accumulated in the absence of intervention.
For each set of constituent networks and a given switching
probability, we compute the following functions: Jμ∗ , J μ̂,
and J . These are the average total discounted cost for a
given context-sensitive PBN induced by applying optimal
strategy μ∗, approximate strategy μ̂, and no intervention,
respectively. The preceding procedure is repeated for one
thousand random context-sensitive PBNs, thereby yielding
one thousand values for each statistic. We compare the effects
of these strategies by computing averages denoted by E[Jμ∗],
E[J μ̂], and E[J].

We consider the percentage of reduction in the aver-
age total discounted cost as a performance metric. The
normalized gain obtained by each intervention strategy is
taken as the immediate consequence of the intervention
formulation. This metric is defined as the difference between
the average discounted cost before and after intervention,
normalized by the cost before intervention. The normalized
gain corresponding to the optimal strategy μ∗ is

ΔJE = E[J]− E[Jμ∗]

E[J]
, (28)

and the normalized gain corresponding to the strategy
derived from the approximate method μ̂ is

ΔJA = E[J]− E[J μ̂]

E[J]
. (29)

Figure 1 depicts the results of the first experiment, where q is
the parameter of interest. As q increases to one, the difference
between normalized gains ΔJA and ΔJE decreases. The
approximating method yields close to optimal performance
when the switching probability is large, which is outside
the range of typical values used for context-sensitive PBNs.
If one cannot obtain context knowledge or the number of
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Figure 1: ΔJA and ΔJE are computed for 1000 context-sensitive
PBNs consisting of two contexts. The switching probability q is
the parameter. The selection probability has uniform distribution
r1 = r2 = 0.5.

contexts results in an unacceptable computational burden,
the approximate method provides a strategy for the realistic
value q = 0.01, which yields a 30% reduction in perfor-
mance.

As a byproduct of the intervention formulation, we
also consider the effect of an intervention strategy μ on
the amount of change in the steady-state probability of
undesirable states before and after the intervention. For
each set of constituent networks and for a given switching
probability, we compute ΔPμ∗ and ΔPμ̂. These are the
normalized reduction in the total probability of visiting
undesirable states in the long run for a given context-
sensitive PBN when strategies μ∗ and μ̂ are applied to
original system, respectively. In other words, we define

ΔPμ∗ =
∑

i∈Uπ(i)−∑i∈Uπμ∗(i)
∑

i∈Uπ(i)
,

ΔPμ̂ =
∑

i∈Uπ(i)−∑i∈Uπμ̂(i)
∑

i∈Uπ(i)
,

(30)

where πμ∗(i) is the probability of being in state i in the long
run under optimal strategy μ∗; πμ̂(i) is the probability of
being in state i in the long run under approximate strategy
μ̂; π(i) is the probability of being in state i in the long run
when no control is applied.

The preceding procedure is repeated for one thousand
random context-sensitive PBNs, thereby yielding one thou-
sand values for each statistic. We compare the effect of the
strategies devised by the exact and approximate transition
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Figure 2: ΔPE and ΔPA are computed for 1000 context-sensitive
PBNs consisting of two contexts. The switching probability q is the
parameter. The selection probability has uniform distribution r1 =
r2 = 0.5.

probability matrices via the empirical averages of each
sample sequence, denoted by ΔPE and ΔPA. Figure 2 shows
ΔPA and ΔPE as functions of the switching probability. The
trends are similar to those observed for the normalized gains.

In practice, treatment options, such as chemotherapy,
have detrimental side effects. A large number of interven-
tions can cause collateral damage that reduces a patient’s
quality of life. Thus, we define the quantity Γμ as the expected
number of interventions when the strategy μ is applied in the
long run to gauge these side effects. In particular, Γμ∗ and
Γμ̂ are the expected numbers of executed interventions in the
long run using the optimal strategy μ∗ and the approximate
strategy μ̂, respectively. We define

Γμ∗ =
∑

i∈Z

πμ∗(i)1(μ∗(i) = 1),

Γμ̂ =
∑

i∈Z

πμ̂(i)1(μ̂(i) = 1),
(31)

where πμ∗(i) and πμ̂(i) have similar definitions as in (30).
The preceding procedure is repeated for one thousand

random context-sensitive PBNs. We compare the expected
number of executed interventions using the difference in
empirical averages, denoted by ΔΓ � Γμ̂ − Γμ∗ . Figure 3
indicates the variation in ΔΓ as a function of switching
probability q. According to this figure, for small switching
probabilities, the approximate strategy μ̂ is likely to cause
more detrimental side effects.

We study the effect of selection probability on the
performance of the approximate strategy μ̂ in a second set
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Figure 3: ΔΓ is computed for 1000 context-sensitive PBNs consist-
ing of two contexts. The switching probability q is the parameter.
The selection probability has uniform distribution r1 = r2 = 0.5.

of experiments. We follow the same procedure as before,
except that we set q = 0.01, and we vary the probability
of selecting each constituent network. We consider two
constituent networks so that the selection probabilities are
a function of r1, the probability of selecting the first context.
From Figure 4, as |r1−r2| gets smaller, the difference between
the performance of strategies μ∗ and μ̂ diminishes.

