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Cis-urocanic acid inhibits SAPK/JNK signaling pathway in UV-B
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exposed human corneal epithelial cells in vitro
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Purpose: The cornea is sensitive to ultraviolet B (UV-B) radiation-induced oxidative stress and inflammation. Its clinical
manifestations are photokeratitis and climatic droplet keratopathy. Urocanic acid (UCA) is a major endogenous UV-
absorbing chromophore in the epidermis and it is also an efficacious immunosuppressant. We have previously shown that
cis-UCA can suppress UV-B-induced interleukin-6 and —8 secretion and cytotoxicity in human corneal epithelium (HCE)
cells. In the current study, we further wanted to investigate the effects of cis-UCA on UV-B-induced inflammatory and
apoptotic responses in HCE-2 cells, focusing on the nuclear factor kappa B (NF-kB) and AP-1 (subunits c-Fos and c-Jun)
signaling pathways.

Methods: After exposing HCE-2 cells to UV-B and cis-UCA, DNA binding of c-Fos, c-Jun and NF-kB was measured
with ELISA. In addition, the endogenous levels of phosphorylated stress-activated protein kinase/c-Jun N-terminal kinase
(phospho-SAPK/JNK) and phospho-c-Jun were determined. The proliferative capacity of HCE-2 cells was also quantified,
and the cytotoxicity of the cis-UCA and UV-B treatments was monitored by measuring the release of lactate dehydrogenase
enzyme in the culture medium.

Results: UV-B irradiation induced the binding of transcription factors c-Jun, c-Fos, and NF-kB to DNA. Cis-UCA
inhibited the binding of c¢-Jun and c-Fos but not that of NF-kB. Moreover, UV-B increased the levels of phospho-c-Jun
and phospho-JNK, and the expression of both was attenuated by cis-UCA. Cis-UCA also alleviated the UV-B-induced
apoptosis and proliferative decline in human corneal cells.

Conclusions: The results from this study suggest that cis-UCA suppresses JNK signaling pathway, which provides
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potential for treating UV-B-induced inflammatory defects in human corneal cells.

In addition to skin and its epithelial cells, keratinocytes,
the eye and its corneal epithelial cells are constantly exposed
to ultraviolet (UV) radiation. The acute clinical effect of UV
radiation on the cornea is photokeratitis, also known as “snow
blindness” or “welder’s flash.” It is a painful inflammatory
damage of corneal epithelium caused by UV-B [1,2]. UV
radiation accelerates the physiologic loss of surface cells [3,
4]. Exfoliation takes place by two mechanisms; shedding
where whole cells detach into the tear film and apoptosis in
which cells disintegrate into the tear film [1]. Suprathreshold
radiant exposure results in full-thickness loss of the stratified
epithelium to the basement membrane and, consequently,
exposed nerve fiber endings result in severe pain [1].

Climatic droplet keratopathy (CDK) is a degenerative
condition characterized by the accumulation of translucent
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material in the superficial corneal stroma within the
interpalpebral strip [5]. The corneal deposits are thought to be
derived from plasma proteins which diffuse into cornea, and
may become photochemically damaged by excessive
exposure to UV [5]. Corneal deposits have been shown to
contain various oxidative stress and inflammation—related
agents [6-9].

The transcription factors activator protein-1 (AP-1) and
nuclear factor-kappaB (NF-«B) are known to be induced by
UV-B [10-12]. These two transcription factor families have
been identified to be involved in the processes of cell
proliferation, cell differentiation and cell survival as well as
having important roles in tumorigenesis [12].

The transcription factor NF-kB comprises a family of
proteins that are activated in response to inflammatory signals
or cellular stress. In NF-kB-dependent gene expression
analyses with human keratinocytes, tumor necrosis factor-
alpha (TNF-a) and UV-B treatments resulted in the activation
and inhibition of different genes, evidence of the stimuli and
cell-type specific nature of NF-«B function [13]. NF-«B is
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activated by direct UV-B exposure and in different
pathological conditions of the cornea [14]. During aging, the
cellular capacity to respond to environmental stress via NF-
kB-mediated signaling can be attenuated [15].

