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Correspondence should be addressed to Dirk Repsilber, d.repsilber@gmx.de

Received 30 May 2008; Revised 3 October 2008; Accepted 16 December 2008

Recommended by Matthias Steinfath

To accomplish adaptability, all living organisms are constructed of regulatory networks on different levels which are capable
to differentially respond to a variety of environmental inputs. Structure of regulatory networks determines their phenotypical
plasticity, that is, the degree of detail and appropriateness of regulatory replies to environmental or developmental challenges. This
regulatory network structure is encoded within the genotype. Our conceptual simulation study investigates how network structure
constrains the evolution of networks and their adaptive abilities. The focus is on the structural parameter network size. We show
that small regulatory networks adapt fast, but not as good as larger networks in the longer perspective. Selection leads to an optimal
network size dependent on heterogeneity of the environment and time pressure of adaptation. Optimal mutation rates are higher
for smaller networks. We put special emphasis on discussing our simulation results on the background of functional observations
from experimental and evolutionary biology.
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1. Introduction

The organic world—from a system’s biological point of
view—could be understood as organized in interacting
networks at all possible organisational levels. Each organ-
isational level contains interacting units. The forms and
patterns of interaction among such units vary considerably
both in time [1] and across different biological taxa [2]. It
is increasingly accepted that adaptability and robustness are
inherent network properties, and not a result of the fine tuning
of single components’ characteristics [3–5]. Interacting
networks can, for example, be found at the molecular genetic
level where genes and their products interact to enhance or
suppress the effect of each other, a pattern collectively termed
epistasis. At this level of genotype-phenotype mapping,
interactions are the rule rather than the exception. The
concerted action of genes and their products creates the
phenotypes we observe.

Research on structural properties of regulatory networks,
especially for gene regulatory networks in a developmental
context, has long been focused on internal structural prop-
erties [6–8], for reviews see [9] or [10]. This does not take

into account environmental changes, nor is it intended to
consider evolutionary aspects. The situation has changed
recently as [11–13] studied evolutionary performance of
simulated regulatory networks with their focus on network
structures with different connectivities. Also, studies on
optimisation from a computational and more technical
motivated perspective regarding the interactions of evolution
and phenotypic plasticity have become available [14, 15].

However, these approaches did not take into account the
size of regulatory networks and its relevance for evolutionary
dynamics and phenotypic plasticity, that is, biological func-
tion. Network size can either be understood as referring to
genome size or to the size of regulatory modules which are the
building blocks of the entire regulatory system, either at the
cellular level [16–18], or at the level of integration of different
parts of the organism [19]. This led to our contribution of a
conceptual comparative study with the focus on network size.

Concerning the size, two kinds of regulatory networks
can be identified, being at opposite ends of a continuum.
On the one side, we have the smallest network possible with
two interacting units, and on the other side we have an
infinite number of interacting units with an infinite number
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of interactions. There are some general properties of these
networks that deserve attention and help to understand why
small networks are favored by selection in some cases, and
why larger networks are favored in other cases.

Small networks have three main features: they can cope
only with a limited small number of environmental chal-
lenges. Therefore, within a heterogeneous environment this
limitation of detail in response enables only a limited adapt-
edness. Secondly, evolution needs only a few steps to change
a small network’s structure and its repertoire of responses.
Thirdly, small networks are cheap to run and maintain.
Large networks on the other hand can cope with many
different tasks. Due to their large repertoire and the resulting
possibility of detailed adaptive responses they enable higher
adaptedness in a heterogeneous environment. However, large
networks are both slow in terms of evolutionary change
as well as costly to run and maintain. Hence, regarding
their abilities enabling adaptedness and evolutionary change,
small and large regulatory networks are at opposite sites of
the classical “stability-flexibility dilemma” [20].

