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Summary
Cytochrome bd is a respiratory quinol:O2 oxidoreductase found in many prokaryotes, including a
number of pathogens. The main bioenergetic function of the enzyme is the production of a proton
motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not
homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen
reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high
affinity for O2 and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd
(specifically, cytochrome bd-I) is expressed under O2-limited conditions. Among the members of
the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low
content of the eponymous heme d but, instead, have heme b in place of heme d in at least a
majority of the enzyme population. However, at this point, no sequence motif has been identified
to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme
designated as CIO. Members of the bd-family can be subdivided into those which contain either a
long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I,
designated as the Q-loop. However, it is not clear whether there is a functional consequence of this
difference. This review summarizes current knowledge on the physiological functions, genetics,
structural and catalytic properties of cytochromes bd. Included in this review are descriptions of
the intermediates of the catalytic cycle, the proposed site for the reduction of O2, evidence for a
proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism
by which a membrane potential is generated.
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1. Diversity of respiratory oxygen reductases
Respiratory oxygen reductases (terminal oxidases) are enzymes at the end of the respiratory
chains of organisms which couple the oxidation of a respiratory substrate (one-electron
donor, cytochrome c, or two-electron donor, quinol (QH2)) to the four-electron reduction of
O2 to water. There are three families of oxygen reductases (Fig. 1).
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1.1 Heme-copper family
The first, most extensively studied family comprises the heme-copper oxygen reductases.
They have a binuclear O2-reduction site composed of a high spin heme (a3, o3, or b3) and a
copper ion (CuB), and these enzymes generate a PMF via a “proton pump” mechanism [1–
7]. The PMF is utilized for various biosynthetic activities (e.g., ATP production), solute
active transport and mechanical movement (e.g., flagellar rotation). The heme-copper family
of oxygen reductases includes both cytochrome c oxidases and quinol oxidases. Most of the
heme-copper oxygen reductases are members of one of three distinct subfamilies: A, B, and
C [8,9]. The A subfamily includes the mitochondrial cytochrome c oxidases as well as many
prokaryotic cytochrome c oxidases and quinol oxidases. Enzymes in the A-subfamily utilize
at least two proton pathways to deliver protons to the active site or for proton pumping. The
B subfamily includes a number of oxygen reductases from extremophilic prokaryotes, such
as the ba3-type oxygen reductase from T. thermophilus [10]. The enzymes of the C
subfamily are all cbb3-type oxidases [11]. Recently, it has been shown that the enzymes
from the B and C subfamilies utilize only one proton-conducting input pathway [10,12].
High-resolution x-ray crystal structures of the heme-copper oxidases from all three
subfamilies have been reported [11,13–23].

1.2 Alternative oxidase (AOX) family
The second family of respiratory oxygen reductases comprises cyanide-resistant AOX found
in mitochondria of higher plants, fungi and protists as well as in prokaryotes and some
animal species [24]. In plants, this is a homodimeric enzyme associated with the matrix side
of the inner mitochondrial membrane. AOX uses UQH2, but not cytochrome c, as the
electron donor, and contains a non-heme di-iron carboxylate active site for O2 reduction.

AOX does not produce a PMF, and is not coupled to transmembrane charge transfer.
However, AOX is responsible for heat generation in some tissues, and plays a role in the
regulation of energy metabolism, facilitating turnover of the TCA cycle, protection against
oxidative stress, and homeostasis. To date, no high-resolution AOX structure has been
reported, but crystals that diffract to better than 3.0 Å have been described [25].

1.3 Cytochrome bd-family
The third family of oxygen reductases comprises cytochromes bd. These are quinol oxidases
found in a wide variety of prokaryotes. They show no sequence homology to any subunit of
heme–copper family members or AOX and do not contain any copper or non-heme iron
[26–33]. This two-subunit integral membrane protein (subunits I and II) contains three
hemes, b558, b595 and d, and it is generally thought that hemes b595 and d form a di-heme
site for the reduction of O2 (Fig. 2) [34–43]. Unfortunately, no X-ray structure of any bd-
type oxygen reductase has been reported. Cytochrome bd generates a PMF by
transmembrane charge separation, but does so without being a “proton pump” [41,44–50]. In
a number of organisms, the bd oxygen reductase is induced under O2-limited conditions as
well as under other growth conditions that can be considered stressful, such as Fe deficiency
[51–54]. All known members of the bd-family of oxygen reductases are quinol oxidases,
most commonly using ubiquinol or menaquinol as substrates.

Analysis of prokaryotic genomes shows that many aerobic prokaryotes do not contain any
member of the bd-family, but contain only heme-copper oxygen reductases. However, there
are a number of prokaryotes that encode more than one bd-family member, for example,
two: E. coli [53,55], Bacillus subtilis [56]; three: Vibrio cholerae [57]; and as many as six
bd-type oxygen reductases: some Acidithiobacillus strains. Organisms that express one or
more bd-type oxygen reductases, usually also possess at least one heme-copper oxygen
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reductase. However in some cases (e.g., Lactobacillus plantarum [58], Zymomonas mobilis
[59], the two Thermoplasma strains [60]) cytochrome bd is the only oxygen reductase.

1.3.1 The Q-loop—The hydrophilic region of subunit I connecting transmembrane helices
6 and 7, facing the outside of the prokaryotic cell, has been implicated as part of the quinol
binding site [61–66], and this is referred to as the “Q loop”. Some of the bd-family oxygen
reductases have an insert in the C-terminal portion of the Q-loop and, hence, have a “long
Q-loop”, e.g., enzymes isolated from Escherichia coli and Azotobacter vinelandii [67,68].
The majority of bd-type oxygen reductases have a “short Q-loop”, e.g., the enzyme isolated
from Bacillus stearothermophilus [67–69]. It is not clear what the functional consequences
are, if any, from this difference in the size of the Q loop.

1.3.2 Cyanide insensitive oxidases (CIO)—An anecdotal observation is that some of
the “short Q-loop” oxygen reductases appear to have an altered heme content, in which the
amount of heme d is significantly reduced (or totally missing) and is replaced by a heme b.
This appears to be the case for a B. subtilis cytochrome bd [70]. When these enzymes, with a
low content of heme d, have been characterized in bacterial membranes, respiration
continues even in the presence of 1 mM KCN [71], but the membranes do not have the
spectroscopic signature of heme d (a peak in the reduced form near 630 nm) [71–75]. As a
result, these enzymes have been called cyanide insensitive oxidases (CIO) [73]. Examples
are P. aeruginosa [71–73,76], P. putida [77], P. pseudoalcaligenes [74], Staphylococcus
carnosus [78], C. jejuni [75], Z. mobilis [59]. On the contrary, using low temperature
absorption spectroscopy, EPR and mass spectrometry, Mogi et al. [79] reported that CIO in
the membranes from G. oxydans has the same heme contents present in a classical
cytochrome bd, although reveals unique spectroscopic and ligand-binding properties.
Whether the CIO heme composition is strain- and/or growth-specific, or the heme spectral
features were not detected due to a very low enzyme concentration in the tested membranes
remains to be studied. It is now clear that CIOs are bd-family oxygen reductases.

cioA and cioB genes which encode CIO in P. aeruginosa and P. pseudoalcaligenes were
sequenced [73,74]. They comprise the cio operon. CioA and CioB are homologous to
subunits I and II of cytochrome bd-I from E. coli and the bd-oxidase from A. vinelandii [73].
Histidine and methionine residues identified in cytochrome bd-I from E. coli as the axial
ligands to heme b558 and heme b595 are conserved [73]. It was proposed that the slight
differences in sequence and structure of the CydB subunit are responsible for cyanide
resistance [78]. It is of interest to note that cytochrome bd of the cyanobacterium
Synechocystis sp. PCC 6803 appeared to be structurally related to CIO [80]. To date, no CIO
has been purified and characterized, primarily because these enzymes appear to be
particularly labile. At low O2 tensions, the opportunistic pathogen P. aeruginosa synthesizes
HCN as a metabolic product at concentrations of up to 0.3 mM [81]. Under these conditions,
the heme-copper oxidases are inhibited. CIO likely has a role in allowing aerobic respiration
under cyanogenic and microaerobic growth conditions [71,73,82]. Cyanide can be found in
tissues infected with P. aeruginosa [83] that is consistent with the conclusion that CIO is
required for full pathogenicity of P. aeruginosa in the cyanide-mediated paralytic killing of
nematodes [84]. Mutation or overexpression of the cioAB genes of P. aeruginosa leads to
temperature sensitivity for growth, difficulty exiting stationary phase, abnormal cell division
and multiple antibiotic sensitivity [85].