Figure 5 compares the steady-state measures ΔPE and
ΔPA for the optimal and approximate strategies, respectively.
The most interesting observation is that, whereas ΔJE −
ΔJA decreases as |r1 − r2| decreases, ΔPE − ΔPA increases.
These different behaviors are not contradictory, since the
intervention strategy is designed to minimize the total cost
and the improvement in the steady-state behavior is a side
effect of our goal. We observe that both ΔJE and ΔPE

are stable across parameters, whereas the metrics ΔJA and
ΔPA vary considerably. The context removal approximation
affects both ΔJA and ΔPA. That is not the case for the exact
transition probability matrix. We suspect that a mathemat-
ical analysis of this effect is complicated since it involves
interaction between the optimization and the reduction.
Finally, ΔΓ is plotted as a function of the selection probability
in Figure 6. Here, we observe that ΔΓ increases as |r1 − r2|
decreases.

3.2. A Melanoma Case Study. In this section, we compare the
performance of the optimal and approximate strategies in the
context of a gene regulatory network developed from steady-
state data. This steady-state data was collected in a profiling
study of metastatic melanoma in which high abundance
of messenger RNA for the gene WNT5A was found to be
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Figure 4: ΔJA and ΔJE are computed for 1000 context-sensitive
PBNs consisting of two contexts. The switching probability q is
0.01. The selection probability of the first constituent network r1

is varied.

highly discriminating between cells with properties typically
associated with high metastatic competence versus those
with low metastatic competence [19]. Seven genes were
considered in [13, 14]: WNT5A, pirin, S 100 P, RET
1, MART 1, HADHB, and STC 3. We apply the design
procedure proposed in [20] to generate a context-sensitive
PBN possessing four constituent networks. The method
of [20] generates Boolean networks with given attractor
structures, and the overall context-sensitive PBN is designed
so that the data points, which are assumed to come from
the steady-state distribution of the network, are attractors
in the resulting network. The regulatory graphs of these
constituent networks can be found in [14]. This approach
is reasonable because our interest is in controlling the long-
run behavior of the network. The intervention objective for
this 7-gene network is to downregulate WNT5A. The gene
WNT5A ceasing to be downregulated is strongly predictive
of the onset of metastasis. A number of other intervention
studies based on the same data have aimed to downregulate
WNT5A. This model has been used since the discovery of
the relation between WNT5A and metastasis. The binary
nature of the up or down regulation suits our binary model.
A state is desirable, that is, belongs to D , if WNT5A = 0,
and undesirable, that is, belongs to U, if WNT5A = 1. As
we mentioned earlier, application of intervention requires
the designation of desirable and undesirable states, and this
depends upon the existence of relevant biological knowledge.
The use of WNT5A is one such example where the knowledge
of practitioners is incorporated in a theoretical framework.
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Figure 5: ΔPE and ΔPA are computed for 1000 context-sensitive
PBNs consisting of two contexts. The switching probability q is
0.01. The selection probability of the first constituent network r1

is varied.
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Figure 6: ΔΓ is computed for 1000 context-sensitive PBNs con-
sisting of two contexts. The switching probability q is 0.01. The
selection probability of the first constituent network r1 is varied.

Based on our objective, the cost of control is assumed to be
one, and the states are assigned penalties according to the
cost-per-stage (27). This is the same cost structure as in [14].
Since our objective is to downregulate WNT5A, a higher
penalty is assigned for states having WNT5A upregulated.
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Figure 7: ΔJA and ΔJE are computed for the WNT5A network for
various control genes. The switching probability is q = 0.01, and
the constituent networks are selected with equal probabilities.

Also, for a given WNT5A status, a higher penalty is assigned
when the control signal is active versus when it is not.

The optimal and approximate intervention strategies
are found for the melanoma-related context-sensitive PBN
when different genes in the network (except WNT5A
itself) are employed as the control genes. Figure 7 depicts
the normalized gains when the optimal and approximate
strategies for each control gene are used to intervene in the
context-sensitive PBN. To compute the normalized gains, we
computed the costs for ten thousand trajectories of length
two hundred thousand. As we expected, the optimal strategy
outperforms the approximate strategy significantly for all the
control genes. Moreover, for the best control gene S100P, the
difference between the two strategies is the greatest.

Figure 8 depicts the effects of the optimal and approx-
imate strategies on the normalized reduction in the aggre-
gated long-run probability of visiting undesirable states ΔPE

and ΔPA, respectively. Here, the strategy based on the S100P
outperforms the strategies devised for other control genes.
Note that the performance differences are not significant
for most of the control genes. In particular, one should not
draw any conclusions from the fact that ΔPE is slightly less
than ΔPA in a couple of cases. The intervention strategy is
designed to minimize the total cost, and the improvement in
the steady-state behavior is a side effect of our method.