In this contribution, we want to pose the question
whether there are general properties regarding phenotypic
plasticity and evolutionary dynamics for regulatory networks
of different size. We refer to Thoday who already in 1953
stated that

“. . . a heterogeneous or unstable habitat will lead
to selection for variability; this may result in a
flexible genetic system or a flexible developmen-
tal system or both. The more flexible the devel-
opmental system, the less flexible the genetic
system need be, and the strength of selection
for the two types of flexibility must depend
largely upon the relations between generation
time, the rate of environmental change, and the
heterogeneity of the environment.” [20]

To stress the biological meaning of “flexibility,” we use
instead the concept of adaptation, adaptability, and adapt-
edness [21]. Here, adaptation refers to a specific response of
a system to an external challenge. Adaptedness characterises
the appropriateness of an adaptation, or of the number
of adaptations a regulatory system can realise. Adaptability
refers to the—structurally based—ability of a regulatory
system to be or become adapted to a number of different
challenges in a changing environment. Adaptability in our
context, thus, is realized on both the level of phenotypic
plasticity and evolutionary optimisation.

In our study, we investigate evolutionary adaptability
of regulatory networks as a function of their size, that
is, a network structural constraint. We address this ques-
tion taking a conceptual modeling approach. Evolutionary
dynamics of simulated regulatory networks of different sizes
were evaluated in relation to the heterogeneity of tasks to
be performed. Here, a more biologically oriented reader
might think of different habitats, or temporally changing
environmental conditions. We simulate the evolution of
a population of networks which compete in terms of
relative fitness. Fitness is understood as probability of leaving
descendants as in [20]. Regarding evolutionary dynamics, the
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Figure 1: Scheme for the “4-net” (n = 4) with two examples for
environmental input (e1, e2) and corresponding responses (p1, p2).
This input-output function can be modeled as a simple matrix
multiplication combined with maximum thresholding (see (3)).

interesting level is the level of the phenotype, since this is the
level selection acts on. Differences in gene-gene interactions
are visible to selection and further evolution only if they
translate into phenotypical differences among individuals.
We take a very simplistic approach to explicitly modeling this
genotype-phenotype map and employ a parsimonious model
by using the Steinbuch network model [22].

This model choice is also based on a major result
of statistical network modeling. Analyses of distributions
of simple regulatory motifs both in prokaryotes and in
eukaryotes point to similar results; the so-called multi-input
motif is a significant and prominent part of regulatory
biological networks [23–25]. It is a two-layer feed-forward
network. The information about which input vector leads
to which output vector (response) is encoded within the
pattern of presence/absence of connections between these
two layers. We are going to use this approach as a conceptual
model for regulatory networks. We introduce mutations that
change both wiring and size of the network and discuss the
possibility of an optimal network size.

Within the discussion, we devote special emphasis
on four examples for observations of natural evolution
where the size of the underlying regulatory networks—and
their evolutionary dynamics as well as characteristics of
adaptability—may play a decisive role.

2. Methods and Model

As we investigate network structural impacts on two different
kinds of adaptive processes, evolutionary adaptation and
phenotypic plasticity, our simulation setting includes evo-
lution of network encoding genotypes (individuals) as well
as evaluations of the regulatory replies of these individual
networks to environmental challenges.
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2.1. Individual Genotypes. Each individual in the model pop-
ulation is a simulated regulatory network of the Steinbuch
matrix type [22], which is a two-layer feed-forward threshold
network with n nodes in both input and output layers. It is
structurally equivalent to the multi-input motif as illustrated
in Figure 1. Each entry in such an n × n matrix G, with gi, j
for i, j = 1, . . . ,n, has two possible states, 0 or 1. Consider
an example for G with n = 4, where the dimension n is also
referred to as network size:

G =

⎛
⎜⎜⎜⎝

1 1 0 0
1 0 1 0
1 1 0 1
0 1 1 1

⎞
⎟⎟⎟⎠ , (1)

genes = (1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1). (2)

For gi, j = 1 there is a connection from input layer node j
to output layer node i (see Figure 1), for gi, j = 0 there is no
connection.

In this manner, the genotype G of each individual
specifies the regulatory interactions within its regulatory
network, that is, its network structure. G which is chosen as in
(1) represents the regulatory network illustrated in Figure 1.
During simulated evolution, matrix G is represented as a
linearized genotype vector, genes, as exemplified in (2).

2.2. Modelling the Environment. Environmental challenges
are modeled as n-dimensional column vectors, e = (ei)
with i = 1, . . . ,n, such that ei can take values either 1 or 0.
ei is the input for node i of the input layer (cf. Figure 1).
Environmental heterogeneity is accounted for by the number
of different environmental challenges presented for the
individual regulatory network during a single generation
run.

