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Abstract
Biological tissues have unique mechanical properties due to the wavy fibrous collagen and elastin
microstructure. In inflation, a vessel easily distends under low pressure but becomes stiffer when
the fibers are straightened to take up the load. The current microstructural models of blood vessels
assume affine deformation; i.e., the deformation of each fiber is assumed to be identical to the
macroscopic deformation of the tissue. This uniform-field (UF) assumption leads to the
macroscopic (or effective) strain energy of the tissue that is the volumetric sum of the
contributions of the tissue components. Here, a micromechanics-based constitutive model of
fibrous tissue is developed to remove the affine assumption and to take into consideration the
heterogeneous interactions between the fibers and the ground substance. The development is based
on the framework of a recently developed second-order homogenization theory, and takes into
account the waviness, orientations, and spatial distribution of the fibers, as well as the material
nonlinearity at finite-strain deformation. In an illustrative simulation, the predictions of the
macroscopic stress-strain relation, and the statistical deformation of the fibers are compared to the
UF model, as well as finite-element (FE) simulation. Our predictions agree well with the FE
results, while the UF predictions significantly overestimate. The effects of fiber distribution and
waviness on the macroscopic stress-strain relation are also investigated. The present mathematical
model may serves as a foundation for native as well as for engineered tissues and biomaterials.
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1. INTRODUCTION
The mechanical properties of blood vessels are fundamental for understanding
hemodynamics, wave propagation, distensibility of arteries and veins, plaque stability and
rupture, and vascular growth and remodeling which are strongly affected by the stress or
strain of the cells. The model prediction of mechanical response of blood vessels subjected
to physiological or pathological loads may help clarify the initiation, progression, and
clinical treatment of diseases such as atherosclerosis (Vito and Dixon, 2003). The
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mechanical properties of the vessels largely stem from microstructural components such as
elastin and collagen fibers, cells and ground substance (Azuma and Hasegawa, 1971; Azuma
and Oka, 1971; Oka, 1967, 1972; Oka and Azuma, 1970). Thus, the relation between the
microstructure and macroscopic mechanical properties of the vessel is essential in tissue
engineering, biomedical research and clinical practice. Accurate prediction of
microstructural deformation and evolution, and in turn the function, will result in a new
level of understanding of biological tissue in health and disease and for tissue engineering of
new biomaterials.

The vast majority of constitutive models of vascular tissue are phenomenological in nature.
In the pseudo-elastic models, blood vessels are modeled using constitutive relations to
describe the repetitive loading and unloading behaviors separately. Hyperelasticity theory, in
which the stress is calculated as the derivative of the strain energy function (SEF), has been
adopted to further simplify the stress-strain relation. Fung et al. (1979) introduced a 2-D
exponential SEF and later generalized it into a 3-D form (Chuong and Fung, 1983), in which
the formulation applied to axisymmetric deformation of the vessel where the principal
directions of the stress and strain tensors coincide with the radial, circumferential and axial
directions. This leads to zero shear terms in their formulas. Deng et al. (1994) extended the
formulation by adding a radial-circumferential strain to analyze axial torsion experiment and
to determine the respective shear parameter. Humphrey proposed a general form of Fung-
type SEF for arbitrary 3-D deformations (Humphrey, 1995). Other forms of hyperelastic
constitutive models include the four-parameter logarithmic SEF of Takamizawa and
Hayashi (1987), and the polynomial SEFs developed by Vaishnav et al. (1973) with three,
seven or twelve parameters. Collectively, these models consider the vessel wall as a
homogeneous material and are strictly phenomenological. Due to their simple analytic form,
they have been used as a basis for investigating many vascular mechanics problems (Chuong
and Fung, 1983). However, the parameters in these models have no physical meaning, and
cannot be directly related to the vascular microstructure in health or disease.

There has been much effort to derive the constitutive model of the soft tissue from the
geometry, distribution and the mechanical properties of the individual microstructures such
as collagen and elastin fibers. There have been two major classes of micromechanical
models, due to different consideration of the matrix material (cells and ground substance) in
the tissue. The first class of models proposed by Lanir (1979, 1983) considers the tissue as a
composite of elastin and collagen fibers embedded in a fluid-like matrix. Thus, the fibers are
the only constituent phases that sustain non-hydrostatic loading such as tension and shear,
while the contribution of the fluid-like matrix is a hydrostatic pressure. This assumption
leads to a simplification that all the microstructures deform identically to the macroscopic
deformation of the tissue since no fiber interactions are considered, such that the
macroscopic SEF is the volumetric sum of fibers’ SEF. On the basis of this assumption and
thermodynamic consideration, Lanir developed a general multiaxial theory for the
constitutive relations in fibrous connective tissues (Lanir, 1979, 1983). Similarly, Decraemer
et al. (1980) proposed a parallel wavy fibers model for soft biological tissues in uniaxial
tension, followed by Wuyts et al. (1995). More recent developments of fluid-like matrix
based models can be referred to in Refs. (Dahl et al., 2008; Humphrey and Yin, 1987;
Lokshin and Lanir, 2009).

