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Abstract

In this work, belonging to the field of comparative analysis of protein sequences, we focus on detection of functional
specialization on the residue level. As the input, we take a set of sequences divided into groups of orthologues, each group
known to be responsible for a different function. This provides two independent pieces of information: within group
conservation and overlap in amino acid type across groups. We build our discussion around the set of scoring functions that
keep the two separated and the source of the signal easy to trace back to its source. We propose a heuristic description of
functional divergence that includes residue type exchangeability, both in the conservation and in the overlap measure, and
does not make any assumptions on the rate of evolution in the groups other than the one under consideration. Residue
types acceptable at a certain position within an orthologous group are described as a distribution which evolves in time,
starting from a single ancestral type, and is subject to constraints that can be inferred only indirectly. To estimate the
strength of the constraints, we compare the observed degrees of conservation and overlap with those expected in the
hypothetical case of a freely evolving distribution. Our description matches the experiment well, but we also conclude that
any attempt to capture the evolutionary behavior of specificity determining residues in terms of a scalar function will be
tentative, because no single model can cover the variety of evolutionary behavior such residues exhibit. Especially, models
expecting the same type of evolutionary behavior across functionally divergent groups tend to miss a portion of
information otherwise retrievable by the conservation and overlap measures they use.
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Introduction

In the standard approach to computational analysis of proteins,

the first step is detection of their functional parts through

comparative analysis of homologous sequences. As databases fill

with protein sequences from well beyond a handful of model

organisms of a single genotype, this preliminary step is becoming

increasingly rewarding both in terms of feasibility and of reasonably

high resolution for most proteins of technological interest.

Two types of evolutionary behavior are typically sought in a

comparative analysis of a protein family: conservation across

several groups of homologues, and specialization within each

group. The former is of interest for understanding structural and

folding features of the class of proteins as a whole, while the latter

becomes interesting in an attempt to control a particular set of

paralogues, such as in designing a highly specific drug. The latter is

also the topic of this work. We discuss a class of heuristic methods

designed to detect functional specialization without reconstructing

the underlying sequence of evolutionary events.

If gene duplication did not exist, we could only observe

variability across orthologues from different organisms. The

discussion thus naturally starts with the methods to score residue

conservation [1]. Historically they arrived first, ranging from

simple majority fraction [2] to information entropy [3–5] and

entropy related methods [6], to full-blown statistical estimation of

the mutability of residues leading to the observed set of sequences

[7,8]. Such methods work well in detecting the folding core of a

protein [9], the catalytic site of an enzyme, and somewhat less

reliably, the protein-protein interfaces shared by all homologues

[10,11]. Their performance is affected more strongly by the pre-

processing stage (in which an informative set of wild-type, mutually

orthologous, sequences must be selected), then by the choice of

method itself [12].

The specialization of duplicated genes is the necessary condition

for their parallel existence, and the methods to detect it on the

protein level followed shortly [13–16]. Several major ways of

treating this problem have been put forth, differing mainly in (i)

the way they handle the classification of proteins into orthologous

groups, and (ii) the underlying model of evolution they

incorporate. The first issue has been dealt with by taking the

classification as an input [17], by using the similarity tree as the

classification generator [13,14,18], or by adopting a midway
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solution in which the tree is provided by the application, but the

relevant division into subtrees is decided on by the user [19].

In this work, we would like to put some emphasis on the way an

evolutionary model is built into a specificity scoring function. As

an example, a popularly quoted evolutionary trace method,

ET [14], in its original formulation assumes that a functionally

important position will be completely conserved in each of the

compared groups of sequences, albeit as a different amino acid

type. If the groups in question are paralogous, this becomes a very

strict model of evolution, in which even after the duplication and

specialization event(s), each gene maintains the same degree of

evolutionary pressure at each site. (For a recent remedy see [20]).

This model appears in the literature in several forms (‘‘conserva-

tism-of-conservatism’’ [16], ‘‘constant but different’’ [21], ‘‘type II

functional divergence’’[22], as evenly weighted correction to

entropy from each branch in the tree [6], as a log-likelihood of

a type conditioned on tree [18], Venn diagrams [23]). Conversely,

mutual information (MI [17,24], another very successful import

from information theory) requires that each group of orthologues

adopts a set of evolutionary constraints that are systematically

different from those of all other groups, irrespective of the degree

of conservation within each group. However, it mirrors ‘‘conser-

vatism-of-conservatism’’ in conditioning the expected behavior in

one group, on the behavior in another.