2.3. Modelling Phenotypes. The phenotype of each individual
is also modeled as n-dimensional column vector: p = (pi)
with i = 1, . . . ,n, and is determined from genotype G and
environment e as

pi =
{

1 if (G · e)i = max(G · e),

0 otherwise,
(3)

for i = 1, . . . ,n, being a special case of a threshold
feed-forward network. The thresholding in our model is a
maximum threshold, such that, all genes of an individual
together determine the structure of the genotype-phenotype
map, which combines genotype G and environment e into
the resulting phenotype vector p.

For illustration consider two examples of environmental
inputs, e1 and e2:

e1 =

⎛
⎜⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎟⎠ ,

e2 =

⎛
⎜⎜⎜⎝

1
1
0
1

⎞
⎟⎟⎟⎠ .

(4)

To determine the belonging phenotypes we multiply with G
and apply the thresholding as indicated:

G · e1 = G ·

⎛
⎜⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
1
0
1

⎞
⎟⎟⎟⎠

max−→ (0101) = p1,

G · e2 = G ·

⎛
⎜⎜⎜⎝

1
1
0
1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

2
1
3
2

⎞
⎟⎟⎟⎠

max−→ (0010) = p2.

(5)

For p1 and p2 compare Figure 1.
Environmental heterogeneity u was modeled by pre-

senting more than one environmental input per generation
to the network as discussed in Smolen et al. [9], for
example, to model an environmental heterogeneity of u =
8, eight different randomly generated inputs were chosen.
Probabilities of entries “0” or “1” were 50% each. These
environmental inputs were then applied to each network
in each generation of the simulation run. This means
that environmental challenges remain unchanged during
the evolution simulated in a single simulation run. For
the next simulation run, new environmental vectors were
randomly generated, with their number according to the
environmental heterogeneity chosen.

2.4. Fitness. For each environment ek and environmental
heterogeneity u, with k = 1, . . . ,u, an a-priory optimal
phenotype popt,k has been fixed before the simulation. The
elements of popt,k are drawn at random with probabilities

P
(
popt,k,i = 1

) = 0.5 = P
(
popt,k,i = 0

)
, (6)

prior to the respective simulation runs.
The fitness of each individual w was calculated as one

minus the mean value over the Hamming distances between
actual and optimal phenotypes for each environmental
condition, indicating how well the actual phenotype matches
the a priori given optimal phenotype:

w = 1−
∑

k

∣∣pk − popt,k
∣∣

u
. (7)

2.5. Evolution. We used a strict truncation selection and
only kept the individuals with the highest fitness. Mutation
rates were between 0.001 < μmut < 0.75 per generation per
gene and recombination rates between 0.2 < ρ < 0.8 per
generation per genome.

Simulations were run either with fixed or with variable
network size n. Runs with variable network size started either
with a uniform distribution of network sizes 3 ≤ n ≤ 8 or
with small networks throughout, and allowed for changing
the network size within this range with probability μsize =
0.05. Individuals were modeled to encode a specific genotype
G by using a linearized vector genes with the entries gi, j
of G and length n2 (see (2)). In simulations with variable
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Figure 2: Adaptation dynamics for population sizes of N = 100 and N = 1000 for different mutation rates; optimal mutation rate depends
on network size. The dynamics of mean population fitness between 1 and 40 generations are shown. Solid lines depict the mean-value over
2000 repetitions, whereas dotted lines give the standard errors of the population means.

network size, a genotype vector for a given individual could
be elongated from the existing n2 entries to (n + 1)2 entries,
corresponding to the next larger network size n + 1, or
also shrinked to length (n− 1)2 by deleting the 2n − 1 last
elements, leading to the network of network size n− 1.

2.6. Simulated Scenarios. For runs with fixed network size we
used

n ∈ {3, 8},
u = 4,

μmut ∈ {0.75, 0.5, 0.1, 0.05, 0.01},
ρ ∈ {0, 0.2, 0.5, 0.8},
N ∈ {100, 1000}.

(8)

For runs with variable network size we used

n ∈ {3, . . . , 8},
u ∈ {2, . . . , 8},

μmut = 0.05,

μsize = 0.05 m,

ρ = 0.2 m,

N = 1000.