There is no distinguishing feature in the sequences of the genes that allows one to
differentiate CIO from other cytochrome bd family members. It is not yet clear whether the
“short Q-loop” is a requirement for having the CIO phenotype or under what conditions
such enzymes may or may not contain a stoichiometric content of heme d.
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2. Physiological functions
The bioenergetic function of cytochrome bd is to conserve energy in the form of ΔμH

+

[41,45–50], although the H+/e− ratio is 1, half the value of the A-subfamily heme-copper
oxygen reductases such as the mitochondrial cytochrome c oxidase or cytochrome bo3 from
E. coli because the bd-type oxygen reductases do not pump protons [45,49,50].

Apart from PMF generation, cytochrome bd endows bacteria with a number of vitally
important physiological functions. Cytochrome bd facilitates both pathogenic and
commensal bacteria to colonize O2-poor environments [86–89], serves as an O2 scavenger
to inhibit degradation of O2-sensitive enzymes such as nitrogenase [90–98], and support
anaerobic photosynthetic growth [99]. It is of interest to note that bd-type oxygen reductases
predominate in the respiratory chains of bacteria that cause such diseases as bacillary
dysentery [100], brucellosis [88,101], tuberculosis [87], pneumonia, life-threatening sepsis,
meningitis [102], as well as Salmonella [103,104], Bacteroides [86], and Listeria
monocytogenes [105] infections. There is a positive correlation between virulence of
bacterial pathogens responsible for these diseases and level of cytochrome bd expression.
Cytochrome bd enhances bacterial tolerance to nitrosative stress [106–111], contributes to
mechanisms of detoxification of hydrogen peroxide in E.coli [112–114], suppresses
extracellular superoxide production in Enterococcus faecalis [115], and is involved in the
degradation of aromatic compounds in Geobacter metallireducens [116]. The A. vinelandii
cytochrome bd might be directly involved in energizing Fe-siderophore transport or in
reduction of Fe(III)-chelates and, thus, metal liberation in the cytoplasm [117]. As a source
of oxidizing power, cytochrome bd-I in E. coli can support disulfide bond formation upon
protein folding catalyzed by the DsbA-DsbB system [118], as well as the penultimate step of
heme biosynthesis, the conversion of protoporphyrinogen IX into protoporphyrin IX,
catalyzed by protoporphyrinogen IX oxidase [119].

The expression and membrane content of cytochrome bd in E. coli increase not only at low
O2 concentrations [120–122], but also under other stressful conditions, such as alkalization
of the medium [123], high temperature [124,125], the presence of poisons in the
environment (for instance, cyanide [126,127]), uncouplers-protonophores [123,128,129] and
high hydrostatic pressure [130,131]. E. coli mutants defective in cytochrome bd are sensitive
to H2O2 [125], zinc [127,132] and a self-produced extracellular factor that inhibits bacterial
growth [133,134]. E. coli mutants that cannot synthesize cytochrome bd are also unable to
exit from the stationary phase and resume aerobic growth at 37 °C [135,136].

Since cytochrome bd is found only in prokaryotes, including a number of human pathogens,
the enzyme may be of interest as a drug target. A search for specific inhibitors of the bd-type
oxygen reductases, which could be used in clinical practice, has been started [137,138]. An
alternative, “positive” potential use of cytochrome bd might be for a therapy of respiratory
chain deficiencies. It is known that mutations in genes encoding structural subunits of
cytochrome bc1 complex and cytochrome c oxidase can lead to severe neuromuscular and
non-neuromuscular human diseases [139,140]. At the same time, it was reported that mixing
purified cytochrome bd-I from E. coli with myxothiazol-inhibited bovine heart
submitochondrial particles restores up to half of the original NADH oxidase and succinate
oxidase activities in the absence of exogenous ubiquinone analogs [141]. Respiration
bypassing the bc1 complex is saturated at amounts of added bd-oxidase similar to that of
other natural respiratory components in submitochondrial particles. Bacterial cytochrome
bd-I tightly binds to the mitochondrial membrane and functions as an intrinsic component of
the chimeric respiratory chain [141]. Thus, cytochrome bd, as well as AOX [142–144],
might compensate for respiratory chain deficiencies in human cells.
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3. Inhibitors
Table 1 shows the effect of different inhibitors on the respiratory activity of cytochrome bd
from some bacteria. Quinol oxidase inhibitors can be divided into two groups: Q-like
compounds acting at the Q binding site and heme ligands (e.g., cyanide, azide or NO) acting
at the O2 binding/reducing site. A specific feature of cytochrome bd is that it is much less
sensitive to cyanide and azide than a heme-copper oxygen reductase like cytochrome bo3
[27]. The lower sensitivity of cytochrome bd to anionic heme ligands may be a result of an
elevated electron density on the central ion of iron due to breaking the conjugate π-electron
structure in the d-type porphyrin ring and/or may point to a more hydrophobic environment
of the O2-reducing site. It was reported that cytochrome bd-I in E. coli is a bacterial
membrane target for a cationic cyclic decapeptide gramicidin S (IC50 ~5.3 μM, Table 1),
although it has been generally accepted that the main target of gramicidin S is the membrane
lipid bilayer rather than the protein components [145]. This finding can provide a new
insight into the molecular design and development of novel gramicidin S-based antibiotics.
The effect of gramicidin S on cytochrome bd-I and some other membrane-bound proteins
could be the alteration of the protein structure through binding to its hydrophobic protein
surface [145].

4. Genetics
4.1. Genes in E. coli encoding the protein subunits and assembly factors

Of the bd family, the best studied oxidase is cytochrome bd-I from E. coli. The two subunits
of cytochrome bd-I are encoded by the cydAB operon [28,146,147] located at 16.6 min on
the E. coli genetic map [146,148]. It was cloned [149] and sequenced [28]. The molecular
weights of subunit I (CydA) – 57 kDa, and subunit II (CydB) - 43 kDa, determined by
sodium dodecyl sulfate-polyacrylamide-gel electrophoresis [26], are consistent with those of
58 and 42.5 kDa based on DNA sequence [28]. The enzyme subunits carry three hemes:
b558, b595, and d [34,150]. Heme b558 is located on subunit I (CydA), whereas hemes b595
and d are likely to be in the area of the subunit contact [151]. CydA can be expressed and
purified without CydB using mutant strains defective in cydB [152]. The purified CydA
retains heme b558 but lacks hemes b595 and d [152]. In addition to the cydAB operon, the two
other genes, cydC and cydD of the cydCD operon located at 19 min on the E. coli genetic
map [132,153,154], are essential for the assembly of cytochrome bd-I [153–156]. CydC and
CydD however are not subunits of cytochrome bd-I. It was shown that cydCD encodes a
heterodimeric ATP-binding cassette-type transporter that is a glutathione transport system
[157]. An orphan protein, YhcB, was proposed to be a third subunit of cytochrome bd-I
[158], but this was later shown not to be the case [159].