Recently, ever more voices appear in the literature, pointing out

that the evolutionary behavior in paralogous groups may be

completely unrelated. Variously termed ‘‘type I functional

divergence’’[22] or ‘‘heterotachy’’[25], this type of behavior has

been discussed in genetics literature for at least a decade [15], and

used increasingly in detection of family specific positions on a

nucleotide or peptide sequence [22,26–29].

Finding the ‘‘type I - type II’’ terminology somewhat lacking in

descriptive power, we use the term ‘‘determinants’’ for the

positions that are conserved in one group, but evolve at various

rates across paralogues (since they determine the function of the

group in which they are found conserved), and ‘‘discriminants’’ for

the positions that vary at comparable low rates across all groups

(because they work as a unique tag for each of the groups). A

determinant position, then, is a property of a single group, while a

discriminant is a property of the family as a whole.

The central claim of the work is that there is no ‘‘magic bullet’’

combination of conservation and overlap scoring functions that

can solve the problem of detection of functional specialization.

Rather than comparing various proprietary combinations thereof,

we suggest looking at their ingredients, one at a time, with

everything else fixed, and considering how well they describe

documented cases of functional divergence. We also stress the fact

that scoring functions, wittingly or not, often encompass an

evolutionary model (an assumption of discriminant behavior) that

cannot be applied across the board. While discriminants can be

commonly found in catalytic sites of enzymes, they are more of an

exception than a rule in a general case of functional divergence.

When dealing with real-life data there are many additional

practical problems that need to be resolved, and diverse sources of

information that need to be collated. The estimation of the

reliability of the alignment in the neighborhood of the residue of

interest (perhaps through the conservation in the neighborhood

window [30]), treatment of gaps, unsupervised detection of

orthologous groups [31–34] mapping onto the structure [35–38],

as well as detecting synergistic co-evolutionary events [39,40] are

all important issues, but downstream or complementary to the

basic specialization scoring framework we propose to discuss here.

In the following section (Method), we lay out the framework for

discussion of overlap and conservation measures. Therein we also

outline the incorporation of residue exchangeability in the

description, and show how these basic ingredients combine into

various specialization scoring functions. In the Results section we

take a look at several examples of specialization among families of

paralogous proteins, and discuss where the responsible residues fall

on the conservation/overlap grid. We consider the options

available in building a scoring function at a heuristic, phylogeny

independent level, and propose a strategy that allows us to move

on from catalytic sites of enzymes to more general cases of protein

functional divergence.

Methods

Let us first consider the case of the comparison of a family

consisting of two paralogous groups of proteins only. The

generalization to the case of a multimember family will be

straightforward. We consider one position in the alignment of

protein sequences at a time, and assume that each group is

represented by a fair sample of orthologous proteins from a

comparable set of species. All the scores we discuss are relative -

they are meaningful only in the context of a given multiple

sequence alignment. Their absolute values have no intrinsic

meaning.

We center the discussion around two independent types of

information: within-group conservation, and overlap in the choice

of residue type across the two groups. Various methods proposed

in the literature to score functional specialization differ mostly in

how they extract this information, and which combination thereof

they take as the key property to be detected.

To be more specific, we refer to Fig. 1. Assuming that we have

devised a way to score the conservation and overlap in the choice

of residue types, and that the assigned score lies in a finite interval

of values, say between 0 and 1, we can then assign to each

alignment column a triplet of values (conservation1, conservation2,

overlap). Their extremal combinations then correspond to the

corners of the cube of side 1. Thus the triplet (1,1,1) corresponds

to the column which is conserved and consists of the same residue

type in both groups, (1,1,0) to the column which is conserved in

Figure 1. The main components of the information available
from comparative analysis of two groups of paralogous
sequences. The nomenclature we use in this paper for the three
main types of behavior is also indicated.
doi:10.1371/journal.pone.0024382.g001
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each group but different between the two (discriminant), (1,0,0) to

a position which is determinant of the group 1, and so on. Notably,

in this way of representing the information, the completely

variable position gets assigned the triplet (0,0,1), which is

diametrically opposite to the triplet representing a fully discrim-

inant position (not a fully conserved one).