(9)

In summary, the key parameters of variation were network
size n, the environmental heterogeneity u and the mutation
rate μmut. All simulations were implemented in C using the
LibGA package [26].

3. Results

The questions guiding our investigations, regarding the
evolution of populations of networks with fixed network size,
were the following.

(1) Does network size influence evolutionary dynamics?

(2) Does network size influence optimal mutation rate
with respect to higher maximum fitness?

(3) Does recombination rates have a relevant influence
regarding these questions?

Regarding the evolution of populations of networks with
varying network size we asked the following questions.

(4) Does the distribution of network sizes in a population
change during evolution?

(5) Is there an optimal network size for a given environ-
mental heterogeneity?

Generally, during simulations each single population reached
a different mean fitness. Therefore, we used mean values
over populations as characterisation of the population
dynamics. Regarding our questions, simulations resulted in
the following.

(Re 1) Adaptation dynamics for a population of networks
of different size (n1 = 3, n2 = 8) revealed that
small networks reached a higher average fitness
as compared to large networks at five generations
(Figure 2). However, as time proceeds, large networks
reached a higher average fitness than the small ones
for most mutation rates after around 20 generations.
This pattern was the same for both population sizes
N = 100 and N = 1000.

(Re 2) The optimal mutation rate is dependent on network
size; for the small network a mutation rate of μ =
0.1 resulted in the largest maximum average fitness,
whereas for the larger network the optimal mutation
rate was lower (μ = 0.05).
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(Re 3) Size and recombination rates do not interact; recom-
bination rates did not affect previous results sig-
nificantly (Figure 3). Therefore, we used a recom-
bination rate of ρ = 0.2 throughout our further
experiments.

(Re 4) Simulation runs were started with small (n =
3) networks and mutable network size. After 10
generations networks of size 3 were most common,
but network size increased rapidly so that after 30
generations networks of size 5 were most common
in the population (Figure 4). After 200 generations
networks of size 5 were still the most common ones,
but the largest networks (n = 8, 9, 10) increased
in frequency and the smaller ones decreased in
frequency (Figure 4).

(Re 5) We tested whether there are optimal network sizes for
a given environmental heterogeneity. To evaluate this,
we started the simulations with equally distributed
networks sizes 3 ≤ n ≤ 8 and recorded network
sizes after 5000 generations for different levels of
environmental heterogeneity (μ = 0.05, N = 1000,
numbers of runs = 5000). Smaller networks were
favored at low levels of u (Figure 5), but optimal
network size increased with u. However, this increase
was not linear so that n = 5 was the optimal for most
of the higher levels of environmental heterogeneity
(u).

4. Discussion

In our conceptual simulation study we have investigated
the relation of a specific structural parameter of regulatory
networks, network size, to their functional abilities, phe-
notypical adaptability, and evolutionary dynamics. We used
Steinbuch matrix models to explicitly model the genotype-
phenotype mapping in regulatory networks, evolving in
silico under different environmental heterogeneities. Our
investigation aims at contributing to an understanding of
different kinds of adaptive pressures for different niches,
and thus providing insights what to look for in general
properties of regulatory networks. This could serve as a
starting point for a quantitative or predictive treatment of
such phenomena.

Results show that time pressure of adaptation and envi-
ronmental heterogeneity clearly interact when favoring either
small or large regulatory networks during evolution—as can
directly be inferred from Figures 2 and 5 (our objectives (1)
and (5)).

For relatively stable environments, small network size is
favored both for shorter as well as for a longer time scale of
the evolutionary process. However, in heterogeneous envi-
ronments, smaller networks have an evolutionary advantage
only over short time-scales, while larger networks gain an
advantage over longer time scales. To illustrate these main
results, Figure 6 shows the interaction of factors time pressure
of adaptation and environmental heterogeneity resulting in
prevalence of either smaller or larger networks.
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Figure 3: Comparison of adaptation dynamics for different
recombination rates. Adaptation dynamics were simulated for 25
generations, 2000 runs each, using a mutation rate of μ = 0.05.
No significant impact of the cross-over rate can be seen, also if
compared to Figure 2 (for μ = 0.05).