In E. coli, a second cytochrome bd (bd-II) encoded by cyxAB genes (also named appBC or
cbdAB) was identified [160]. The cyxAB genes, located at 22 min on the E. coli genetic
map, are upstream from pH 2.5 acid phosphatase (appA) gene [160]. The cyxAB and appA
genes constitute the complex operon. The cyxA and cyxB genes encode 58.1 kDa and 42.4
kDa integral membrane proteins, respectively. The deduced amino acid sequences of cyxA
and cyxB genes reveal homologies of 60 and 57%, respectively, to subunit I (CydA) and
subunit II (CydB) of cytochrome bd-I [160].

4.2. Regulation of gene expression in E. coli and other bacteria
Cytochrome bd-I is expressed by E. coli when the O2 tension is low [120–122,161,162]. The
expression of the cydAB operon is controlled by the two global transcriptional regulators,
Arc and Fnr [121,161,163–169]. Arc is a two-component regulatory system that includes
ArcA, a cytosolic response regulator, and ArcB, a transmembrane histidine kinase sensor.
ArcA controls several hundred genes [170] and responds to the oxidation state of the Q pool
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which is sensed by ArcB [171]. ArcB is activated in response to the transition from aerobic
to microaerobic growth and remains active during anaerobic growth. Upon stimulation,
ArcB autophosphorylates and then transphosphorylates ArcA [171,172]. Under
microaerobic conditions (i.e., O2 tension of 2 to 15% of air saturation), the increased level of
phosphorylated ArcA activates the cydAB operon [173]. Another global regulator, Fnr (an
O2-labile transcription factor regulating hundreds of genes), controls induction of anaerobic
processes in E. coli [174,175]. The Fnr protein has a Fe-S cluster which serves as a redox
sensor. The levels of the Fnr protein are similar under both aerobic and anaerobic conditions
[165,176], but the protein is active only during anaerobic growth. The active Fnr protein
represses cydAB operon during the transition to anaerobic conditions (i.e., O2 tension of less
than 2% of air saturation) [167,168,176].

Expression of cyxAB-appA operon (coding for cytochrome bd-II in E. coli) is induced by
phosphate starvation and entry into a stationary phase [177]. The cyxAB genes can also be
induced by anaerobic growth and this induction is controlled by transcriptional regulators
AppY and ArcA but independent of Fnr, in contrast to cyd operon [177,178]. Cytochrome
bd-II is likely to function under even more-O2-limiting conditions than cytochrome bd-I
[178]. Cytochrome bd-II has been partially purified [179], and contains two subunits by
SDS-PAGE with apparent molecular weights 43 kDa (subunit I) and 27 kDa (subunit II).
These subunits show no cross-reactivity to subunit-specific polyclonal antibodies directed
against the subunits of cytochrome bd-I [179]. The spectral properties of cytochrome bd-II
closely resemble those of cytochrome bd-I. Of the quinols tested as substrates, cytochrome
bd-II utilizes menadiol as the preferred substrate (although ubiquinol-1, the most efficient in
vitro substrate for cytochrome bd-I, was not tested). TMPD oxidase activity of cytochrome
bd-II is much more sensitive to cyanide than that of cytochrome bd-I [179]. It was reported
that though the electron flux through cytochrome bd-II can be significant, the enzyme does
not contribute to the generation of the PMF [180]. Shepherd et al. [181] proposed that under
conditions of an apparently fully uncoupled mode, E. coli can create PMF by means of
consumption of intracellular protons in synthesis of γ-aminobutyric acid (GABA) and the
generation of a pH gradient via uptake of glutamate and export of GABA by glutamate/
GABA antiport.

In A. vinelandii, regulation of cytochrome bd expression is achieved by CydR (an Fnr
homologue), which represses transcription of the cydAB genes [182]. The cydABCD operon
coding for cytochrome bd in B. subtilis was reported to be activated by ResD and repressed
by YdiH (Rex) and CcpA regulators [183–185]. Rex is also a repressor for the cydABCD
operon in Streptomyces coelicolor [127]. ResD may activate the cydA gene in L.
monocytogenes [105]. In Rhodobacter capsulatus, expression of cytochrome bd is likely
controlled by RegA regulator [186].

5. Distribution and Evolution
The bd-family of oxygen reductases has a wide phylogenetic distribution with homologs
found in at least one sequenced member of 18 bacterial phyla: Acidobacteria,
Actinobacteria, Aquificae, Bacteroidetes, Chlamydiae, Caldithrix, Chlorobi, Chloroflexi,
Chrysiogenetes, Cyanobacteria, Deferribacteres, Firmicutes, Nitrospirae, Planctomycetes,
Proteobacteria, Thermi, Thermodesulfobacteria and Verrucomicrobia. To date no bd-family
homologues have been detected in the following 12 bacterial phyla: Dictyoglomi,
Elusimicrobia, Fibrobacteres, Fusobacteria, Gemmatimonadetes, Lentisphaerae,
Poribacteria, Synergistetes, Thermotogales, and candidate phyla NC10, TM7 and WWE1. A
number of Archaea also encode bd-family homologues, with members of the family found
in Crenarchaeota, Euryarchaeota [60] and Korarchaeota. Cytochrome bd-type oxygen
reductases are very common is some phyla, such as the Proteobacteria and Actinobacteria,
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and sporadically distributed in others. Interesingly, bd-family homologues have been
detected in many species described as strict anaerobes such as Methanosarcina barkeri,
Methanosarcina acetivorans [60], Bacteroides fragilis [86], Desulfovibrio gigas [187–189],
Desulfovibrio vulgaris Hildenborough [190], Geobacter metallireducens [116], Moorella
thermoacetica [191] and Chlorobaculum tepidum [192].

Early work suggested that the bd-family of oxygen reductases is an ancient innovation,
already present in the ancestor of both Bacteria and Archaea [193]. However it was recently
reported that the family may have originated in Bacteria and was later acquired by Archaea
via horizontal gene transfer [60,194]. Phylogenetic analysis of the bd-family showed that
horizontal gene transfer plays a significant role in the distribution of the family, with many
phyla acquiring cytochrome bd genes multiple times independently (Fig. 3).

Sequence analysis has demonstrated that subunits I and II have different rates of evolution,
with subunit II evolving 1.2 times faster than subunit I [194]. The biological relevance of
this asymmetrical evolution is currently unknown.

6. Membrane localization
Cytochrome bd is embedded in the prokaryotic cytoplasmic (plasma) membrane. It was
reported that in E. coli, cytochrome bd-I is not evenly distributed within the plasma
membrane, being concentrated in mobile (on the subsecond time scale) patches, of the order
of 100 nm in diameter [195,196]. These clusters contain variable numbers of cytochrome
bd-I tetramers [196]. Cytochrome bd in cyanobacteria [197–203] has been reported to also
be located in the thylakoid membrane [200,201,203–207], though this has been disputed
[208–211]. The presence of a bd-type PQH2 oxidase in cyanobacterial thylakoid and/or
cytoplasmic membranes may depend on culturing conditions and the light regime [201,206].