What various scoring schemes do is score the positions

according to their proximity or distance from one of the corners.

We will return to the question of incorporating these three

numbers into a single score after discussing ways of quantifying

conservation and overlap.

The model
We assume that we have two samples of sequences from two

functionally distinct groups of orthologs, s and t. The two samples

are fair and cover the same evolutionary breadth in both groups.

The two groups can be unambiguously aligned, so it makes sense

to speak of position i in the context of both groups. To each

position i we assign the probability of being occupied by an (amino

acid) type a, which belongs to the standard 20-letter alphabet. The

probability, which is different for the two groups, is estimated by its

frequency, fsa (fta in the other group). It should be kept in mind

that these numbers are, in general, different for each position i, but

we will suppress the index, not to burden the notation.

The model also takes that in the absence of any structural or

functional constraints, distribution of residue types acceptable at

position i, F (x)
s ~(f

(x)
s1 ,,f

(x)
s20 ), evolves from time 0 to time t

according to the transition probability matrix P(t)

F (x)
s (t)~P(t)Fs(0)~P(t)

fs1(0)

..

.

fs20(0)

0
BB@

1
CCA: ð1Þ

We are using the superscript x to indicate that this is the

frequency distribution expected in the average case of a freely

evolving position. We assume here that for each position the

amino acid type from the last common ancestor can be

determined, so fa(0) is non-zero for a single type a only. The

element of this matrix, Pba(t) is the probability of the amino acid

type indexed by a mutating to the one indexed by b in time t. The

matrix P, in turn, is generated by the rate matrix A [41],

P(t)~eAt, ð2Þ

with A time independent. This comes handy, because it enables us

to evaluate P(t) for an arbitrary point in time. Various estimates

for the matrix A that reproduces the average mutational propensity

of residues observed in nature can be found evaluated in literature.

The replacement matrix used here was derived by Veerassamy et al.

[42], by fitting onto the BLOSUM series of matrices [43]. (For

alternative methods to derive a rate matrix see for example [44] and

references therein.)

For very long times t, any initial distribution ends up

transformed into a stationary distribution Q,

lim
t??

F (t)~Q~

q1

..

.

q20

0
BB@

1
CCA: ð3Þ

Distribution Q is fixed by the choice of matrix A. This

distribution is the background distribution in the model - the

distribution that any initial distribution would eventually turn into,

if free of all constraints.

Within-group conservation
Among the measures typically used to estimate the variability of

residue types [1] the information entropy proves to be particularly

robust. In the class of the conservation scoring functions that

ignore exchangeability of residues, it has no serious competitor,

and it is the method we choose to use here as a model which

ignores similarity of amino acid types:

S(o)~{
X

a

falogfa: ð4Þ

The sum in this expression runs over the standard alphabet of

20 amino acid types a, and the superscript o refers to the observed

value. (Note that we will be contrasting the expected values, x, as

in Eq. 1 with the observed ones, o, as in the equation above. The

expressions without either superscript refer to both.) Various

authors prefer different bases for the logarithm, but the choice

makes no qualitative difference. To keep the values in the ½0,1�
interval, one may use the alphabet size as the base. In the

implementation discussed below, we rescale S so that 0
corresponds to the minimum entropy observed within a group,

and 1 to the maximum. Technically, this number measures the

variability of a position. If rescaled to ½0,1�, it is a matter of taking a

complement, c(o)~1{S(o) to obtain a number which is 1 for

completely conserved positions, and 0 for maximally variable ones.

c(o), then, measures conservation.

Including exchangeability of residue types. The problem

with S(o) as a measure of variability is that we semi-intuitively

expect that some mutations (such as acidic residue to a non-polar

one) indicate more variability than the others (such as mutation of

one type of acidic residue to the other). The expression in Eq. 4 is

blind to that distinction. In literature, several expressions for

measuring residue conservation in a model with exchangeable

amino acid types have been put forth [1], most based on

comparison with the equilibrium distribution of amino acid types,

Q, Eq. 3, or some way of incorporating pairwise similarity matrix,

such as BLOSUM [1,30], into the scoring scheme.

As prototypical of these appears Kullback-Leibler divergence

KL~
X

a

falog
fa

qa

, ð5Þ

a measure of difference between two distributions, fa and qa in

this case. qa from Eq. 3 is sometimes replaced by an average

distribution in the alignment.