A second class of micromechanical theories assume the tissue as a collagen fiber reinforced
composite, whose matrix is a solid-like material that can take up loading. This assumption is
motivated by the fact that the elastin, which is part of the matrix, becomes straightened and
starts to take the load in the early deformation of the tissue. For example, the experimental
study of Gundiah et al. (2007) suggested that the elastin can be described with a neo-
Hookean constitutive model. Based on this solid-like matrix assumption, Holzapfel et al.
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(1998, 2000) modeled the arterial wall as a two-layer fiber-reinforced composite where the
macroscopic SEF of soft tissue stems from two sources: 1) an isotropic part associated with
the mechanical response of the non-collagenous matrix material (elastin fibers, cells and
ground substance), and 2) an anisotropic part due to the deformation of two classes of
collagen fibers symmetrically disposed with respect to the axis of the vessel. Successive
developments can be found in Refs. (Kroon and Holzapfel, 2008; Li and Robertson, 2009;
Zulliger et al., 2004). Specifically, Zulliger et al. (2004) made further refinement to account
for the distribution of the waviness of collagen fibers and different SEF of the matrix and
collagen fibers. These models assume affine deformation; i.e., the deformation of the
collagen fibers and the matrix are identical to the macroscopic deformation of the tissue.
Consequently, the microstructural information considered in most of these models is the
volume fraction and orientation of the fibers.

There have been significant developments in the past decades to bridge the nonlinear
macroscopic properties of heterogeneous non-biological media with the geometry and
mechanical properties of the functional microstructures (Kailasam et al., 1997; Lebensohn et
al., 2004; Liu, 2003; Liu et al., 2003; Liu and Ponte Castañeda, 2004a, 2004b; Lopez-Pamies
and Ponte Castañeda, 2004, 2007; Ponte Castañeda, 2002; Willis, 1977). For example, the
recent second-order estimate (SOE) theory of Ponte Castañeda et al. (Lopez-Pamies and
Ponte Castañeda, 2004; Ponte Castañeda, 2002) considers the microstructural interactions,
finite-strain deformation and strong material nonlinearity and heterogeneity within a
framework of minimum energy principle. Applications of the model have been made to
predict the macroscopic stress-strain relation and microstructural deformation of porous
rubber, and show significant improvements over the previous micromechanics models when
compared to finite-element (FE) simulations.

In this work, the SOE theory will be implemented to model the wavy fibrous microstructure
in soft biological tissue such as vessel wall. In comparison to the affine models with a solid
matrix, the present development enable consideration of full set of microstructural
geometries; i.e., fiber orientation, aspect ratio, statistical spatial distribution and waviness, as
well as their nonlinear interactions. The model can predict the statistically average strains in
the fiber and matrix, which are heterogeneous but assumed uniform in the affine approach.
This is an important feature since the accurate description of the stresses and strains in the
ground substance (matrix) is important for loading-induced remodelling of the tissue.
Illustrative results will be presented along with FE for validation.

2. METHODS
2.1. The geometry and mechanics of wavy fibers

The mechanical properties of a tissue stem from the microstructural constituents. In the
adventitia, dense and wavy collagen fibers form an interwoven network that tangles with
some elastin fibers (Rhodin, 1979; Wolinsky and Glagov, 1967). Histologically, a collagen
or elastin fiber is well described as a bundle of loosely bounded fibrils (Fratzl et al., 1997;
Ottani et al., 2001). In an undulating state, such a fiber can deform with very little stress.
When straightened, it can sustain a significant amount of axial stress. At low strain level,
elastin fibers gradually extend (Lu et al., 2004) and straighten to take up load together with
the fibroblasts and ground substance. Since the axial stiffness of elastin fibers is not
significantly higher than the matrix fibroblasts and ground substance, the stress-strain
behavior of the tissue exhibits only weak nonlinearity. When the artery is distended beyond
a certain stretch ratio, the collagen fibers are gradually straightened and begin to take up the
increasing loads (Lu et al., 2004), in a manner which depends on the deformation of the
network. Since the collagen fibers have much higher tensile stiffness than elastin fibers and
ground substance, and gradual engagement of the collagen fibers leads to the highly
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nonlinear overall mechanical properties of the adventitia (i.e., increase in tangent stiffness
which protects the media layer from over stretch).

Thus, the first approximation is that the fibrous tissue is considered as a composite, in which
the elastin, fibroblasts and ground substance make the effective matrix and the collagen
fibers are considered as the reinforcing phases. This approximation is consistent with the
framework of Holzapfel et al. (1998, 2000).

The waviness of a single undeformed fiber, denoted as λ0, is defined as the ratio of the end-
to-end distance S0 and the straight length l0 (Fig. 1), as λ0 = S0/l0. This is also called
straightening stretch ratio, meaning that the fiber is straightened when it is stretched along
the fiber direction with a ratio > λ0. The orientation of the fiber is described by the overall
direction N as shown in Fig. 1. The shape of the fiber can be described by a geometric tensor

 (⊗: dyadic product), where (r ̄L, n ̄L) is the cross-
sectional long axis and (r ̄S, n ̄S) is the short axis, such that Zs · (X − Xc)≤1 (X is the spatial
coordinate vector, and Xc is the geometric center of the fiber) defines an ellipsoidal material
region that the fiber occupies (Willis, 1977).