In addition, our simulations show that in heterogeneous
environments average fitness does not increase monoton-
ically with network size. Rather, there seems to exist an
optimal network size given the level of environmental hetero-
geneity. Also, larger regulatory networks were dependent on
modest mutation rates for reaching maximum adaptedness.
Recombination rate and size of simulated populations were
not relevant for these results.

In the following we are shortly discussing possible
reasons for the observed results in our simulation study and
then focus on four biological examples, where we propose
that the phenomena observed can be linked to evolutionary
implications of network size.

It may be argued that in heterogeneous environments
a large regulatory network may always be advantageous
since it can respond to multiple environmental inputs with
the most differentiated response possible, that is, a high
degree of plasticity. Thus, a large network can be assumed
to be able to differentiate more correctly between a large
number of environmental differences, and thus respond
in the most optimal way to each of the environmental
challenges, leading to high adaptedness. However, the results
presented here clearly point to an additional important
factor determining evolving regulatory networks sizes; time
pressure of adaptation. In the examples following, it will
become apparent that this time pressure can either result by
the observer—that is, by setting a deadline for adaptation
from an outside observing schedule—or by competition, that
is, by a system inherent factor. Time pressure of adaptation
has three consequences for the network size reached by an
evolutionary process.

First, small networks are evolving faster due to a reduced
search space, an important factor which is obvious from
a statistical model fitting and optimisation perspective.
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Figure 4: Distribution of network size as a function of time for adaptation. The distributions of network-size were calculated from 4
repetitions of 2000 runs each, for adaptation times of 10, 20, 30, 200 generations, and an environmental heterogeneity of u = 8. Most
prevalent network-size increases with time for adaptation.

Second, epistasis effects are reduced, while in a large redun-
dant network mutations may be masked. Third, consider
observing the evolving system after a really long time—such
that there does not seem to exist any time pressure of adap-
tation any longer. However, there are medium large-scale
networks existing within the evolving population which are
showing already near-to-perfect adaptedness. Under these
circumstances networks of still larger size are very unlikely to
evolve as they need to show a clearly improved fitness already
from the beginning to be able to compete. It is also arguable
if such long periods without time pressure of adaptation exist
at all. If, however, some environmental event would cause
further increase in environmental heterogeneity—our results
would propose to expect a further evolutionary growth of the
responsible regulatory networks.

Now consider four biological evolving systems, which
we propose to exemplify the interaction of environmental
heterogeneity and time pressure of adaptation as major
determinant of the favored network size.

4.1. Microbial Genome Size and Life style. In our model,
prevailing sizes of regulatory networks are dependent on
environmental heterogeneity. Our results predict that levels
of epistatic interactions and size of linkage groups should
be low in populations adapted to capricious environments
both on shorter as well as on longer time scales of evolution.
This may give a hint to explain the notion that genome size
seems to be lifestyle dependent in microbial organisms (see
e.g., [27] for a review, or else [28–32]). Either direction of
change in genome size is thought of being dependent on
heterogeneities in the living conditions; on the one hand,
the constant environment of intracellular parasites renders

numerous genes expendable, leading to usually irreversible
gene loss. On the other, changes in habitat to a more
complex environment seem to lead to the contrary effects.
As Stêpkowski and Legocki [27] point out in their review,
there seems to be a “need for a great number of capabil-
ities” to accomplish adaptation to changing environmental
conditions, which is met by integrating numerous genes.
Our model predicts overrepresentation of larger regulatory
networks in more heterogeneous environments, while for
stable environments a small regulatory networks dominate
(see results illustrated in Figure 5, as well as overview in
Figure 6).

4.2. E. coli Mutation Rates in the Mouse Gut. Our findings
may also add a new viewpoint to the ongoing “adaptive
mutability” debate. Giraud et al. [33] discuss their findings
of elevated mutation rates in the beginning of the invasion of
inoculated mice guts with E. coli strains as “adaptive mutabil-
ity.” However, also in our model, using a constant mutation
rate, small networks dominate the first stage of adaptation,
whereas changes to larger networks occur in the longer
perspective (see Figure 4). As far as the mutation rates are
concerned, we found that higher mutation rates are leading
to higher adaptedness of small regulatory networks, whereas
lower mutation rates are favoring higher adaptedness in the
evolution of larger regulatory networks (see Section 3 (Re
2)). We therefore propose the following hypothesis to explain
the findings of Giraud et al.: our simulation results would
suggest that, during the early phase of adaptation to the
mouse gut the bacteria adapt in coarse-grained, larger steps
due to changes in small regulatory networks. Together with
our simulation results which showed that high mutation rates