Jansen-Shannon divergence, a symmetrized and smoothed

version of Kullback-Leibler, has been successfully used by Capra

and Singh [30,45]

JS~
X

a

falog
fa

fazqað Þ=2
z
X

a

qalog
qa

fazqað Þ=2
: ð6Þ

A potential problem with these types of scoring, as noted by de

Vries et al. [46] (and again in [47]), is that it drives the correction in

a counterintuitive direction: as an example, when completely

conserved, a relatively rare residue like tryptophan will end up

Determinants, Discriminants, Conserved Residues
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with a higher score (that is, estimated under higher evolutionary

pressure) than isoleucine under the same circumstances. Which

should be surprising - given isoleucine’s high propensity to mutate

to valine or leucine, the absence of ‘‘easy’’ variability should

indicate a higher pressure than in the case of tryptophan.

Ultimately, the question is what is it that we are trying to

measure - the distance from the (very distant) stationary

distribution, or the relative strength of constraints on mutation

on one position with respect to another? A direct measure for the

latter might be difficult to construct. Instead, we note that one trait

that the positions in the alignment have in common is the time

they took to diverge from their common ancestral sequence. As an

estimate of that time we take the effective time t
eff

, described

below, Eq.15. To include into conservation score our knowledge

that some residues are more likely to mutate than others, we

propose modifying the entropy score, calculated directly from the

observed frequency distribution, by its expected value for the freely

evolving case:

S(m)~S(o){S(x)~{
X

a

falogfaz
X

a

f (x)
a (t

eff
)logf (x)

a (t
eff

), ð7Þ

where fa stands for the frequency observed in the alignment, and

f (x)
a (t

eff
) for the expected frequency of the type a in time t

eff
, had

it been evolving freely from a single ancestral type.

Overlap of residue type distributions belonging to two
protein groups

When comparing two paralogous groups of proteins, labeled s
and t, any expression that results in 0 for two distributions with no

common elements, and continuously changes to 1 as the two

become increasingly similar, is a valid measure of their overlap.

(The opposite assignment, 1 for non-overlapping, 0 for identical

distributions, is equivalent, because it can always be negated and

shifted by one to recover the scoring on the ½0,1� interval.)

Similarly, if the upper score is different from 1, it can always be

rescaled, provided that the upper value is a constant, independent

of the distributions under consideration.

In this work we suggest using

o
(o)
st ~

X20

a~1

fsafta, such that
X

a

f 2
a ~1, ð8Þ

where index o again stands for the observed value, and fsa,fta are

the frequencies of residue type a in protein groups s and t
respectively.

Other possibilities include

o
(1)
st ~

X20

a~1

fsafta, such that
X

a

fa~1, ð9Þ

sum of squared differences (GroupSim in the original publication

[30])

o
(2)
st ~

X20

a~1

fsa{ftað Þ2, ð10Þ

Kullback-Leibler divergence between the distributions seen in

two groups (‘‘relative entropy between groups’’ in [31]),

o
(3)
st ~{

X20

a~1

fsa log
fsa

fta

, ð11Þ

or its symmetrized, Jensen-Shannon, cousin (‘‘sequence harmony’’

in [48]),

o
(4)
st ~

X20

a~1

fsa log
fsa

fsazftað Þ=2
zfta log

fta

fsazftað Þ=2

� �
: ð12Þ

Some of the overlap measures do better job in separating the

two features - conservation and overlap of distributions. Thus o
(o)
st

falls naturally between the values of 0 and 1, and is equal to 1 for

identical distributions irrespective of their variability. On the

contrary, o
(1)
st , Eq. 9, assigns 0 to the overlap of two distributions

without any common elements, as expected, but the value assigned

to identical distributions depends on their spread. Similarly, o
(2)
st ,

while universally equal to 0 for identical distributions, assigns to

two distributions without a common element a number that is

dependent on their variability. Though there is no reason to

assume that any of these measures is inappropriate for its task, we

will adhere to o
(o)
st as a measure which separates the conservation

and overlap, as it enables to trace the source of information

coming from an alignment. o
(2)
st will be used as a representative of

measures which do not strictly separate the two.