For convenience, the collagen fibers are categorized into N phases in the present
homogenization modeling, such that the r-th phase has the same geometric properties (λ0,
Zs) and occupies a volume fraction c(r) in the composite. Correspondingly, the volume

fraction of the matrix, denoted as phase 0, is . Furthermore, we use an
elliptical two-point (joint) distribution function P(rs) (X, X′) to describe the probability of
simultaneous occurrence of the geometric centers of an r-th phase fiber at X and an s-th
phase fiber at another point X′. Under the approximation of elliptical symmetry in
micromechanics (Ponte Castaneda and Willis, 1995; Willis, 1977), the spatial distribution of

fibers centers is characterized by a tensor , in which Nk are the
principal directions of fiber distribution, ak is the characteristic distance between the centers
of two neighboring fibers in direction Nk. A description of P(rs) (X, X′) and Zd and their
effects on the macroscopic behaviors of composite is given by Ponte Castaneda and Willis
(1995).

According to Holzapfel et al. (1998, 2000) and Gundiah et al (2007), the effective matrix
material (elastin, fibroblasts and ground substance) is assumed to be isotropic, and is
described by an approximate incompressible (κ ≫ μ) neo-Hookean SEF, as:

(1)

where F is the deformation gradient, I1 = tr C (C= FT · F) and  are the first and
the third invariants of the right Cauchy-Green deformation tensor, respectively.

As the second approximation, the constitutive SEF for the fibers is assumed to have the
form:

(2a) (2b)
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where  is the stretch of the fiber along the fiber direction N(r), and

 is the straightening stretch ratio of the r-th phase. This approximation implies that a fiber
deforms the same as the soft matrix before straightening, and becomes stiffer with additional
deformation energy W (r)(λ) when straightened. Correspondingly, when the tissue is at the
reference state without macroscopic deformation gradient F̄ = I, all the r-th phase fibers are

wavy (since ) so that the term W (r) (λ) is not present in the model (Fig. 2a). When F̄
increases, some of fibers are straightened and will be treated as straight fibers, and the tissue
is considered as a composite with straight fibers (Fig. 2b), whose macroscopic SEF is W ̄ (F̄)
(Fig. 2c) as will be derived below. This approximation is consistent with Holzapfel et al.
(1998, 2000), in which an exponential function is assumed to describe the strain energy
function of collagen fibers. It should be noted that although the SEF of fibers is
approximately zero under the assumption of exponential form before the fibers are
straightened, a similar results is approximated in the present model since the fibers: 1) are
thin and 2) occupy a low volume fraction in the tissue and 3) the SEF of matrix is small as
compared to that of straightened fibers.

2.2. Finite-strain homogenization framework
From a thermodynamic consideration, the microscopic stress field in the tissue can be
derived from the heterogeneous hyperelastic SEF W (X, F) under isothermal and adiabatic
(det (F) =1) conditions as:

(3)

where χ(r)=1 when X ∈ Ω(r) (the volume occupied by phase r), and 0 otherwise. The
hydrostatic stress p is due to the incompressibility of the soft tissue. S is the transpose of the
first Piola-Kirchhoff stress; i.e., it is related to the Cauchy stress σ by S = σ · F−T. The
classical works of Hill (1972), Hill and Rice (1973) and Ogden (1978) proved that the
macroscopic constitutive property for a microscopically inhomogeneous hyperelastic
material can be described with macroscopic or effective SEF W ̄ (F̄):

(4)

where κ(F̄) denotes all admissible deformation gradient field in the representative volume
element (RVE) of the composite such that the displacement u on the boundary ∂Ω of RVE is
u(X)= (F̄ − I) · X (where rigid-body motion is excluded). The notation 〈 · 〉 denotes
volumetric average in the RVE, and 〈 · 〉(r) denotes volumetric average in the r-th phase.
Equation (4) represents the principle of minimum strain energy in micromechanics. In
general, the rigorous minimization solution for Eq. (4) is difficult to obtain for a random
heterogeneous material whose microstructural information is complex and incomplete. The
efforts to seek an approximate minimizing field F(X) have resulted in several classes of
finite-strain micromechanics models including the following uniform-field upper bound and
the second-order estimate.

2.3. Uniform-field upper bound based on solid-like matrix
The current homogenization models of soft tissue assume a uniform deformation field in the
RVE, as F(X)= F̄. Thus, the macroscopic SEF W ̄ (F̄) is simply the volumetric sum of the
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constituents, as in (Holzapfel and Gasser, 2000; Holzapfel and Weizsacker, 1998; Kroon and
Holzapfel, 2008; Li and Robertson, 2009; Zulliger et al., 2004):

(5)

Since F(X)= F̄ is an admissible deformation field that does not minimize the total strain
energy, W ̄U (F̄) is an upper bound of the exact W ̄ (F̄). Consequently, the stress S ̄U =∂W ̄U/∂F̄
is the upper bound of the exact macroscopic stress for a given F̄. A number of works
(Holzapfel and Gasser, 2000; Holzapfel and Weizsacker, 1998; Kroon and Holzapfel, 2008;
Li and Robertson, 2009; Zulliger et al., 2004) employ this uniform field approximation
F(X)= F̄ in various forms, and thus are all upper bounds. As indicated by Eq. (5), the only
geometric information considered in this previous approach is the volume fraction c(r), and
the information that are included in W (r) such as the fiber orientations. The interactions
between constitutive phases are also neglected.

2.4. Second-order microstructural model
In order to consider the statistical microstructural geometry of the tissue and provide a better
constitutive model than the uniform-field upper bound W ̄U (F̄), a recently developed SOE
homogenization method (Lopez-Pamies and Ponte Castañeda, 2004a; Ponte Castañeda,
2002) for composites in finite-strain deformation was implemented. Unlike linear
infinitesimal-strain composites where all the constituent phases are linearly elastic, finite-
strain homogenization methods face challenges from the inherent nonlinearities of
deformation and material properties (Ogden, 1978).