7. Cofactors and Substrates
7.1. Quinones

The nature of the quinols used by cytochrome bd as an electron donor is species-specific.
For instance, in A. vinelandii and E. coli the cytochrome bd enzyme can oxidize ubiquinol
(UQH2), in B. stearothermophilus, the substrate is menaquinol (MQH2). In E. coli,
cytochrome bd-I can also oxidize MQH2 [212,213], which replaces UQH2 upon change of
growth conditions from aerobic to anaerobic [166]. There is evidence that in cyanobacteria
cytochrome bd is active as a plastoquinol (PQH2) oxidase [200,201,203–206], although
some reports have questioned this conclusion [208–210]. The presence or absence of bound
Q in solubilized cytochrome bd-I from E. coli depends on the purification protocol. In some
preparations of the purified enzyme, there is no apparently bound quinone [26,27,46,214]
whereas others clearly contain bound quinone [41,215]. A stable semiquinone radical has
been observed in the E. coli cytochrome bd-I [216,217].

7.2. Hemes
The two subunits of E. coli cytochrome bd-I carry three metal-containing redox-centers, two
protoheme IX groups (hemes b558 and b595) and a chlorin molecule (heme d) which are in
1:1:1 stoichiometry per the enzyme complex. The enzyme contains no Fe-S cluster and no
copper ion [218–222]. Heme b558 is clearly located within subunit I. Both subunits are
required for the assembly of heme b595 and heme d, suggesting that these two hemes may
reside at the subunit interface [151]. Heme b595 appears to be oriented with its heme plane at
~55° to the plane of the membrane [223]. The millimolar extinction coefficients used
commonly for the determination of the cytochrome bd concentration in E. coli and A.
vinelandii are listed in Table 2.
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7.2.1. Heme b558—Heme b558 has been shown to be located within subunit I by
expressing subunit I (cydA) in the absence of subunit II (cydB) and showing that the isolated
subunit I contains heme b558 [152]. Antibodies directed against subunit I [61,63], as well as
selective proteolysis of this subunit [62,64], inhibit UQH2 oxidase activity of cytochrome
bd-I. These findings suggest that heme b558 is associated with subunit I and is involved in
QH2 oxidation. The α- and β-bands of the reduced heme b558 at room temperature reveal
maxima at 560–562 and 531–532 nm, respectively (Table 3) [150,224,225]. The maximum
and minimum of the γ-band in the “reduced minus oxidized” difference absorption spectrum
are 429.5 and 413 nm, respectively (Table 3) [225]. Heme b558 is low-spin hexacoordinate
[37], and amino acid residues His186** and Met393 of subunit I (E. coli cytochrome bd-I)
have been identified as its axial ligands [226–228]. The location of heme b558 is predicted to
be near the periplasmic surface [67,229].

7.2.2. Heme b595—The spectrum of heme b595 is similar to that of catalases and
peroxidases containing pentacoordinate (high-spin) protoheme IX [150]. Heme b595 has an
α-band at 594–595 nm and β-band at 560–562 nm in the difference absorption spectrum
(Table 3) [150,224,225]. A trough at 643–645 nm in the difference spectrum of heme b595 is
indicative of the disappearance in the reduced heme b595 of an absorption feature due to
charge transfer from the Fe to the ligand, characteristic of oxidized high-spin heme b, as in
the case of peroxidases. The γ-band of ferrous heme b595 is characterized by a maximum at
~440 nm as clearly revealed by femtosecond spectroscopy [38]. The maximum and
minimum of the γ-band in the difference “reduced minus oxidized” absorption spectrum are
439 and 400 nm, respectively (Table 3) [225]. Heme b595 is high-spin pentacoordinate [37],
ligated by His19 of subunit I [230] and located near the periplasmic surface [67,229]. The
role of heme b595 remains obscure. It is proposed that heme b595 participates in the
reduction of O2 forming, together with heme d, a di-heme O2-reducing site, somewhat
similar to the heme/Cu O2-reducing site in heme-copper oxidases [35–41,43,231]. In favor
of this hypothesis is the finding that the CD spectrum of the reduced wild type cytochrome
bd in the Soret band shows strong excitonic interaction between ferrous hemes d and b595
[42]. Modeling the excitonic interactions in the absorption and CD spectra yields an estimate
of the Fe-to-Fe distance between heme d and heme b595 to be about 10 Å [42]. In the
opinion of some, the function of heme b595 is limited to transferring an electron from heme
b558 to heme d [232,233], whereas others have postulated that heme b595 can form a second
site capable of reacting with O2 [218,234].

7.2.3. Heme d—Heme d is a chlorin-type molecule [235]. The α-band of the reduced heme
d in the absolute absorption spectrum of E. coli cytochrome bd-I shows a peak at 628–630
nm. However, upon isolation of the enzyme, heme d is in the stable oxygenated (O2-ligated
ferrous) form, which is characterized by an absorption band with a maximum at 647–650 nm
in the absolute absorption spectrum [236–239]. The affinity of ferrous heme d for O2 is
indeed high, showing the Kd(O2) values of 0.28 μM and 0.5 μM for the enzymes from E. coli
and A. vinelandii, respectively [240,241]. The maximum and minimum of the γ-band in the
difference “reduced minus oxidized” absorption spectrum are 430 and 405 nm, respectively
(Table 3) [225].

Remarkably, the spectral contribution of heme d to the complex Soret band is much smaller
than those of either hemes b [225]. Heme d is predicted to be located near the periplasmic
surface [67,229], and is the site for capturing and, subsequently, reducing O2 to H2O. In the
absence of external ligands, heme d is in the high-spin state with an open coordination site
for binding O2. The nature of the axial ligation of heme d to the protein, or even whether

**Here and below – amino acid numbering refers to cytochrome bd-I from E. coli
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there is an axial ligand provided by the protein, is unclear. It has been claimed that the
reduction of cytochrome bd is associated with binding of an endogenous protein ligand to
heme d [242]. The oxidized heme d may or may not be ligated to an endogenous protein
substituent. Resonance Raman and ENDOR studies indicate that the ligand is not histidine,
cysteine or tyrosinate, but that the single axial ligand is either a weakly coordinating protein
donor or a water molecule [230,243,244]. In contrast, EPR studies indicated that the heme d
axial ligand is histidine in an anomalous condition or some other nitrogenous amino acid
residue [245]. Finally, it has been suggested that Glu99 of subunit I is a prime candidate for
such a role [214,246].

7.3. Heme redox potentials
The apparent values for the midpoint redox potentials of hemes b558, b595 and d for the bd
enzymes solubilized in n-dodecyl-β-D-maltoside at pH 7.0 (Em) are respectively +176,
+168, +258 mV (E. coli bd-I) and +166, +251, +310 mV (A. vinelandii) [241]. These are
within the range of the values reported earlier for E. coli [219,220,224,247,248] and A.
vinelandii [249]. Notably, the Em value of heme b558 can depend on the detergent used for
solubilization [248]. In particular, octylglucoside and cholate cause a large decrease in the
Em value of heme b558, and this correlates with the reversible inactivation of the enzyme
[248]. The Em values of all three heme components of cytochrome bd are sensitive to pH
between pH 5.8 and 8.3 with a Em/pH of −61 mV for heme d and −40 mV for hemes b558
and b595, indicating that reduction of cytochrome bd is accompanied by enzyme protonation
[248]. A recent study [225] revealed a significant redox interaction between heme b558 and
heme b595, whereas the interaction between heme d and either both hemes b appears to be
rather weak. However, the presence of heme d itself decreases the much larger interaction
between the two hemes b [225].