EURASIP Journal on Bioinformatics and Systems Biology 7

109876543

Network size

0

0.2

0.4

Fr
eq

u
en

cy

u = 2

(a)

109876543

Network size

0

0.2

0.4

Fr
eq

u
en

cy

u = 3

(b)

109876543

Network size

0

0.2

0.4

Fr
eq

u
en

cy

u = 4

(c)

109876543

Network size

0

0.2

0.4

Fr
eq

u
en

cy

u = 5

(d)

109876543

Network size

0

0.2

0.4

Fr
eq

u
en

cy

u = 6

(e)

109876543

Network size

0

0.2

0.4
Fr

eq
u

en
cy

u = 7

(f)

109876543

Network size

0

0.2

0.4

Fr
eq

u
en

cy

u = 8

Mean value and its standard error

(g)

Figure 5: Distribution of regulatory network sizes as dependent on environmental heterogeneity. Optimal regulatory network size is
increasing with environmental heterogeneity. Mean values and their standard errors over 5 repeated experiments are shown, where each
experiment covered 5000 simulation runs (5000 generations for each simulation run).

favor better adaptation in small networks, it becomes likely
that the observable result of evolution during the early phase
will show a mutation record leading to a high estimated
mutation rate.

In the later phase, as for Figure 4, when it comes to fine
tuning the system to conditions in the mouse gut, an increase
in adaptedness has to rely on large regulatory networks. As
these are capable to realise a larger number of adaptations,

they have to be the basis for an adaptation to a more detailed
perception of the new environment. As for the early phase,
the observer will account for only the results of selection.
This time however, as for large networks a lower mutation
rate is favorable, selected networks will show a mutation
record leading to estimate a lower mutation rate.

Central for this hypothesis is the idea that the small regu-
latory networks, which are responsible for early evolutionary
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adaptation, are not identical with the larger regulatory
modules optimized in the longer timescale. Summarising
our hypothesis, observed “adaptive mutabilities” could be
explained as a product of ongoing selection in an adaptation
process under the constraints of the adapting regulatory
systems.

4.3. Selection of Correlated Traits: Body Plans and Size. The
level of integration of body parts in plants and animals is
mainly caused by pleiotropy. It can be shown that the level
of genetic correlation among different parts of an organism
largely determines the evolutionary response to selection
[19, 34, 35]. For example, a large number of highly correlated
traits of an organism—corresponding to large regulatory
networks in the frame of our simulation model—almost
invariably lead to a response in terms of overall body size,
even though the pattern of selection might be, for example,
in terms of body shape. This can lead to highly maladapted
responses to selection. Hence, we can expect populations
of organisms with highly integrated phenotypes to be more
prevalent in scenarios with a lot of time for evolutionary
adaptation. On the other hand, we can expect populations
adapting to highly fluctuating environments in time—that
is having less time for adaptation—to exhibit a lower level of
integration. This lower level of integration would correspond
to smaller regulatory networks in our simulation study (see
Figure 6).

4.4. Evolution of Prochlorococcus. Comparative genomic
studies for different species of the most abundant pho-
tosynthetic organism, Prochlorococcus, revealed that during
speciation genome sizes of these organisms had considerably

shrunk [36]. During speciation two effects occur simulta-
neously; on the one hand, species become more specialized
and adapt to specific niches. Within such an ecological
niche, environmental heterogeneity is decreased. At the
same time, competition is increased before the evolution
of specialized species is complete. This in turn leads to an
increased time pressure of adaptation, that is, less time for
evolutionary adaptation. Both factors lead to a preference to
small regulatory networks, as observed for the genome sizes
of these species during their evolution. This preference is
also resulting from our simulation model, for this example
involving both change in environmental heterogeneity and
time pressure of evolutionary adaptation (see Figure 6).