The key premise of SOE method is to introduce a linear thermoelastic comparison
composite (LTCC) that has the same microstructures as the nonlinear composites, but each
of the phases is linearly thermoelastic with SEF (Lopez-Pamies and Ponte Castañeda,
2004a;Ponte Castañeda, 2002):

(6)

in which the reference modulus L(r) and virtual residual deformation gradient F*(r) are to be
determined later for conditional minimization of Eq. (4), and ρ*(r) = (∂W (r)/∂F)F=F*(r).
Analogous to the derivation in (Ponte Castañeda, 2002) for infinitesimal-strain nonlinear
composites, it can be shown that the following inequality holds for arbitrary choice of
{F*(r), L(r)}:

(7)

with . By relaxing the constraint F ∈ κ(F̄) in the second term on

the right hand side and defining , it is shown that the
exact macroscopic SEF in Eq. (4) can be approximated by, as in (Ponte Castañeda, 2002),

(8)
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where  is the effective strain energy for the LTCC. The
same formula can be derived by means of generalized Legendre transform of the strain
energy as in (Lopez-Pamies and Ponte Castañeda, 2004a; Ponte Castañeda, 2002). The
significance of this derivation is that it translates the optimization over continuous
deformation field F ∈ κ(F̄) to that of respective tensors L(r) and F*(r). In theory, the field F
∈ κ(F̄) must satisfy continuity and compatibility conditions, while L(r) and F*(r) can be
arbitrary within the physically meaningful ranges. It is further noted that Eq. (8) is identical
to the principle of minimum energy, provided that L(r) and F*(r) are allowed to change from
point to point in the material. In standard nonlinear micromechanics (Lopez-Pamies and
Ponte Castañeda, 2004a; Ponte Castañeda, 2002; Willis, 1977), as well as here, we make the
approximation that L(r) and F*(r) are uniform for the r-th phase to reduce the computational
cost, so that Eq. (8) is an estimate of the exact SEF.

As has been derived in (Kailasam et al., 1997; Liu, Y., 2003), W ̄T is estimated for the LTCC
by taking into account the shape and distribution tensors  and Zd, as

(9)

where L̃ is the effective stiffness of LTCC, s̃ and g̃ are the macroscopic residual stress and
energy. These quantities all depend on the phase modulus L(r), residual deformation gradient
F*(r) as well as geometric property Zs and microstructural spatial distribution function Zd.
Here, we have extended the generalized finite strain Hashin-Shtrikman theory that considers
the two-point material distribution (Kailasam et al., 1997; Liu, Y., 2003):

(10a)

(10b)

(10c)

(10d)

in the above relations, ΔL(r)= L(r) − L(0), L(0) is the reference stiffness of the matrix, A(r) is
the deformation concentration tensor and a(r) is residual deformation gradient induced by
F*(r). Furthermore, we have local residual stress s(r)= ρ(r) − L(r) (F–I), s*(r) = s(r) − s(0) and
s̃*= s̃ − s(0). The fourth-order tensor P(r) is defined by the shape tensor Z(r) of the r-th fiber
phase via integration over a unit spherical surface:

(11)
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where H(Ξ) is a tensor with components , and . As mentioned
previously, the geometry of the r-th phase fibers does not play role during homogenizing
before it is straightened, such that the fibers behave the same as the matrix with ΔL(r) = 0.
After the r-th phase fibers are straightened, ΔL(r) ≠ 0 and the shape Z(r) of the fibers begins
to take effect. The tensor Pd in Eqs. (10) is calculated using the same formula for P(r) in Eq.
(11), but with Z(r) replaced by the two-point microstructural distribution tensor Zd.

Finally, the stationary procedures involved in the above derivation, maximization of V(r) and
the minimization in Eq. (8), yield a set of nonlinear tensorial equations for determination of
the unknown reference modulus L(r) and reference deformation gradient F*(r) (Lopez-
Pamies and Ponte Castañeda, 2004a, 2004b, 2006;Ponte Castañeda, 2002). These equations
have multiple solutions that lead to various estimations of the macroscopic SEF W ̄ (F̄). In
this work, we employ a tangent solution (Ponte Castaneda and Tiberio, 2000), as:

(12)

i.e., the reference deformation gradient F*(r) is taken to be the average deformation gradient
F̄(r) in the r-th phase of the LTCC, and L(r) is the tangent stiffness tensor evaluated at F̄(r).
This solution leads to V(r) (F*(r), L(r))= 0 and an estimation of the macroscopic SEF, as:

(13)

In the above relations, the tensor F̄(r) is determined in the framework of the generalized
finite-strain Hashin-Shtrikman theory as

(14)

As indicated by Eqs. (10), the tensor A(r) and a(r) are determined by reference stiffness
tensors L(s) (s =0, 1, …,N), as well as the geometry and spatial distribution of the phases
through the fourth-order tensors P(s) (s = 1, 2, …,N) and Pd. Thus, Eqs. (12) constitutes a
system of nine nonlinear algebraic equations for the nine components of F̄(r) for each phase.