The heterodimeric AP-1 is a transcription factor that is
composed of proteins belonging to several families, the Jun
(c-Jun, JunB, and JunD) and Fos (c-Fos, FosB, Fral, and Fra2)
subfamilies being the major AP-1 proteins [16]. The AP-1
regulation has been shown to be affected by all forms of
mitogen-activated protein kinase (MAPK) cascades, e.g., p38
and JNK (c-Jun N-terminal kinase) [16,17], which activate in
response to cellular stress. Study results with human
keratinocytes suggest that the activation of p38 MAPK is
required for UV-B-induced AP-1 activation. A potential
mechanism of UV-B-induced AP-1 activation through p38 is
to enhance the binding of the AP-1 complex to its target DNA
[18]. Besides p38 activation, a potential UV-B signaling
cascade for AP-1 activation in human keratinocytes involves
c-Fos gene expression [19,20]. The role of JNK in UV-
induced apoptosis is still controversial, studies suggesting
either an anti-apoptotic or a pro-apoptotic effect. The biphasic
function of INK can be dependent on cell type, type of stimuli,
crosstalk with other signaling pathways, and the intensity and
duration of activation [21-23].

UV-B has been shown to induce dose-dependent
oxidative stress as well as MAP kinase activation, including
JNK, in human corneal epithelium (HCE) cells [10]. In
addtion, reactive oxygen species can induce phosphorylation
of cell surface receptors, which results in the activation of the
MAPK signaling pathway [24]. INK phosphorylates c-Jun
(Ser63/73 and Thr91/93) and potentiates the transcriptional
capacity of c-Jun [25-28]. The JNK-initiated phosphorylation
of c-Jun has been suggested to increase the half-life of c-Jun
by protein stabilization, thus enabling potent and prolonged
expression under stressful conditions such as UV irradiation
[25,26,29-32]. However, this mechanism seems to depend on
the cell type [32,33].

Urocanic acid (UCA) is the major UV-absorbing
chromophore in the skin and it has been proposed to function
as a regulator of UV-induced damage [34]. Cis-UCA, formed
from trans-UCA upon UV-B exposure, has been implicated
in the down-regulation of hypersensitivity reactions [35,36],
in the actions of epidermal antigen-presenting cells [37,38],
in the activation of neutrophils [39,40], and in the prolonged
survival of organ transplants [41,42]. Moreover, cis-UCA
neither photobinds to DNA [43,44] nor is able to enhance UV
photocarcinogenesis [45], whereas it may suppress
immunological recognition of tumor antigens in specific
experimental conditions [46]. In our previous study, we have
showed that cis-UCA suppresses UV-B-induced interleukin
(IL)-6 and IL-8 secretion and cytotoxicity in human corneal
and conjunctival cells in vitro [47]. However, the molecular
targets of cis-UCA action remain to be resolved.
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In this study we explored the hypothesis that UV-B
radiation causes cell damage through an increase in
transcription factor activity and that cis-UCA may protect the
exposed corneal epithelial cells through alterations in this
activity.

METHODS

Cell culture: Human corneal epithelial (HCE-2) cells were
purchased from American Type Culture Collection (ATCC,
Manassas, VA). The cells were cultivated on 6-well cell
culture plates (Cellstar®, Greiner Bio-One, Frickenhausen,
Germany) in Keratinocyte-SFM medium (Gibco, Invitrogen,
Paisley, UK) supplemented with 50 pg/ml bovine pituitary
extract, 5 ng/ml human recombinant epidermal growth factor,
100 U/ml penicillin, 100 pg/ml streptomycin (all from Gibco),
5 pg/ml insulin (Sigma-Aldrich, St. Louis, MO), and 10%
fetal bovine serum (HyClone, Logan, UT). Confluent cell
cultures were treated with 100 pg/ml of cis-UCA (BioCis
Pharma, Turku, Finland) when indicated in Results, and/or
exposed to a UV-B irradiation dose of 153 mJ/cm? (four TL
20W/12 tubes; Philips, Eindhoven, The Netherlands) at room
temperature for 1 min using a source-to-target distance of 30
cm. Thereafter, the cell cultures were incubated in a
humidified 10% CO incubator at 37 °C for 3, 6, or 24 h.

ELISA assays: For determining the DNA binding of
transcription factors and for analyzing the activation of AP-1,
cell lysates were prepared by scraping the cells into Buffer C
(25% glycerol, 0.42 M NaCl, 1.5 mM MgCl,, 0.2 mM EDTA,
20 mM Hepes in double-distilled water). To detect the binding
of AP-1 and NF-kB to DNA, c-Fos and c-Jun TransAM™ kits
(Active Motif, Rixensart, Belgium), and NF-kB p65 ELISA
Kit (Enzo Life Sciences, Farmingdale, NY) were used.
Phosphorylated c-Jun and phosphorylated stress-activated
protein kinase/Jun-N-terminal kinase were measured using
PathScan® Phospho-c-Jun (Ser63), and PathScan® Phospho-
SAPK/INK (Thr183/Tyr185) Sandwich ELISA Kits (Cell
Signaling Technology, MA), respectively. All assays were
performed according to the manufacturers’ protocols. The
absorbance values were measured at 450 nm with a reference
wavelength of 655 nm using a BIO-RAD Model 550
microplate reader (BIO-RAD, Hercules, CA).