Mutual information. As a special case of a method

measuring the overlap in the residue type choice (or, rather, the

absence thereof) we highlight mutual information (MI) between

the amino acid type and division into groups. The measure is

conceptually different from the rest, because it does not compare

any two within-group distributions, but, rather, measures how

precisely residue types assort themselves into bins provided by the

functional groups:

MI~
X

g

X
a

f a,gð Þ log
f a,gð Þ
n gð Þfa

: ð13Þ

Here f (a,g) stands for the frequency of a appearing in group g,

relative to the frequency of all other observed assignments, and

n(g) is the relative size of the group g, in terms of the number of

sequences, compared to the size of all groups combined. Among

other interpretations, it can be viewed as Kullback-Leibler

divergence, this time measuring the difference of the observed

joint probability f (a,g), from the value it would have if fa and

n(g), that is, type and grouping into orthologous groups, were

independent. This score rewards regular assortment into families

other than the one under consideration, which makes it the

ultimate discriminant model-incorporating measure. The method

is well backed up by the underlying statistical theory, and does its

job exactly as it was designed to do, and we use it here to illustrate

further that the problem lies with the model of evolution it

incorporates, rather than with the overlap measuring function

itself.

We also note that mutual information can be used as two-

distribution overlap, in a way very similar to the rest of the overlap

measures described above, if we make the sum over groups g in

Eq. 13 run over s,t only. This way of using MI is further explored

in Text S1, with the conclusion that it does not bring in any

universal advantage over other overlap scoring functions.

Determinants, Discriminants, Conserved Residues
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Including exchangeability of residue types. In a way

analogous to the modification of entropy, S(m), for the case of

estimating conservation, Eq. 7, we suggest modifying the overlap

measure to incorporate the exchangeability of residue types:

o
(m)
st (t)~o

(o)
st {o

(x)
st ~o

(o)
st {F (x)

s (t)T F
(x)
t (t) ð14Þ

where T indicates transpose, F (x)
s (t) is evaluated according to Eq.

1, and F (x)
s (t)T F

(x)
t (t) is thus the size of the overlap we would

expect in a freely evolving case. As in the case of S(m), this type

correction could in principle be applied to any of conservation and

overlap measures in this basic ‘‘observed minus expected’’ form.

Estimating the effective time since the last common
ancestor

As an estimate of the ‘‘current’’ time (the time from the last

common ancestor), we take the average time each position would

take to evolve freely, and reach the maximal overlap with the

observed distribution:

t
eff

~
1

N

XN

i~1

ti
max, ð15Þ

where ti
max maximizes the overlap between F (x)

s (t) and the

observed distribution at the position i. The majority type at

position i is taken as the ancestral type. In the case of a tie (two

types being equally represented and in larger fraction than the rest

of the types) we choose as the ancestral the type that produces the

larger overlap with the observed distribution.

Construction of a specialization scoring function 1:
Adding conservation and overlap measures

When forced to assign a single number to the functional

specificity of a residue, the methods proposed in literature can be

viewed as choosing the point of origin on the cube in Fig. 1 from

which they score the positions in an alignment, and then rank the

residues by either the distance or the proximity to this point of

origin. Thus a conservation algorithm scores the residues by the

distance from the (1,1,1) point (the smallest distance indicating the

highest conservation)

d
(e)
111~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1{cs)

2z(1{ct)
2z(1{ost)

2

q
: ð16Þ

Indices s and t refer to the two groups under consideration. The

superscript e is used to distinguish this, Euclidean, distance, from

the linear combination we introduce below. The conservation c is

the complement of variability measured by the information

entropy S, c~1{S. We use the two interchangeably. (In

particular, we find the conservation handy for visualization

purposes, as in Fig. 1.) A typical discriminant seeking algorithm

is looking for points as close to (1,1,0) corner as possible [24]

d
(e)
110~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1{cs)

2z(1{ct)
2z(ost)

2

q
: ð17Þ

Using a distance from the (0,0,0) corner (that is the deviation from

perfect non-overlap of two non-conserved columns corresponding

to the same position in two families) as a measure of specialization

also seems appealing (see Results, subsection ‘‘Specificity deter-

minants of interferon receptor 2’’).