3. APPLICATIONS
As an illustrative example, the above tangent second-order micromechanics model is applied
to 2-D tissue-like material with distributed collagen fibers. The tissue undergoes
macroscopic deformation with gradient:

(15)

The tissue stretches along the principal direction e1 of the fibers with stretch ratio λ ̄, but
shrinks in the transverse direction e2 to maintain material incompressibility. This mimics a
deformation of inflated vessel without axial pre-stretch, where the tissue stretches
circumferentially and shrinks radially. Correspondingly, the fourth-order tensor P(r) in Eq.
(11) is defined by the shape tensor Z(r) of a planar needle-like fiber showed in Appendix A.
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3.1. Discretization of fiber phase
In general, the shape, orientation, waviness of the collagen fibers distribute randomly with
continuous distribution functions (Lanir, 1979, 1983), as well as their spatial distributions.
To simplify the present simulation, all the fiber centers are assumed to be isotropically
distributed in space (Zd= I), and have the same undeformed cross-sectional geometry with
r ̄L = r ̄S = 0.05l0 (i.e., the fiber aspect ratio = 10, see Fig. 1).

The fiber orientation is assumed to follow a Beta-distribution (Sacks, 2003), which can be
skewed or symmetric and bounded in a finite interval (xmin, xmax):

(16)

where x is a random variable, Δ is the span of x; i.e., Δ= xmax − xmin. The span Δ and two
parameters α, β characterize the Beta-distribution. In 2-D, the orientation vector N of the
fiber is quantified by an orientation angle θ that is Beta-distributed with the span Δ= 60° and
α = β = 6, which assures that most collagen fibers orient along the principal direction of the
tissue, i.e., θ = 0°.

In line with tissue ultrastructure (Brown, 1973) and following Sverdlik and Lanir (2002), the
waviness of collagen fibers λ0 can be assumed to be Beta-distributed, but the span Δ is
considered to be direction-dependent. Thus, the span of collagen undulation is Δ = λ0max (θ)
− λ0min (θ), where λ0min and λ0max are the θ-dependent minimal and maximal values of
straightening stretch, respectively. Lokshin and Lanir (2009) recently developed a general
constitutive model of planar tissues by incorporation of such undulation distribution of
fibers and estimated a set of parameters α= 6.11, β = 6.0 and Δ for collagen fibers. The θ-
dependent minimal and maximal values of straightening stretch are adopted in Ref. (Lokshin
and Lanir, 2009):

(17)

where λ11min = 1.4, λ22min = 1.07 and λ11max = 1.8, λ22max = 1.34 are the lowest and highest
reference straightening stretch in the two principal directions. Finally, the θ-dependent span
Δ of collagen waviness is determined.

In the simulation, the orientation space is discretized into 13 regions as shown in Fig. 3,
indicating the mean values and cumulative probabilities of these regions. Similarly, the
waviness space is discretized into 5 regions. It is noted that the cumulative probabilities for
them depend on orientation angle θ, and the waviness of collagen fibers become low as they
align off the macroscopic loading axis. Thus, the composite material involves a total number
of 65 phases of collagen fibers (phases 1–65), and a matrix phase (phase 0). In this work, the
volume fraction of the matrix is taken as c0 =0.80 and the total volume fraction of all the
fibers is cfiber =0.2, which is distributed to the 65 fiber phases according to their cumulative
probabilities of the orientation and waviness (Table 1). For example, c(r) of the fiber phase
with mean orientation angle θ = 10° and waviness λ0 = 1.6 is 0.15% (=0.2×17.65%). Note

that .
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3.2. Constitutive models
The parameter μ in the neo-Hookean type SEF W(0) (Eq. 1) is directly taken from Holzapfel
and Gasser (2000), and the bulk modulus is set as k ≫ μ in our simulation to account for the

material incompressibility (Table 2). The anisotropic term  in the SEF of fibers (Eq.
2) is selected as:

(18)

This is a generalization of the linear model employed in other works (Decraemer et al.,

1980; Lanir, 1979, 1983; Wuyts et al., 1995) where only the first term  was
included. This model is consistent with the experimental observation (Gentleman et al.,
2003; Gosline et al., 2002) and analysis (Annovazzi, 2010) that the axial stress-strain
relation of single straightened collagen fibers is somewhat nonlinear. In the study of

Holzapfel and Gasser (2000),  features an exponential form and is thus strongly
nonlinear, which can be interpreted as a phenomenological description of the fiber behavior
starting from undeformed state (λ = 1) to post-straightening (λ > λ0). To determine the

material parameters E1 and E2, we fit the present  to the exponential form in
(Holzapfel and Gasser, 2000) with λ0 =1.6 (the mean value of Beta-distribution of the
waviness), and the results are given in Table 2. Figures 4 show the SEF and stress-stretch
curves of the matrix and fibers. Note that the homogenization model employed in this work,
in principle, can use any well-defined constitutive model of the matrix and fibers. Moreover,
it should be emphasized that the collagen fiber is transversely isotropic here; i.e., the random
spatial distribution (Zd= I) of collagen fibers will lead to an isotropic macroscopic-tissue
statistically. The macroscopic-tissue will become anisotropic, however, when the collagen
fibers have a preferred direction in space.

3.3. Finite-element validations
FE simulations were used for the purpose of model validation, as a golden standard. The FE
model contains ~200 randomly distributed fibers whose orientation angle θ and
straightening stretch ratio λ0 were randomly assigned according to the Beta-distribution. The
material models and parameters were identical to the homogenization model. A typical FE
mesh contained ~30000 quadratic elements. Boundary displacement was applied on the FE
model according to Eq. (15). The average Cauchy stress was outputted and compared with
the micromechanics prediction.