8. Proposed structure
The X-ray structure of cytochrome bd has not been determined. Conventional studies of the
protein topology in the membrane suggest that all three hemes are located near the
periplasmic side of the membrane [67,229], although an alternative view also exists
[250,251]. Fig. 4 shows topological models of subunits I (CydA) and II (CydB) of
cytochrome bd-I from E. coli [213]. Both subunits are integral membrane proteins. Subunit I
consists of nine transmembrane helices with the N-terminus in the periplasm and the C-
terminus in the cytoplasm [67]. Subunit II is composed of eight transmembrane helices with
both N- and C-termini in the cytoplasm [67]. The Q-loop in subunit I connects
transmembrane helices 6 and 7, and is directly involved in QH2 binding and oxidation [61–
66]. Thus the QH2-oxidizing site in cytochrome bd is located on the periplasmic side of the
membrane. Cytochrome bd-I from E. coli is proposed to contain a single site for the binding
and oxidation of quinol [65,66,252]. However, evidence for a second quinone binding site in
cytochrome bd from Corynebacterium glutamicum has also reported [69].

Using a set of 815 sequences of genes encoding cytochrome bd, a number of residues in
subunit I are totally (>99%) conserved [213]. These residues include those which are
identified as ligands to the heme components of the enzyme. In addition, since the active site
of O2 reduction is located near the periplasmic surface and protons for H2O production are
taken from the bacterial cytoplasm, there must be at least one transmembrane proton-
conducting pathway to convey protons from the cytoplasm to the heme b595/heme d site
[41,46,48,67] (Fig. 5). Several polar or ionizable residues that are highly conserved in the
bd-family have been postulated to be a part of this putative proton channel.

The residues that are totally conserved within the entire bd-family include His19 (the heme
b595 axial ligand [230]), His186 and Met393 (the heme b558 axial ligands [226–228]),
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Lys252 and Glu257 (involved in QH2 binding [66]), Arg448 (unknown function), and
Glu99, Glu107, and Ser140 (proposed to be components of a proton channel [48,67] and
important for heme binding in the heme d/heme b595 di-heme site [213,214]). Slightly less
conserved (95–99%) are Glu445 (required for charge compensation of the b595/d O2-
reducing site upon its full reduction by two electrons [41]), Asn148 (plausible component of
a proton channel), and Arg9 (unknown function) [213]. Somewhat less conserved (~ 85%)
are Arg391 (stabilizes the reduced form of heme b558 [253]) and Asp239 (unknown
function), however these residues are totally conserved within the A subfamily of
cytochromes bd [213]. Other conserved residues are glycines, prolines, phenylalanines, or
tryptophans, which may play structural roles. There is only one totally (>99%) conserved
residue (Trp57) in subunit II [213]. Within the subfamily of bd-type oxygen reductases
which have the “long Q-loop”, Arg100, Asp29, and Asp120 of subunit II are totally
conserved and Asp58 (subunit II of E. coli cytochrome bd-I) is either an aspartate or
glutamate [213]. The N-terminal portion of subunit II has been suggested to be involved in
the binding of heme d/heme b595 [213,254].

Fig. 3 shows an unrooted tree showing the relative sequence relationships of 815 sequences
of cytochrome bd from the genomes of Bacteria and Archaea. It is seen in Fig. 3 that the
“long Q-loop” members form a phylogenetic clade distinct from the other members of the
family. This is most likely due to an insertional event within the Q-loop. This subfamily
contains many, but not all, of the cytochrome bd oxygen reductases from Proteobacteria
(including E. coli). Also shown in Fig. 3 are two clades that define the bd-family members
found in Archaea. In contrast, the bd-family oxygen reductases found in Firmicutes or
Bacteroides are distributed widely among the phylogenetic groups shown in Fig. 3. This
illustrates the large role played by horizontal gene transfer in the distribution of the bd-type
oxygen reductases.

9. Binding of ligands (other than O2)
Since hemes d and b595 in cytochrome bd are in the high-spin pentacoordinate state, they
could potentially bind ligands. One may anticipate that the enzyme in the reduced state binds
electroneutral molecules like O2, CO, and NO, whereas the oxidized cytochrome bd prefers
ligands in the anionic form such as cyanide and azide. Heme d binds ligands readily whereas
the ligand reactivity of heme b595 is minor despite the fact that this is a high spin heme
[37,39,255]. Heme b558, although a low-spin hexacoordinate, may also bind ligands to some
extent (e.g., CO or cyanide) [37,255]. Such a marginal reactivity is possibly due to
weakening the bond of the methionine axial ligand (Met393) to heme b558 iron caused by
the isolation procedure and/or protein denaturation [255].

9.1. Carbon monoxide
Addition of CO to the three-electron reduced form of cytochrome bd, denoted as R3, causes
a red shift of the 628 nm heme d band and the increased absorption around 540 nm in the
visible, as well as a distinctive W-shaped difference spectrum in the Soret region
[37,39,150,255–257]. The W-shaped feature is due to a small bandshift of unligated heme
b595 induced by CO interaction with the nearby heme d [38,40,43]. Only a small fraction of
heme b595 (<5%) in cytochrome bd binds CO at room or low temperature [37,39]. The
apparent Kd for the CO-heme d complex with the fully reduced (R3) cytochrome bd-I from
E. coli was determined to be ~80 nM [255]. The R3 cytochrome bd can form a
photosensitive heme d-CO complex [258]. Flash photolysis of CO bound to heme d at
cryogenic temperatures results in a redistribution of CO such that as much 15% of heme
b595 is bound to CO, showing the proximity of these two hemes [35]. Following flash-
photolysis of the heme d-CO complex in the fully reduced enzyme (R3) at room
temperature, CO recombines with ferrous heme d proportionally to the external CO
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concentration with a second order bimolecular rate constant of 108 M−1 s−1 (Table 4)
[43,222,249,259].

The one-electron reduced form of the enzyme (R1) can also be examined. Since heme d has
a substantially higher midpoint potential than the other two heme components, heme d is the
only heme reduced in the R1, or mixed-valence, state of the ‘as prepared’ enzyme. Upon
reaction with CO, one gets the CO-heme d adduct (b558

3+b595
3+d2+-CO)

[38,40,43,48,107,249]. After flash photolysis of the R1-CO complex, a substantial fraction
of the CO flashed off heme d2+ gets trapped inside the protein and undergoes geminate
recombination with heme d2+ on the pico- and nanosecond time scale [38,43]. The data
indicate that the redox state of heme b595 controls the pathway for ligand (CO) transfer
between heme d and the bulk phase, which is open when heme b595 is reduced but closed
when heme b595 is oxidized [38,43,107].

9.2. Nitric oxide and other nitrogen-containing ligands
A number of small nitrogen-containing molecules can react with R3 cytochrome bd from E.
coli and A. vinelandii. NO3

−, NO2
−, N2O3

2− (trioxodinitrate), NH2OH and NO, when added
to membranes containing cytochrome bd or the purified enzyme, give rise to decrease in
amplitude and shift of the 630 nm peak of ferrous heme d to 641–645 nm
[31,37,106,107,218,245,257,260–264]. It appears that all of these ligands result in chemical
reactions, forming the same or a very similar heme-nitrosyl compound [31], e.g., heme d2 +-
NO adduct. It has also been suggested that a heme b595

2+-NO adduct can be observed upon
adding nitrite to cytochorme bd in membranes [218].