The decision we have to make here is whether to take this,

Euclidean, way of adding contributions literally (as suggested, for

example, in [49]) or perhaps use a linear combination [45]:

d
(l)
110~(1{cs)z(1{ct)z(ost): ð18Þ

Construction of a specialization scoring function 2:
Building in a model of evolution

One point that we would like to emphasize here is that once we

write an expression such as Eq. 17, we have already committed to

the model of functionally discriminant residues - the residues that

are conserved in all groups will fare better than the ones that are

conserved only in the target group of paralogues.

If, however, we do not expect the specificity determining

residues to be conserved in other groups, besides our target group

(as is often the case, see Results section below), we should not

enforce it in the score either.

Thus, we consider two models of evolutionary behavior of

residues, and their incorporation in the overall conservation score -

functional discriminants

dis(e)~
X
g1

(1{cg1
)2z

X
g2

o2
g1g2

0
@

1
A

2
4

3
5

1=2

, ð19Þ

and functional determinants

det(e)~ (1{ct)
2z

X
g

o2
tg

" #1=2

: ð20Þ

The sums in the above two equations run over all groups g of

paralogous proteins present in the analysis. The target group is

labeled by t. In both cases the smaller score indicates greater

specificity. Note that in the case of determinant scoring function,

Eq. 20, the requirement on conservation is imposed only in the

target group, as is the requirement on overlap between the target

group and the remaining groups - the overlap between the pairs

not involving t is immaterial.

As noted above, using the Euclidean distance is not the

necessary choice. In the following we will also consider linear

combinations:

dis(l)~
X
g1

(1{cg1
)z
X
g2

og1g2

0
@

1
A ð21Þ

for functional discriminants, and

det(l)~(1{ct)z
X

g

otg: ð22Þ

and for functional determinants.

Results

Our choice of the test set is guided by the following limiting

criteria: (i) The functional divergence has experimental backup,

through a systematic and unbiased study at the residue level,

Determinants, Discriminants, Conserved Residues
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Figure 2. ROC curves for small molecule binding cases. y-axis: true positive rate - fraction of experimentally determined specific resides above
threshold. x-axis: non-positive rate - fraction of residues not tested in the experiment. The residues are ordered according to a specificity scoring
method. Moving the threshold down the list determines the values plotted int the graph. Inset: x-axis: true positive rate - fraction of experimentally
determined specific resides above threshold. x-axis: false positive rate - fraction of residues determined experimentally to be non-specific. The
methods tested are indicated in the figure legend. For each family, panel caption lists the families considered (contrasted) in the analysis, taxonomical
breadth of source organisms, number of sequences in each group, function tested in the experiment, as well as the method of its inference. The
resulting number of true positives (specificity determinants), true negatives, and the length of the target sequence are also listed.
doi:10.1371/journal.pone.0024382.g002
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preferably providing both positive and negative results, related to a

well defined phenotype. (ii) The paralogues in question are similar

enough so the alignment itself is not an issue. (iii) For all groups in

question a reasonably large and diverse number of sequences can

be found, from a taxonomically comparable set of species. And last

but hardly the least, (iv) we would like to discuss cases more

general than the specialization of catalytic pockets of enzymes,

such as specialization of protein-protein interaction sites.

In the following sections we divide the examples available in the

literature into two groups, roughly corresponding to the cases of

divergence in the binding sites of small ligands, and a functional

shift involving protein-protein interaction (or its loss).

In all cases we consider the ability of different methods to

‘‘detect’’ - that is, to score highly - residues known to be involved in

the specific function of a group by contrasting one or more

paralogous groups of proteins.

To keep the discussion compact, for the detailed description of

each system we refer the reader to the original publication we

derive our test set from.

Small ligand binding
First, we compare the performance of different specialization

scoring schemes for cases where the difference between groups

stems from the change in the nature of a small ligand binding site.

This is the type of scenario where we are the most likely to

encounter the ‘‘discriminant’’ types of positions: binding of a small

ligand does not allow much freedom in the residue type choice.

Different ligands, however, require different residue types. In such

cases mutual information is expected to be a good measure for

their detection.