4. RESULTS AND DISCUSSION
The tangent SOE model prediction of the macroscopic SEF W ̄ and the tensile Cauchy stress
σ ̄11 of the above described fibrous tissue are plotted in Figs. 4 as functions of the applied
tensile stretch λ ̄, in comparison with the uniform-field (UF) predictions (dashed line) and FE
computational results (circle). Note that the macroscopic Cauchy stress is determined from S ̄
(Eq. 4) by the relation σ̄ = F̄S ̄ since d e t (F̄) = 1. The SEF W ̄ and stress σ ̄11 of a pure matrix
material and a collagen fiber (with θ= 0°, λ0 = 1.6) that undergo macroscopic deformation
are shown for reference. For deformation λ ̄ < 1.6 where most fibers are still undulated or
have just been straightened, the predictions by the present SOE and FE are very similar and
close to that of pure matrix material, while UF estimates are consistent with them. When the
macroscopic deformation λ ̄ is >1.6, the UF prediction shows rapid increase with higher
macroscopic loading, and much higher than FE and SOE predictions (Table 3), while all
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show similar shape. Unlike UF model, the present model statistically accounts for the
heterogeneous deformation of the matrix and fibers, which is due to the heterogeneities of
microstructural geometries and material properties, as well as the interactions denoted by the
second terms of the concentration tensor A(r) and residual deformation gradient a(r) in Eq.
(10). Thus, the statistical deformation field employed by SOE is more realistic than UF
theory, and in principle, leads to lower estimates of the macroscopic SEF and stress than the
UF upper bounds. Table 3 shows error estimates for macroscopic Cauchy stress of both UF
and SOE predictions in reference to the FE results as a gold standard. It is seen that the error
estimate for UF predictions can reach up to 100% at high macroscopic loading, while the
corresponding error for SOE is 5.4%, which implies that the SOE stress-strain curve is in
excellent agreement with FE.

The statistical average deformation in the matrix phase and the fibers are plotted in Figures
5. Figure 5(a) gives the axial stretch of the collagen fibers that are parallel to the loading
axis (θ= 0°) and with waviness λ0= 1.5, 16, 1.7 and 1.8, as well as the stretch of the matrix
phase in the loading direction. In UF method, the deformation gradient of the matrix and all
fibers are identical to the applied macroscopic deformation, such that the stretch of matrix
and all the fibers (with θ= 0°) are identical and equal to λ ̄ regardless of the straightening of
the fibers, as plotted with the dashed line. In the SOE model, the microscopic deformation is
non-affine once some fibers are straightened and become stiffer to take up the load. As the
second approximation of this study and the constitutive SEF of the fibers, Eqs. (2), a fiber
deforms identically to the matrix before it is straightened. Once straightened, it becomes
increasingly stiffer and deforms much less than the matrix. For a small amount of fibers with
a low waviness, such as λ0= 1.5, their stretch show a tendency of becoming saturated or flat
at large macroscopic deformation λ ̄. As a result, the matrix phase must deform slightly more
to accommodate the applied macroscopic deformation, as indicated by the solid line in the
plot, which is noticeably higher than the UF prediction. Consequently, SOE model predicts
earlier engagement of the fiber than the UF method.

We further investigated the influence of the orientation angle θ on the statistical average
microscopic stretch of the fibers. Figure 5(b) shows the stretch of fibers with orientation
angle θ= 0°, 10° and 20°, and waviness λ0= 1.6. The UF predictions depend on the
orientation but not the waviness, as:

(19)

which indicates decrease of stretch as the fibers align off the macroscopic loading axis. The
SOE predictions also show similar trend that larger orientation angle θ leads to later
engagement of the fiber. For all the cases, the SOE predictions of fiber stretch are slightly
and consistently higher than the corresponding UF prediction prior to fiber engagement, and
become much lower when the fibers deform slightly beyond the straightening stretch. Thus,
for the fibers with given orientation angle θ and waviness λ0, the SOE model predicts earlier
engagement than the UF.

To further illustrate this, we plot (in Fig. 6) the macroscopic stretch λ ̄ that straightens the
fibers with θ= 0°, 15° and 25°, and λ0 from 1.4 to 1.8, denoted as the macroscopic
straightening stretch. The UF estimate (dashed lines) can be directly obtained from Eq. (19).
The macroscopic straightening stretches predicted by SOE model are consistently lower than
the UF predictions, indicating earlier engagement of the fibers. The difference is more
significant for fibers with larger angle and/or higher waviness. As discussed above, the
earlier fiber engagement is due to the heterogeneous microscopic deformation predicted by
SOE method.
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It is worth highlighting that the differences in the model predictions of macroscopic stress
stem from the basic assumption of the microscopic deformation field, as indicated by Eq. (4)
for the principle of minimum strain energy. The assumption of uniform deformation field
requires that all fibers in the same orientation must deform with the same axial stretch
despite that straightened fibers are much stiffer than undulated fibers, as shown in Figs. 5–6,
which is inconsistent with the notion that soft phases deform more than hard phases in a
composite. In contrast, SOE allows more flexible deformation: once a fiber is straightened,
it deforms less than those undulated fibers and the macroscopic deformation, due to the

engagement of higher SEF . To accommodate the applied macroscopic deformation,
SOE model thus requires the matrix phase and undulated fibers to deform more, which
results in earlier engagement of the fibers, in particular for those with large orientation
angles (Fig. 6). This mechanism prevents over stretch of the fibers with low waviness λ0 in
the tissue under large macroscopic deformation (Figs. 5). Since there is limit for the collagen
fibers to stretch beyond the straightening value (Mohanaradhakrishnan et al., 1970), this
prediction is qualitatively consistent with the protective role of the fibers in the tissue.