Cytochrome bd can also produce a stable complex with NO in the R1 state, in which ligand
bound heme d is reduced while the b hemes are oxidized [107,245]. The rates of NO
dissociation from heme d2+ in both R3 and R1 states of cytochrome bd were determined
[107]. In the R3 state, NO dissociates from heme d2+ at an unusually high rate, koff = 0.133
s−1 [107], which is ~30-fold higher than the off-rate measured for the ferrous heme a3 of the
mitochondrial cytochrome c oxidase (koff = 0.004 s−1 [265]). These data are consistent with
the proposal that, in the heme–copper oxidases, CuB acts as a gate controlling ligand binding
to the heme in the active site [266]. Another remarkable feature of NO dissociation from
cytochrome bd is that the koff value in the R1 state (0.036 s−1), although still quite high, is
significantly lower than that measured with the R3 enzyme [107] (Table 4). These data show
that the redox state of heme b595 controls the kinetic barrier for ligand dissociation from the
active site of cytochrome bd, similar to the observations with CO dissociation from ferrous
heme d [38,43,107]. The unusually high NO dissociation rate from cytochrome bd may
explain the observation [106] that the NO-poisoned cytochrome bd recovers respiratory
function much more rapidly than a heme–copper oxygen reductase. It is postulated that
expression of bd-type, instead of heme–copper-type oxygen reductase, enhances bacterial
tolerance to nitrosative stress, thus promoting colonization of host intestine or other
microaerobic environments [107,108]. It was reported that, apart from ferrous heme d, NO
can also react with the oxoferryl and ferric state of heme d, yielding the oxidized nitrite-
bound heme d and the nitrosyl adduct, respectively [110,111].

9.3. Cyanide
Reaction of ‘air-oxidized” cytochrome bd with KCN causes the decay of the ferrous heme d
oxy-complex [267–273]. Cyanide-induced changes to the EPR-spectrum include a low-spin
signal and, after prolonged incubation, a second weak low-spin signal that may indicate
some interaction of cyanide with heme b595 [220,257,274]. A simple and fast method for
conversion of the oxygenated enzyme into the O form with the use of lipophilic electron
acceptors [239] allowed us to study the interaction of cyanide with the homogenous oxidized
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preparation of cytochrome bd [37]. The MCD spectrum of the O cytochrome bd-I from E.
coli is dominated by an asymmetric signal in the Soret. Submillimolar cyanide has no effect
on the initial MCD spectrum. 50 mM KCN induces minor changes of the MCD signal in the
Soret band, which can be modeled as transition of a part of the low-spin heme b558 (15–
20%) to its low-spin cyano-complex [37]. There is no evidence of the interaction of high-
spin ferric heme b595 with the ligand [37]. On the contrary, based on the EPR spectra,
Tsubaki et al. [36] proposed that the treatment of ‘air-oxidized’ cytochrome bd with cyanide
results in a cyanide-bridging species with a “heme d3+–C=N–heme b595

3+” structure.
However the authors [36] did not account for the electron released from heme d upon
cyanide binding to ‘as prepared’ cytochrome bd. Resonance Raman studies suggest that
heme d is in the high-spin pentacoordinate state when it is compounded with cyanide
[230,275]. This would require either that the endogenous axial ligand to heme d is displaced
by cyanide, maintaining a high-spin pentacoordinate state, or that there is no endogenous
axial ligand to heme d in the fully oxidized form of the enzyme.

9.4. Hydrogen peroxide
Addition of excess H2O2 to E. coli membranes containing cytochrome bd-I [276] and the
purified enzyme in the ‘as prepared’ [231,237] or the O [46,231,277] states gives rise to an
absorption band at ~680 nm. The reaction of H2O2 with the O cytochrome bd also induces a
red shift of the γ-band [231,277]. H2O2 binds to ferric heme d with an apparent Kd value of
30 μM, but it seems not to interact with heme b595 [231,277]. The O cytochrome bd reacts
with H2O2 with a second order rate constant of 600 M−1 s−1. The decay of the H2O2-
induced spectral changes upon addition of catalase (k ~ 10−3 s−1) is about 20-fold slower
than expected for dissociation of H2O2 from the complex with heme d assuming a simple
reversible binding of peroxide [277]. This suggests that the interaction of H2O2 with
cytochrome bd is essentially irreversible, giving rise to the F state of heme d [277]. The
assignment of the compound 680 to the F state of heme d is confirmed by resonance Raman
spectroscopy data [221]. Heme d in the F state is suggested to be high-spin pentacoordinate
[275].

10. Proposed catalytic mechanism
As discussed above, under physiological conditions cytochrome bd from different
prokaryotes likely oxidizes UQH2, MQH2 or PQH2. In vitro a bd-type oxygen reductase can
also utilize short chain ubiquinols, menadiol, duroquinol, and artificial electron donors such
as TMPD. Of the in vitro substrates, ubiquinol-1 (plus excess dithiothreitol) shows the
highest turnover numbers [248,278]. The activity of the purified oxidase depends on the
nature of the detergent in which the enzyme is solubilized. Cytochrome bd-I from E. coli is
inactive in octylglucoside or cholate but shows high activity in Tween-20, Triton X-100
[248] or N-lauroyl-sarcosine [106]. The ubiquinol-1 oxidase activity of cytochrome bd-I has
a broad optimum above pH 7.5 but decreases at more acidic pH values [248]. Cytochrome
bd possesses three distinct active sites - for QH2 oxidation, TMPD oxidation and O2
reduction. All the three sites seem to be located at or close to the periplasmic surface of the
membrane. Electrons donated from QH2 transfer to heme b558 and then to the b595/d di-
heme site, whereas electrons donated from TMPD transfer directly to the b595/d site
bypassing the QH2-binding site and heme b558 [62,279].

10.1. Mechanism of generation of the proton motive force
Cytochrome bd from E. coli and A. vinelandii was reported to generate a transmembrane
electric potential both in single turnover [41,46–48] and under multiple turnover [27,44,280]
conditions (H+/e− ~ 1 [34,45,49,50]; q/e− ~ 1 [281]). When reconstituted into liposomes,
cytochrome bd generates an uncoupler-sensitive transmembrane voltage difference with a
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value of 160–180 mV (negative inside) [27,44]. The QH2 molecule generated by the
dehydrogenases of the respiratory chain can diffuse laterally within the bilayer, finding its
way into the QH2 oxidizing site located near the outer side of the membrane. Upon
oxidation of QH2, two protons are released into the periplasmic space, and two electrons are
transferred through heme b558 to the b595/d O2-reducing site, also located near the
periplasmic surface of the membrane. The four protons used for O2 reduction are taken up
from the cytoplasm. Single-turnover electrometric experiments show that the generation of
the membrane potential is associated with electron transfer from heme b558 to the b595/d
active site [41,46–48]. However, since all of the three hemes are likely located close to the
periplasmic side of the membrane [67,229], the electron transfer itself is expected to be
parallel to the membrane surface and, therefore, cannot be electrogenic [46]. Rather, it is
proposed that electron transfer from heme b558 to the b595/d active site is coupled to
vectorial proton transfer from the cytoplasm towards the active site on the opposite
(periplasmic) side of the membrane [41,46–48]. The latter implies that there must be a
proton-conducting channel connecting the cytoplasm to the b595/d active site [41,46,48]
(Fig. 5). The transmembrane potential originates primarily from protons moving from the
cytoplasm to the O2-reducing site on the opposite side of the membrane, and this
accompanies electron transfer from heme b558 to the b595/d active site. As shown in Fig. 5, it
is proposed that near the b595/d active site there are two protonatable sites (XP and XN) that
are accessible to the cytoplasm via a proton-conducting channel.