In one of the most thorough point-mutational studies of a

protein we have up to date, Suckow and collaborators [50]

mutated almost all positions in E. coli lactose inhibitor (LacI) from

its wild type to 12 alternative amino acid types, and divided the

resulting phenotypes into five distinct groups [51]. The phenotype

we are particularly interested in is the loss of inducer response - the

trait that distinguishes LacI from its paralogous relatives, purine

and galactose repressors (PurR and GalR). The size of this

systematic study provided a precious set of true negatives, shown

in the inset of the first panel, Fig. 2. In the main panel, the

standardly used ROC curve, using residues not explicitly known to

be involved in the specific function as the set of ‘‘negatives.’’ The

behavior of different scoring methods indicates that while several

of the specific residues behave as discriminants, the rest do not,

and mutual information fails to locate them. Accordingly, the

discriminant scoring function, shown in green, starts detecting

specific residues sooner than the determinant one (red), but is, after

certain threshold depth, taken over.

As our next test case we take an ABC transporter responsible for

development of multidrug resistance was analyzed through a

mutational scan of transmembrane domain 11 of mouse orrtholo-

gue, by Hannah et al. [52]. The related groups of orthologues used

are ABCB4 and ABCB5. Compared to the LacI case, the size of the

study was small. Both TP and TN sets might be incomplete here.

However comparing the ability of different functions to pick up the

confirmed true positives from confirmed true negatives shows the

ability of determinant model to enrich the top scoring portion of the

residues with confirmed TP cases.

The E. coli methyltransferase RsmC was studied by Sunita et al.

[53]. Charged residues, demonstrated therein through alanine

mutagenesis to be involved in catalysis, are used as the true

positive set. The paralogous family consists of bacterial RlmG

proteins, with different substrate specificity. The nonspecific

residues were not explicitly tested in the study.

The sequences used in the alignments, as well as the set of

functional residues (as well as negative controls, when available)

can be found in Materials S1. Residues conserved across all groups

were never considered to be a part of ‘‘positive’’ set of specificity

conferring residues.

In all cases the performance of related earlier methods

GroupSim [30], SPEER [54], and SDP [55] is shown on the

same graph. (Absence in the graph indicates cases when a

method does not provide a prediction). These methods have

on their own been successfully compared with other, earlier

approaches. GroupSim, uses Jensen-Shannon divergence, Eq. 6,

as the conservation, and squared difference, Eq. 10, as an

overlap measure, combined linearly into a single score (see

Methods). The two quantities are not scaled to ½0,1� interval as

we do here, and additional conservation filter is imposed on the

neighboring residues. SDPpred is an elaboration on the mutual

information approach, Eq. 13, that additionally estimates the

statistical significance of the assigned score. The exchangeability

of the residue types is incorporated into the significance

calculation. SPEER uses rate4site [7], a phylogeny based

method that on its own uses exchangeability in estimating prior

mutational probabilities, to estimate difference in evolutionary

rates among groups, and linearly combines it with Euclidean

distances based on amino acids’ physico-chemical properties,

and Kullback-Leibler, Eq. 5, type of conservation score. All

implementations were used with their default choice of

parameters. The problem that is encountered in discussion of

these methods is their compounding of conservation and overlap

measures, and at times fuzzy correction for residue type

exchangeability, all of which make difficult tracing the sources

of their failure and success alike.

In Fig. 2 we show one particular choice of conservation and

overlap methods discussed in the Methods section. However,

other choices are possible, and indeed perform on the level

within the noise bracket of the data. This is illustrated in Fig. 3,

for the LacI test case. The remaining cases are relegated to

supporting material. In the figure, all possible scores that can be

obtained by combining the scoring and residue conservation -

from literature, as well as proposed here - are listed on the x-axis

in the order of decreasing area under the ROC curve. One

striking feature, in this as well as in other test cases, is that with

very few exceptions, for a given choice of scoring methods, the

determinant model (red in Fig. 3) works better than discriminant

(green).

Protein-protein interaction
Perhaps more interesting cases, where the difference between

the determinant and discriminant behavior figures even more

prominently, are the cases of specific interactions with proteins

and other large polymers. The main descriptors for each test

case - acquisition of interacting interface in a-lactalbumin [56], he

specificity of interferon-a receptor for its favorite type of

interferon, IGFBP5 specific binding to extracellular matrix [57],

thrombin interface for thrombomodulin [58], and Kelch for Nrf2

[59] - are listed in panel captions in Fig. 4. The sequences used in

the alignments, as well as the set of functional residues (as well as

negative controls, when available) can be found in Materials S1.

Mutual information systematically underperforms here, as do

other methods that in one way or another incorporate the

expectation of ‘‘constant-but-different’’ into their scoring function.