The most significant advantage of the UF method is the lower computational cost; i.e., it
only requires a simple summation as in Eq. (5). In comparison, the SOE method requires
higher computational expense, albeit it is much more efficient than direct FE simulation.
Therefore, it is useful to investigate the condition in which the UF predictions are accurate.
We conducted UF, SOE and FE simulation of two tissues in which the span of the fiber
orientation distribution was Δ= 0° and 60°, respectively, while Δ of the waviness was zero;
i.e., all fibers have the same waviness λ0=1.6. The predicted macroscopic stress curves for
these two tissues are plotted in Fig. 7 which shows that while Δ= 60°, the UF estimates are
significantly higher than both SOE and FE. The UF estimates, however, are similar to both
FE and SOE results for Δ= 0°. Both SOE and FE predications dramatically decease with
increase of Δ, while UF predications become only slightly lower. It is clear that Δ of the
fiber orientation plays an important role in FE and SOE prediction, while it is much less
significant for the UF upper bound. Thus, for the tissue with distribution of fiber
orientations, Δ= 60° for this case, the UF overestimates the macroscopic stress. For the
tissue with aligned fibers, the UF macroscopic stress is close to both FE and SOE results.
Thus, the UF upper bound of the macroscopic stress is considered accurate for tissue with
very narrow distribution of fiber orientation. This comparison suggests the need for accurate
measurements of fiber orientation to justify the model used.

There are some simplifications that require mention. Firstly, the material parameters E1 and
E2 of the fibers were determined from the study of Holzapfel and Gasser (2000) (see Section
3.2), and then used in all the models for the illustrative example: SOE, UF and FE models.
Thus, given the same morphological data of the fibers, the present UF model should closely
reproduce the homogenization model in Holzapfel and Gasser (2000), whose parameters
were fitted to experimental data. On the other hand, in the SOE and FE models, these
parameters are simply assigned for demonstration of the predictive capability of the models,
rather than fitting experimental data. Since the model in (Holzapfel and Gasser, 2000) is a
UF upper bound, the parameters for the model to fit experimental data are expected to
underestimate actual values. Thus, these parameters give a lower stress curves than the UF
prediction in FE and SOE method. Since the material model and parameters of collagen
fibers are found to be highly variable in the literature (Holzapfel and Gasser, 2000; Zulliger
et al., 2004), mechanical tests on individual fibers such as in (Gentleman et al., 2003;
Gosline et al., 2002; Mohanaradhakrishnan et al., 1970) are necessary to unify the material
model and narrow the physical range of the parameters.
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Secondly, the geometric information used in the present illustrative simulation is idealized
due to the lack of direct experimental measurements of the fiber structures. The SOE model
can take into consideration a full set of statistical microstructural geometric information
including the shape, orientation and distribution of the fibers, and those microstructural
geometries such as the orientation angle have shown important implications on microscopic
deformation and the macroscopic constitutive relation. With advances of imaging technique
such as multi-photon microscopy (MPM), direct measurements of the 3-D fiber structures in
vascular tissue have recently become available (Zoumi et al., 2004), and the statistical data
can be extracted and imported into the homogenization model such as UF and SOE methods.

Finally, the present model takes into consideration two functional microstructures in the
vascular tissue: an effective matrix and distributed collagen fibers. The elastin fibers, which
are also undulated, are considered as part of the effective matrix. This simplification is
motivated by the fact that the elastin, while being stiffer than the ground substance and cells,
are much softer than the collagen fibers and become straightened in the early deformation of
the tissue. Thus, W(0) (F) in Eq. (1) should be considered as a macroscopic SEF of the
effective matrix, and thus the presently employed neo-Hookean form of W(0) is
phenomenological. For more microstructural modeling of W(0) and accurate description of
the deformation of the cells and elastin, a multiscale homogenization method is needed. In
such a multiscale approach, the present effective matrix is considered as an elastin-fiber
reinforced composite, with the ground substance and cells as the ground material. Lanir
(1983) and Lokshin and Lanir (2009) employed this approach while considering both
collagen and elastin as fibrous entities embedded in a fluid-like matrix. When considering
solid-like matrix, the SEF W(0) of the effective matrix is first estimated with use of
homogenization methods which takes into account the constitutive relation, geometries and
distributions of the elastin. Once W(0) is known, the effective SEF W ̄ of the entire tissue is
estimated as illustrated here.

Additionally, the homogenization approaches for W(0) of the effective matrix should be
adjusted to reflect the microstructures of soft tissue. For example, in the media layer of the
vessel, the elastin forms a complex network connected to the cells that can sustain non-
hydrostatic loading such as tension and shear. Therefore, the assumption of solid-like matrix
may be an accurate description. In the adventitial layer, the non-fiber constituents are
fibroblasts and amorphous gel-like ground substances (Holzapfel and Gasser, 2000) that do
not take much non-hydrostatic loading. Thus, the fluid-like matrix as employed in the
models of Lanir et al. (1979, 1983) is appropriate. The in situ microscopic images of elastin
and collagen fibers in the adventitia layer of coronary artery show that large collagen fiber
bundles are seldom cross-linked, while the much thinner elastin fibers show network-like
structures (unpublished observations). These observations support the affine deformation of
collagen fibers in adventitia if the ground substance is considered fluid-like.