Proliferation assay: For the proliferation test, 100,000 cells/
ml were plated in 200 pl on 96-well flat-bottomed cell culture
plates (Cellstar®, Greiner Bio-One). After 3 h of incubation in
a humidified 10% CO; incubator at 37 °C, cells in eight
replicate wells were treated with ciss-UCA and UV-B
irradiation as described above. The cell cultures were
incubated in a humidified 10% CO» incubator at 37 °C for 24
or 48 h, and the proliferation of HCE-2 cells was quantified
using the CyQUANT® Cell Proliferation Assay Kit
(Invitrogen) according to the manufacturer’s instructions.
After 2 min incubation at room temperature, fluorescence
intensity of the samples was measured at the ex/em
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Figure 1. DNA binding of c-Fos and c-Jun subunits of the transcription factor AP-1 heterodimer. Binding of c-Fos (A) and ¢-Jun (B) to DNA.
Results are presented as mean optical density (OD) = SEM cis-UCA concentration was 100 pg/ml. Seven parallel samples were measured in
control and cis-UCA, and nine parallel samples in UV and cis-UCA + UV treatments. *p<0.05; **p<0.01 (Mann—Whitney).

wavelength of 485/530 nm using VICTOR™ 1420 multilabel
counter (PerkinElmer/Wallac, Turku, Finland).

Cytotoxicity assay: Cytotoxicity of the cis-UCA and UV-B
treatments was monitored by measuring the amount of lactate
dehydrogenase (LDH) enzyme in duplicate from the culture
medium samples. Cyto-Tox 96 Non-Radioactive Cytotoxicity
Assay kit (Promega, Madison, WI) was used for detection
according to the instructions of the manufacturer. Absorbance
values after the colorimetric reaction were measured at the
wavelength of 490 nm with a reference wavelength of 655 nm
using a BIO-RAD Model 550 microplate reader (BIO-RAD).

Statistical analysis: Statistical differences between groups
were assessed using the Kruskall-Wallis test, and post hoc
comparisons were made using the Mann—Whitney U-test. P
values below 0.05 were considered significant.

RESULTS

To examine the activity of central transcription factors
following UV-B and cis-UCA treatments, the DNA binding
of AP-1 and NF-«kB were determined. The DNA binding of c-
Fos and c-Jun subunits of the transcription factor AP-1
heterodimer increased following UV-B irradiation (Figure 1).
After 6 h of incubation, cis-UCA significantly decreased the
UV-B-induced binding of both subunits (Figure 1). The
decrease was not yet observed at 3 h of incubation, and it was
negligible after 24 h. UV-B irradiation also approximately
doubled the binding activity of the p65 subunit of NF-xB when
compared to non-irradiated control cells after 6 h of

incubation. However, cis-UCA did not affect this activation
at any of the 3, 6 or 24 h time points studied (Figure 2 and data
not shown). No significant change in the activity of AP-1 or
NF-kB was observed in non-irradiated cells treated with cis-
UCA (Figure 1 and Figure 2).
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Figure 2. Binding of NF-kB (p65) to DNA 6 h after stimulation.
Results are presented as mean counts per second (CPS) +SEM cis-
UCA concentration was 100 pg/ml. Five parallel samples were
measured in control and cis-UCA, and seven parallel samples in UV
and cis-UCA + UV treatments.
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To verify our observation that cis-UCA inhibits the
activity of AP-1 in UV-B-irradiated HCE-2 cells, we
measured phosphorylated c-Jun from the cell extracts. As
shown in Figure 3, cis-UCA significantly decreased the level
of phospho-c-Jun in UV-B-irradiated HCE-2 cells after 6 h of
incubation. Moreover, cis-UCA also significantly decreased
the amount of phosphorylated JNK in those cells (Figure 4).
In non-irradiated cells cis-UCA had no effect on the
expression of these phosphoproteins.

Since JNK signaling can result in either cellular
proliferation or apoptosis [48], we examined the influence of
cis-UCA on cell survival. As shown in Figure 5, cis-UCA
significantly prevented the loss of viability of HCE-2 cells in
normal cell culture conditions. Also after UV-B irradiation,
cell survival was increased by cis-UCA after 24 h of
incubation and reached statistical significance after 48 h
(Figure 5). Concomitantly, cis-UCA decreased cell damage.
The decreased release of LDH from cis-UCA-treated cells was
observed at 3 and 6 h of incubation and was statistically
significant after 24 h both in non-irradiated and in UV-B-
exposed HCE-2 cells (Figure 6).