As to discuss benefits and constraints of the conceptual
approach chosen in our simulation study, we refer to Wissel
[37] and Shubik [38] who call for the parsimonious modeling
approach—even when dealing with apparently complex
systems such as biological regulatory networks. Also, Lenski
et al. [39] conclude that, studying digital organisms, that is,
simplified models of regulatory systems, offers a useful tool
for addressing biological questions in which complexity is
both a barrier to understanding and an essential feature of
the system under study. In our case, the structure of the
Steinbuch matrix model [22] is that of the so-called multi-
input motif which was found to be systematically enriched
in molecular networks of prokaryotes as well as eukaryotes
[23, 24]. The Boolean logic modeling biological regulatory
interactions have been introduced and discussed, for exam-
ple, by Kauffman [7] as well as by Somogyi and Sniegoski [8].
Nolfi and Parisi [40] described an approach to evolve neural
networks, and discussed the genotype-phenotype mapping
for their case—inspiring our own approach of evolving
simple models of regulatory networks. Also, Frank [13]
analyzed the population and quantitative genetics of evolving
Boolean regulatory networks, and evaluated the performance
as well as the effects of mutations in regulatory networks of
different connectivity, while our studies were concentrated
on the size of regulatory networks. Our study aims in the
same direction of investigating system properties of a new
synthesis of the population genetics of development, using
explicit modeling of the genotype-phenotype-map, as called
for by Johnson and Porter [41].

Interrelations of network size with evolutionary adap-
tation processes—even within our simulation study—were
difficult to assess, as variation of mean population fitnesses
was considerable between different runs. However, mean
tendencies, as observed in our study for thousands of
replicate runs with different randomly generated environ-
mental challenges and target adaptations were significant.
We conclude that for scales of evolutionary adaptation the
observed tendencies are, hence, also relevant constraints.

In our modeling approach, environmental heterogeneity
is simulated as sets of randomly drawn input vectors to the
simulated regulatory networks. Here, the size, u, of such an
input set corresponds to the environmental heterogeneity.
Environmental heterogeneity is a major determinant of an
organisms fitness as it requires a minimum of adaptability,
either on the phenotypical or on the genetical level [20].
On the phenotypical level, our modeling approach simulates
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adaptability through allowing an individual regulatory net-
work to differentially respond to a number of different
inputs, while its genetics—determining the wiring of the
regulatory network—remains fixed. On the genetical level
this wiring is subject to mutation and selection. There is,
however, more towards possible structures of environmental
input. As a possible extension of our study it would certainly
be valuable to incorporate long-term changes within the
environmental requirements. The set of input vectors may
slowly change and demand a steady evolutionary adaptation.
This change can occur on different time scales and with
different degrees of autocorrelation. Here, we refer to the
respective works on different noise colours as challenges in
evolution [42, 43]. As a last possibly important parameter
regarding model construction, we want to stress that the
simulations did not take into account differences in costs
for maintaining and running the networks. Adding this
aspect would give extra evolutionary advantage to the smaller
networks.

Summarising, the simplicity of our approach and model
choice leads to very general predictions or explanations.
However, it enables integrating over observations concerning
regulatory structures from apparently distant disciplines
and investigating common consequences of the structure
of regulatory systems on a systems biology level. The main
point of our contribution is the implementation of a special
structure of parameter space (regulatory network encoding
genotype) and the observation of the outcomes of a special
sort of optimisation process (evolutionary dynamics for
phenotype-based fitness function, where the phenotype
is a function encoded by both genotype the regulatory
network structure and environmental inputs). The results
are interpreted on a system’s biological background and
linked to four biological examples which are very different
concerning involved species, environments, and settings
for individual adaptation and evolution, but structurally
identical regarding our point of view. We consider our work
as a small, hypothesis generating, contribution towards inte-
grating findings of systems biological approaches concerning
structure of biological regulatory networks with observations
of their function regarding adaptability, result, and dynamics
of adaptive evolution. Structures of regulatory modules
within living organisms are on the one side constraints for
evolutionary adaptation. On the other side, these structures
themselves are adapted to heterogeneity of environmental
variation, leading to optimized adaptability—as a compro-
mise on both phenotypical and evolutionary levels. Further
understanding of these interrelations will not only contribute
to evolutionary biology, but also towards using and valuing
genetic variation and adaptability in breeding programs of
plant and livestock.
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