Lastly, Figure 9 shows the difference between the
expected number of executed interventions for the opti-
mal strategy and the one derived from the approximate
representation of the system. Note that the approximate
strategy based on the most effective control gene applies 35%
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Figure 8: ΔPE and ΔPA are computed for the WNT5A network for
various control genes. The switching probability is q = 0.01, and
the constituent networks are selected with equal probabilities.

more interventions compared to the optimal one, while its
performance is still worse.

4. Conclusion

We have evaluated the effects on intervention performance
caused by the proposed reduction in [13, 14] relative to
various criteria and values of the parameters of a context-
sensitive PBN. We have analytically demonstrated that the
reduction method reduces the transition probability matrix
of a context-sensitive PBN to the instantaneously random
PBN with identical parameters, the fact that is overlooked in
[13, 14]. This observation has been demonstrated through
extensive numerical studies. We have further studied the
relative effectiveness of the devised approximate strategy
using several performance criteria: (1) the average nor-
malized gains deduced by the optimal and approximate
strategies as indicators of the intervention effectiveness; (2)
the normalized reduction in the aggregated probability of
visiting undesirable states in the long run as a byproduct of
the intervention formulation; (3) the expected number of
executed interventions for each strategy. Performance met-
rics have been compared as functions of both the switching
and selection probabilities. In addition, we have compared
the optimal and approximate strategies in the framework
of a much-studied melanoma-related context-sensitive PBN.
The common trend throughout the experiments is that
the difference between the performance of the optimal and
approximate intervention strategies is small for large switch-
ing probabilities. The performance of strategies devised
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Figure 9: ΔΓ is computed for the WNT5A network for various
control genes. The switching probability is q = 0.01, and the
constituent networks are selected with equal probabilities.

by the reduction method degrades for smaller switching
probabilities, which include the range of typical values
used for context-sensitive PBNs. It is certainly preferable
to design interventions based on the context-sensitive PBN;
nevertheless, the approximate model still yields therapeutic
benefits in situations where it is impractical to utilize the
exact model.

Appendix

We apply the design procedure proposed in [20] to generate
a context-sensitive PBN with four constituent networks. The
data used in this inference was collected in a profiling study
of metastatic melanoma. To generate the context-sensitive
PBN based on the inferred Boolean networks, we set both
the switching and perturbation probabilities to 0.01. The
selection probability distribution is assumed to be uniform
{rl = 0.25}4

l=1. The constituent networks {fl}4
l=1 are reported

in Tables 1, 2, 3, and 4, respectively.
Each of Tables 1 to 4 has 2pred + n rows and n columns,

where pred denotes the maximum number of predictors for
each of the n genes in the network. We set pred = 3 in this
study. The top 2pred rows depict the predictor functions of
the genes. We separate the top part of each table from its
lower part with a horizontal line to increase the readability.
The lower n rows of each table provide the predictors for the
genes in the Boolean network. For example, genes 3, 5, and
7 are the predictors of gene 1 in the constituent network 1
according to the 9th row of Table 1. Hence, f11(x3, x5, x7),
the predictor function of gene 1, can be specified by its 8
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Table 1: Constituent network f1.

1 1 0 1 0 0 1

1 0 0 0 0 0 0

1 1 1 1 1 0 1

1 1 1 1 1 0 1

1 1 0 1 0

0 0 0 1 1

0 1 0 1 1

0 1 0 1 0

3 5 7

2 6 1

3 1

2 4 7

3 7

5 7 1

3 7 1

Table 2: Constituent network f2.

0 0 0 1 1 0 1

1 0 0 1 0 0 1

0 1 1 1 1 1 0

1 1 1 1 1 1 1

1 0 0

0 1 1

0 0 1

0 1 1

2 6 1

2 6

2 5

2 4 7

3 4

2 5

5 7

possible outcomes enumerated in the first column of Table 1.
Whenever the number of predictors is less than pred = 3,
the outcomes of the predictor function can be enumerated
with less than 2pred values. For instance, gene 3 in Table 1
has two predictors (refer to row 23 + 3 of Table 1), so its
predictor function f13(x3, x1) can be fully specified with 4
values. According to the the upper part of the third column
of Table 1, the value of gene 3 is set to 0 when the values of
genes x3(t) and x1(t) are 0 and 0, respectively.
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Table 3: Constituent network f3.

1 0 0 0 1 0 1

1 1 0 0 0 0 0

1 1 1 0 0 1 0

0 0 0 0 0 1 1

1 1 1 1 1

1 0 1 1 1

0 0 0 1 0

1 0 1 1 1

4 5 6

4 5

2 4 1

4 7 1

3 7 1

3 5 6

4 6

Table 4: Constituent network f4.

1 1 0 0 1 1 1

1 0 0 1 0 0 1

1 1 1 1 1 1 0

1 0 0 1 1 1 1

0 1 0 0 0

0 1 0 0 1

1 1 0 0 1

0 1 1 1 1

2 5 6

2 4 7

2 5 7

2 6

3 6 7

3 6 1

6 7
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