DISCUSSION

We have previously shown that cis-UCA suppresses UV-B-
induced cytokine expression and improves cell viability
against UV-B irradiation in human ocular cells [47]. In the
present study, we further investigated the mechanisms of these
actions. As the cornea is frequently exposed to solar UV
radiation, we wanted to elucidate the role of INK in apoptotic
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Figure 3. Phosphorylation of c-Jun (Ser63) 6 h after stimulation.
Results are presented as mean optical density (OD) £SEM cis-UCA
concentration was 100 pg/ml. Seven parallel samples were measured
in control and cis-UCA, and nine parallel samples in UV and cis-
UCA + UV treatments. ***p<0.001 (Mann—Whitney).
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regulation in HCE-2 cells. Our data demonstrates that cis-
UCA inhibits the phosphorylation of c-Jun (Ser63) and JNK
(Thr183/Tyr185) as well as the binding of c-Fos and c-Jun to
DNA in response to UV-B stimulation. The findings that cis-
UCA reduced the phosphorylation of both JINK and c-Jun, and
had no effect on basal level of these phosphoproteins in non-
irradiated cells, suggests that the molecular target of cis-UCA
action is up-stream of JNK in UVB-stressed cells.

UV-induced generation of reactive oxygen species and
subsequent TNF-o formation activates, besides JNK
signaling, also the NF-«xB pathway [49,50]. JNK activation by
TNF- a activates pro-apoptotic effects; however, TNF-a-
induced NF-«kB activation prevents apoptosis through the
suppression of the JNK pathway and the activation of
antioxidant genes, such as manganese-superoxide dismutase
(MnSOD) [49,50]. Interestingly, in epidermal cells, JNK
activates cell proliferation, and the inhibition of INK by NF-
«B has a tumor-suppressing function [51].

Conversely, following UV stimulus, p65/RelA directly
results in the expression of protein kinase C delta (PKC5),
which leads to activation of JNK [52]. In addition, after UV
stimulation, MnSOD expression has been shown to be UV
dose-dependent, exerting diminishing expression in high UV-
B doses [10]. However, at the same time, UV-B exposure
induces the NF-«kB-related proinflammatory cytokines IL-6
and IL-8 in HCE-2 cells [47]. Our research shows that both
JNK and NF-«xB pathways are activated by UV-B. However,
cis-UCA suppresses solely the JNK pathway, not NF-kB. In

1.00+

0.75+

0.50

oD

0.254

0.00-

Control
cis-UCA
uv

cis-UCA + UV

Figure 4. Phosphorylation of SAPK/JNK (Thr183/Tyr185) 6 h after
stimulation. Results are presented as mean optical density (OD)
+SEM cis-UCA concentration was 100 pg/ml. Seven parallel
samples were measured in control and cis-UCA, and nine parallel
samples in UV and cis-UCA + UV treatments. *p<0.05 (Mann—
Whitney).
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Figure 5. Proliferation of HCE-2 cells. Results are presented as mean cell numbers +SEM cis-UCA concentration was 100 pg/ml. Eight parallel
samples were measured in all groups. **p<0.01; ***p<0.001 (Mann—Whitney).
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Figure 6. Release of lactate dehydrogenase (LDH). Results are presented as mean optical density (OD) +SEM cis-UCA concentration was
100 pg/ml. Six parallel samples were measured in all groups. **p<0.01 (Mann—Whitney).

response to UV-B stress, HCE-2 cells showed decreased
proliferation and increased LDH release, implying cell death,
which could be alleviated by cis-UCA. Consistently with an
earlier study with epidermal cells [51], the inhibition of INK
pathway seems to be a critical target in the regulation of
apoptosis also in human corneal epithelial cells. While cis-
UCA was present in the culture medium during UV-B
irradiation of the cells, it was inferred from previous
experience [47] that the cis-UCA concentration used in the
current experiment does not appreciably block the
transmission of UV-B photons.

Although acute and chronic damage and inflammation
caused by UV radiation to the epithelial cells of the cornea are
well known ophthalmologic diseases (e.g., photokeratitis and
CDK), their precise mechanisms are still unclear. Current
clinical therapy for ocular surface inflammation consists of
anti-inflammatory agents that do not offer any protection
against UV radiation-induced damage [53]. The present in

vitro data show that cis-UCA regulates the JNK signaling
pathway and it has at both anti-inflammatory and
cytoprotective capacity against UV radiation on the corneal
epithelial cells. Our results are supported by previous
observations [54]. cis-UCA may be useful also in other
inflammatory conditions of the cornea [55,56]. It would be
worthwhile to examine cis-UCA effect on these diseases as
well. Therefore, further in vivo studies are required.
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