6. CONCLUSION
The recently developed second-order micromechanics method for nonlinear composites has
been extended here to estimate the macroscopic constitutive model and microscopic
deformation of tissue with undulated collagen fibers. The method is an integration of the
Hashin-Shtrikman theory of the finite-strain linear thermoelastic comparison composite that
takes into consideration a full set of statistical microstructural geometries and the
interactions, and a variational principle to approach the nonlinearity of the constituent
phases. As such, the present method overcomes the shortcomings of the classical uniform-
field theory to enable more realistic predictions of the macroscopic stress and the statistical
deformation of the wavy collagen fibers, and compares favorably with direct FE numerical
simulations.
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APPENDIX A: THE TENSOR P FOR A PLANAR ELLIPTICAL FIBER
For a planar elliptical fiber, the shape tensor can be written as the diagonal matrix with
respect to the principal axes of fiber as:

(A.1)

where a1, a2 are planar long and short axes respectively, and ε=1/a3 denotes the length of
the principal axis of the ellipsoidal inclusion in the e3 direction (ε → 0 corresponds to the
inclusion becoming infinitely long in that direction). Since fiber orientation is defined by a
rotation angle φ, the shape tensor of the fiber in fixed laboratory frame can be written as:

(A.2)

where R(φ) is rotation matrix. It should be noted that this expression is consistent with
geometric tensor Zs.

In polar cylindrical coordinates, tensor P(r) (Eq. 11) takes the form:

(A.3)

and

(A.4)

where A = |(Z(r))−1 Ξ|2. By changing variables to z′ = z/ε, the integral is rewritten as
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(A.5)

If we consider the limit ε → 0, we obtain:

(A.6a)

(A.6b)

If we integrate on z′, the tensor P(r) for a planar elliptical fiber yields the desired result:

(A.7)

in which ω= a1/a2 is the fiber aspect ratio. For a needle-like fiber, the aspect ratio ω is much
greater than one.

Chen et al. Page 17

J Mech Phys Solids. Author manuscript; available in PMC 2012 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
The geometry of an undulated collagen fiber with total length S0 and straight length l0. The
overall fiber direction is N, which is described by the overall orientation angle θ for 2-D
problem. The undeformed cross-sectional area is described by the long axis r ̄L/n ̄L and short
axis r ̄Sn ̄S.
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Figure 2.
Conceptual demonstration of homogenization method. (a) A representative volume element
of a fibrous tissue at reference state. All the fibers are undulated and exhibit the same
property as the matrix with strain energy function (SEF) W0; (b) When subjected to a
macroscopic F̄, some fibers are straightened and show stiffer property with SEF W (r) as in
Eq. (2b). (c) The effectively homogeneous material with macroscopic SEF W ̄.
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Figure 3.
Discretization of the Beta-distribution of fiber orientation θ. The corresponding cumulative
probability D(x) is given for each region. The span of Beta-distribution is Δ = 60°, and α = β
= 6. The continuous cumulative probability D(x) is discretized by rounding method: D(x)=
p(x+ h/2) − p(x−h/2), in which h is interval between regions.
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Figure 4.
The macroscopic strain energy function (a) and Cauchy stress-stretch relation (b) of fibrous
tissue with 20% randomly distributed collagen fibers. Values are normalized with material
parameter μ. The reference fiber material has waviness λ0 =1.6.
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Figure 5.
The influence of waviness λ0 and orientation angle θ on the statistical average microscopic
stretch of the fibers. (a) The microscopic stretch of matrix phase (solid line) and collagen
fibers (symbols) with waviness λ0 = 1.5, 1.6, 1.7 and 1.8, and orientation angle θ= 0°, while
the uniform-field prediction (dashed line) is independent of the waviness; (b) The
microscopic stretch of collagen fibers with orientation angle θ= 0°, 10° and 20°, and
waviness λ0 =1.6.
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Figure 6.
The macroscopic stretch that straightens the undulated collagen fibers with orientation angle
θ= 0°, 15° and 25°. The uniform-field predictions (dashed line) are consistently higher than
SOE predictions (symbols).

Chen et al. Page 23

J Mech Phys Solids. Author manuscript; available in PMC 2012 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
The macroscopic tensile stress-strain curve of fibrous tissues with 20% randomly distributed
collagen fibers. The Beta-distribution of the fiber orientation angle θ has mean M= 0° and
span Δ= 0° and 60°, respectively. All the fibers are assumed to have the same waviness λ0
=1.6.
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Table 2

The parameters in the strain energy function for each of the constitutive phases in the tissue. The data are
fitted to the constitutive models in Holzapfel and Gasser (2000).

Strain energy function Holzapfel and Gasser (2000) Present model

Matrix W(0) μ(I1 − 3)/2 μ(I1 − 3)/2 − μ ln I3 + (κ/2 − μ/3) (I3 − 1)2

Collagen fibers 

Parameters μ = 0.300kPa μ = 0.375kPa, κ ≫ μ

k1 = 0.562kPa E1 = 5.0 kPa

k2 = 0.7112 E2 = 45.0kPa
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