10.2. Reaction of the fully reduced enzyme (R3) with O2
The reaction of the R3 cytochrome bd with O2 has been studied using the flow-flash method
[282] by means of spectroscopic and electrometric techniques [41,46–48,222]. Recording
absorption spectra and membrane potential development with 1 μs time resolution resolves
the sequence of the catalytic intermediates and establishes which catalytic steps are linked to
electric potential generation [47]. The scheme for this reaction is presented in Fig. 6 (top
panel). The initial complex of R3 cytochrome bd with CO (R3-CO) is photolyzed (the
photolysis details are shown in Fig. 6, bottom panel) in the presence of O2. The unliganded
R3 enzyme, generated by the CO-photolysis, binds O2 very rapidly, forming the ferrous
heme d oxy species (A3). The R3→A3 transition is not electrogenic and its rate is
proportional to [O2] (kon = 1.9 × 109 M−1·s−1 [47,222]). The A3 formation is followed by
electron transfer from heme b595 to form state P. The A3→P transition occurs with τ = 4.5
μs and is also nonelectrogenic [47]. Thus, electron transfer from heme b595 to heme d is not
coupled to membrane potential generation [41,47]. It is proposed that P is a peroxy complex
of ferric heme d [47]. If this is the case, the bound peroxide is likely not to be in the anionic
form but at least singly protonated. The proton may come from one of two postulated
protonatable groups, XP and XN, near the b595/d di-heme active site upon oxidation of the
hemes [41]. P is further converted into F upon electron transfer from heme b558 with τ = 48
μs. Formation of F is coupled to generation of a membrane potential [41,46–48] due to the
accompanying proton transfer through the proposed proton channel (Fig. 5). At the F stage,
the b-type hemes are in a ferric state and heme d in an oxoferryl state. When cytochrome bd
contains bound QH2, the reaction proceeds further to form the O enzyme. The F→O
transition occurs with τ = 1.1 ms and is electrogenic as well [41,47] since this also involves
electron transfer from heme b558 to the b595/d active site with the accompanying proton
transfer.

Cytochrome bd can bind O2 being in the R1 state. Remarkably, in this reaction, the
dependence of the rate of O2 binding on [O2] is hyperbolic thus revealing a saturation
behavior. This is not observed for O2 binding to the R3 enzyme [241]. It is speculated that
the R1 enzyme exists in the two different conformations in equilibrium, but only one of
these forms binds to O2. When in the “closed” conformation, cytochrome bd provides no
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access for O2 to heme d2+, whereas in the “open” conformation, O2 binds easily. The R3

enzyme is always in the open conformation [241].

10.3. Catalytic cycle
Several relatively stable forms of cytochrome bd corresponding to the intermediates of the
catalytic cycle have been identified. Under aerobic conditions, cytochrome bd is
predominantly in the one-electron-reduced state bound to O2 (A1), with lesser amounts of
the F and O forms. Under anaerobic conditions, the reduced forms of the enzyme lacking an
O2 ligand with one (R1) and three (R3) electrons can be generated and examined. A short-
lived complex of the three-electron reduced cytochrome bd with O2 (A3) [46,47,222,241],
an “peroxide” intermediate P [47] and an oxoferryl compound F [46,47,222] can be
sequentially formed (Fig. 6). Turnover intermediates of E. coli cytochrome bd-I detected at
steady-state are A1 and F species (~40% each) and, to a lesser extent (~20%), a species with
ferric heme d and possibly one electron on heme b558 (R1) [283]. These data differ from
those obtained with mammalian cytochrome c oxidase, in which oxygenous intermediates
were not found to be populated at detectable levels under similar conditions [284]. A
plausible scheme of the catalytic cycle of cytochrome bd is shown in Fig. 7.

10.4. Role of heme b595
Exogenous ligands added to cytochrome bd bind to heme d but do not bind to a majority of
the heme b595 population [31,37,39,255]. Heme b595, although in the high-spin
pentacoordinate state, is resistant to interaction with the classical ligands of high-spin iron-
porphyrin complexes. It cannot be ruled out that despite the high-spin pentacoordinate state
of the iron-porphyrin group, the specific features of the protein environment are such that
this redox cofactor is protected from interaction with ligands. In such case, the participation
of heme b595 in O2 reduction in cooperation with heme d is unlikely and its role would be
limited to the transfer of an electron to heme d. A more likely explanation is the following:
(1) both heme b595 and heme d potentially can bind ligands; (2) the hemes are located close
to each other forming a di-heme active site; (3) the spatial proximity of hemes b595 and d
results in steric restrictions allowing the di-heme site to bind only one ligand molecule; (4)
heme d has a higher affinity for ligands than heme b595, in which case the final result
observed upon addition of a ligand will always be the ligand binding to heme d, whereas
heme b595 will remain mainly in the unliganded state [37,39,231,255]. The data on the redox
coupling of the two hemes to the same ionizable groups [41], and the migration of CO
within the protein from heme d to heme b595 at cryogenic temperatures [35] are in
agreement with this proposal. Modeling the excitonic interactions in absorption and CD
spectra of cytochrome bd yields an estimate of the Fed-to-Feb595 distance of about 10 Å
[42]. This is markedly larger than that for the Fe/CuB pair in heme-copper oxidases (4–5 Å).
If this is the case, heme b595 cannot be a functional analogue of CuB. A possible role of
heme b595, apart from electron delivery to heme d and/or to an oxygenated intermediate
form of heme d, would be as a binding site for hydroxide produced from heme d-bound O2
upon reductive cleavage of the O-O bond [42].

11. Conclusion
There are at least two reasons why cytochromes bd may be of interest. First, they are found
in many pathogenic bacteria and there is growing evidence for a positive correlation
between the virulence and the level of cytochrome bd expression. We hope that our
knowledge on the structure and function of the bd enzymes will provide new tools to combat
diseases caused by pathogens, for instance, by using a bacterial bd-type respiratory oxygen
reductases as a drug target. Second, it would be useful to know what are the common
features and the differences between the mechanisms of O2 reduction to H2O by
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cytochromes bd and heme-copper oxidases. Such a comparison could allow us to gain
further insight into the elements essential for proton pumping coupled to the redox reaction
inherent in heme-copper oxidases.
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Abbreviations

AOX alternative oxidase

CIO cyanide-insensitive quinol oxidase

Em apparent midpoint redox potential

IC50 the half maximal inhibitory concentration

PMF proton motive force

TMPD N,N,N′,N′-tetramethyl-p-phenylendiamine

Q quinone

QH2 quinol

UQH2 ubiquinol

MQH2 menaquinol

PQH2 plastoquinol

A1 one electron-reduced O2-bound species

A3 fully reduced O2-bound species

R1 one electron-reduced species

R3 fully reduced species

O fully oxidized species

F oxoferryl species

P peroxide-bound species

ΔμH
+ transmembrane difference in the electrochemical H+ potentials

τ time constant reciprocal of rate constant (t1/e)
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Research highlights

• Physiological functions and genetics of cytochrome bd terminal oxidases
reviewed.

• Structural and catalytic properties of cytochromes bd discussed.