Though a larger set of experimentally verified cases, at present

difficult to build systematically, is certainly needed, the value of

determinant approach is clearly illustrated.
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Figure 3. Combining various conservation and overlap scores into a single specificity scoring function for the LacI case. Method
identifiers (see Methoda section and also Text S1): the first character: e: entropy, r: entropy modified by its expected value, j: Jensen-Shannon
divergence from the stationary distribution, 0: no conservation score used. The second character: o: overlap of normalized distributions, f: squared
difference, r: o modified by the expected value, m: pairwise mutual information. The third character: e: Euclidean distance, l: linear. Red: determinant
model, green: discriminant. Pink: GroupSim, blue: mutual information. GroupSim uses conservation of neighboring residues as additional criterion.
y-axis: area under the ROC curve for each method.
doi:10.1371/journal.pone.0024382.g003

Figure 4. The same as Fig. 1, for protein-protein interaction cases.
doi:10.1371/journal.pone.0024382.g004
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Discussion

In this work we have argued that a heuristic method to detect

specificity in a set of paralogous proteins can be broken down to

several independent components: (i) conservation (or variability)

scoring function, (ii) overlap scoring function, (iii) the rule to add

them together in a combined score, and, last but not least, (iv) the

underlying model of evolution, specifying which groups are

expected to be conserved, and which groups are expected (not)

to overlap in the amino acid type choice. This disassembly of a

heuristic scoring function enables tracking down the information

contributing to the score, and discussing the merits of particular

choice of its individual components. Some attention should be

devoted to the model of evolution built therein - the siren call of

symmetry across functionally divergent branches is a trap we easily

fall into. To the contrary, it is easily demonstrable on the examples

provided here (Fig. 3 and Text S1) that, with everything else kept

the same, a method awarding determinant behavior may fare

better than the one looking for discriminants. Stated plainly,

positions of functional importance in one group need not be

conserved in the groups of its paralogues.

Somewhat more puzzlingly, the linear combination of the scores

has a tendency to perform better than the Euclidean one (Fig. 3

and Text S1), perhaps stemming simply from the even distribution

of scores in the (conservation1,conservation2, overlap) space.

Also, one of the outcomes of our investigation is the conclusion

that, as intriguing as the assumption might seem, non-conserved,

non-overlapping positions do not typically fall into the set of

residues determining the functional divergence, and the scores not

imposing the conservation as a requirement do not seem to

represent a good strategy (the the scores withe systematically the

lowest area under the ROC in Fig. 3 and Text S1.

We have also suggested a framework in which the evolution of

each position on a peptide is modeled as an evolution of the

distribution of amino acid types, and the strength of the

evolutionary constraints is gauged by the difference of this

distribution from the distribution the position would have, were

it evolving free of constraints. In particular, this enabled us to

modify the measure of overlap (which was somewhat elusive

according to previous reports [30]) to accommodate our intuitive

expectations on the exchangeability of amino acid types.

In our experiments with the scoring functions, we have

demonstrated that the scoring functions that involve some degree

of exchangeability of amino acid types fare better that the ones

that include none (witness the behavior of ‘‘eo’’ function, standing

for ‘‘plain entropy and overlap,’’ in Fig. 3 and Text S1). However,

the available amount of experimental data does not presently allow

us to prove that one way of treating conservation and overlap or

including the exchangeability of amino acid types systematically

outperforms the rest. Their different ranking in different examples

indicates they are all within the noise bracket imposed by the

underlying experiment, by the estimate of the average evolution-

ary behavior (Eq.2), and by the assumption of independent

evolution of each site. We merely note that the description we

offered in Eqs. 7 and 14 performs stably, and matches our intuitive

expectations well.

Finally, one may ask, why bother with a heuristic approach

which dispenses with the evolutionary tree, if ways for detailed

description, including branching events, exist. The answer lies in

its robustness, which allows one to deduce the gross features of

evolutionary behavior that should be reproduced and bettered in

development of a chronological model of evolution of a protein

family. At the same time, the very lack of detailed features, in

particular, of the order of the branching events leading to the

observed set of sequences - which, if difficult to establish can be a

source of noise itself - makes the approach applicable to a wide

range of protein families, making them a useful cog in analysis

pipelines.

The code used in the analysis is available from http://epsf.

bmad.bii.a-star.edu.sg.
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