• Phylogenetic analysis of cytochromes bd and their homologues presented.
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Fig. 1.
Respiratory oxygen reductases. The bd-family is subdivided into the A-subfamily (long Q-
loop), B-subfamily (short Q-loop) and the cyanide insensitive oxygen reductases (CIO).
These are subdivisions based entirely on spectroscopic and structural observations and are
not phylogentically defined clades.
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Fig. 2.
Proposed cytochrome bd model.
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Fig. 3.
The bd-family of oxygen reductases. An unrooted phylogenetic tree showing the
relationships between 815 sequences of cytochrome bd oxidases. Members with the Q-loop
insertion (long Q-loop) are shown in red. All other members of the family have the “short Q-
loop”. A number of members from the purple clade have been classified as cyanide
insensitive oxidases (CIO) with a low content of heme d. Cytochromes bd from Archaea are
shown in blue and form two related clades. In contrast, cytochrome bd-type oxygen
reductases from the Firmicutes (yellow) and Bacteroidetes (green) are highlighted to
demonstrate the sporadic distribution of enzymes within these phyla which resulted from
horizontal gene transfer.
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Fig. 4.
Proposed topology of subunits I and II of cytochrome bd-I from E. coli. The axial ligands of
heme b595 (H19) and heme b558 (H186 and M393) in subunit I are highlighted. The model is
based on the data reported in [67,213,229].
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Fig. 5.
Scheme for electron and proton transfer pathways in cytochrome bd-I from E. coli. There
are two protonatable groups, XP and XN redox-coupled to the heme b595/heme d active site.
A highly conserved E445 was proposed to be either the XP group or the gateway in a
channel that connects XP with the cytoplasm or the periplasm [41]. A strictly conserved
E107 is a part of the channel mediating proton transfer to XN from the cytoplasm [48].

Borisov et al. Page 37

Biochim Biophys Acta. Author manuscript; available in PMC 2012 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Top: Scheme for reaction of fully reduced cytochrome bd with O2. The three rhombuses
represent hemes b558, b595, and d, respectively. The minus sign denotes that the heme is in
the ferrous state. Bottom: Photolysis of CO from heme d in the fully reduced enzyme. Two
different configurations of dissociated CO in the enzyme (d……COi, i=I, II) are proposed
[43]. The state (d + CO) denotes a state where CO escaped from the enzyme.
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Fig. 7.
Cytochrome bd catalytic cycle. The scheme is based on the reports of Junemann et al. [278],
Kavanagh et al. [289], Matsumoto et al. [252], Belevich et al. [47], Yang et al. [290], and
Borisov et al. [283]. Solid arrows show the natural catalytic reaction pathway. Dotted arrows
indicate transitions that are not being part of the catalytic cycle can be observed
experimentally. The O form of the enzyme is most likely not to be an intermediate of the
catalytic cycle [290]. Intermediates populated at steady-state [283] are highlighted in grey.
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Table 1

Effect of inhibitors on respiratory activity of cytochrome bd

Inhibitor Bacterium

E. coli(a) B. stearo-thermophilus A. vinelandii Photobacterium phosphoreum

KCN or NaCN 2 mM (b)
[27]

0.5 mM (e) [68] - 62 μM (b) [288]

NaN3 400 mM
(b) [27]

8.2 mM (e) [68] - 40 mM (b) [288]

H2O2 120 mM
(b) [27]

- - -

2-n-heptyl-4-hydroxyquinoline N-oxide (HOQNO) 7 μM (b)
[27]

- 5–20 μM (d)
[249]

8.2 μM (b) [288]

ZnSO4 or ZnCl2 60 μM
(b) [27]

200 μM (e) [68] - 2.7 μM (b) [288]

Piericidin A 15 μM
(b) [27]

- - -

Antimicin A 50 μM,
80% (c)
[285]

- 11 μM (d)
[279,286]

-

Undecylhydroxydioxobenzothiazole (UHDBT) 20 μM,
18% (c)
[285]

- 20 μM (d)
[279,286]

-

(1,5-Dimethylhexyl)quinazolinamide 100 μM,
88% (c)
[285]

- - -

(1-Methyldecyl)quinazolinamide 100 μM,
85% (c)
[285]

- - -

Stigmatellin 200 μM,
14% (c)
[285]

- - -

Nigericin 100 μM,
44% (c)
[285]

- - -

Dibromothymoquinone 100 μM,
38% (c)
[285]

- - -

Aurachin A 700 μM,
27% (c)
[285]

- - -

Aurachin C 214 nM,
90% (c)
[285]

- - -

Aurachin D 400 nM,
93% (c)
[285]

- - -

decyl-aurachin D - - 13 nM (d)
[249]

-

p-benzoquinone - 120 μM (e) [68] - -

2,6-Dimethyl-p-benzoquinone - 65 μM (e) [68] - -
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Inhibitor Bacterium

E. coli(a) B. stearo-thermophilus A. vinelandii Photobacterium phosphoreum

Nitric oxide (NO) 100 nM
(d) [106]

- 100 nM (d)
[106]

-

Carbon monoxide (CO) - - 0.5–1 mM,
80% (g)
[287]

-

Pentachlorophenol (PCP) 200 μM
(d) [32]

- - -

2-Thenoyl trifluoroacetone (TTFA) 1 mM,
35% (f)
[26]

- - -

Gramicidin S 5.3 μM
(b) [145]

- - -

(a)
Data are referred to cytochrome bd-I.

(b)
IC50 for ubiquinol-1 oxidase activity of the purified enzyme.

(c)
Concentration and % inhibition of duroquinol oxidase activity of cytochrome bd-containing membranes.

(d)
Inhibition constant (Ki) for ubiquinol-1 oxidase activity of the purified enzyme.

(e)
IC50 for duroquinol oxidase activity of the purified enzyme.

(f)
Concentration and % inhibition of ubiquinol-1 oxidase activity of the purified enzyme.

(g)
Concentration and % inhibition of ascorbate-2,6-dichlorophenolindophenol oxidase activity of cytochrome bd-containing particles.
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Table 2

Extinction coefficients used for determination of cytochrome bd concentration in E. coli and A. vinelandii.

Absorption spectrum Heme Wavelength pair (nm) Δε (mM−1·cm−1) Reference

E. coli (cytochrome bd-I)

Difference: d 628–607 10.8 [37]

Reduced minus ‘as prepared’ d 628–651 a 27.9 [36]

d 628–649 a 18.8 [27]

b558 561–580 21 [36]

b595 595–606.5 1.9 [36]

all 429–700 b 303 [36]

CO/reduced minus reduced d 642–622 12.6 [27]

d 643–623 13.2 [48]

Absolute:

Reduced d 628–670 25 [41]

‘As prepared’ all 414–700 b 223 [36]

A. vinelandii

Difference:

Reduced minus ‘as prepared’ d 628–605 9.5 [241]

d 629–608 12 [257]

d 629–650 a 27 [257]

CO/reduced minus reduced d 622–642 18 [257]

a,b
These values cannot be recommended for determination of cytochrome bd concentration since

a
the ‘as prepared’ enzyme contains varying amounts of the ferrous heme d-oxy complex that absorbs at 649–651 nm, and

b
the intensity of the Soret band is variable depending on the purity of the preparation.
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Table 3

Spectral properties of cytochrome bd-I from E. coli. Shown are wavelengths (nm) and extinction coefficients
(in parentheses, mM−1·cm−1) for “reduced-minus-oxidized” difference absorption spectra. Data are taken from
reference [225].

Heme b558 Heme b595 Heme d

Maxima 429.5 (90), 531.5 (5.8), 561 (17.2) 439 (113), 561.5 (8.2), 594 (5.3) 430 (30), 629 (18)

Minima 413 (−40), 497 (−4.3), 545 (~0) 400 (−37), 500 (−3.6), 643 (−1.18) 405 (−23), 468 (−6.3), 657.5 (−2.7), 739±2
(−2.4)

Isosbestic points 421, 450, 518, 573 422, 457, 535, 613 418.5, 449, 602, 648
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