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ABSTRACT

Objective: To determine the relationship between proton magnetic resonance spectroscopy (1H
MRS) metabolites and �-amyloid (A�) load and the effects of A� load on the association between
1H MRS metabolites and cognitive function in cognitively normal older adults.

Methods: We studied 311 cognitively normal older adults who participated in the population-
based Mayo Clinic Study of Aging from January 2009 through September 2010. Participants
underwent 11C-Pittsburgh compound B (PiB) PET, 1H MRS from the posterior cingulate gyri, and
neuropsychometric testing to assess memory, attention/executive, language, and visual-spatial
domain functions within 6 months. Partial Spearman rank order correlations were adjusted for
age, sex, and education.

Results: Higher PiB retention was associated with abnormal elevations in myoinositol (mI)/creatine
(Cr) (partial rs � 0.17; p � 0.003) and choline (Cho)/Cr (partial rs � 0.13; p � 0.022) ratios. Higher
Cho/Cr was associated with worse performance on Auditory Verbal Learning Test Delayed Recall
(partial rs � �0.12; p � 0.04), Trail Making Test Part B (partial rs � 0.12; p � 0.04), Wechsler
Adult Intelligence Scale–Revised (WAIS-R) Digit Symbol (partial rs � �0.18; p � 0.01), and
WAIS-R Block Design (partial rs � �0.12; p � 0.03). Associations between 1H MRS metabolites
and cognitive function were not different among participants with high vs low PiB retention.

Conclusion: In cognitively normal older adults, the 1H MRS metabolite ratios mI/Cr and Cho/Cr are
associated with the preclinical pathologic processes in the Alzheimer disease cascade. Higher
Cho/Cr is associated with worse performance on domain-specific cognitive tests independent of
A� load, suggesting that Cho/Cr elevation may also be dependent on other preclinical dementia
pathologies characterized by Cho/Cr elevation such as Lewy body or ischemic vascular disease in
addition to A� load. Neurology® 2011;77:951–958

GLOSSARY
A� � �-amyloid; AD � Alzheimer disease; AVLT � Auditory Verbal Learning Test; Cho � choline; Cr � creatine; GM � gray
matter; 1H MRS � proton magnetic resonance spectroscopy; MCI � mild cognitive impairment; MCSA � Mayo Clinic Study of
Aging; mI � myoinositol; MPRAGE � magnetization-prepared rapid gradient echo; NAA � N-acetylaspartate; PiB � 11C-
Pittsburgh compound B; SV � single voxel; WAIS-R � Wechsler Adult Intelligence Scale–Revised.

Biomarkers of preclinical Alzheimer disease (AD) pathology are critical for identifying at-risk
individuals for preventive clinical trials.1 A potential imaging marker for early detection of AD
pathology is proton magnetic resonance spectroscopy (1H MRS), which allows noninvasive
assessment of brain biochemistry. 1H MRS metabolite abnormalities, characterized by in-
creased levels of the glial metabolite myoinositol (mI) and decreased levels of the neuronal
metabolite N-acetylaspartate (NAA), are associated with the severity of AD pathology.2 Both
decreased NAA and increased mI levels have been detected in individuals who have a higher
risk for developing AD, such as patients with amnestic mild cognitive impairment (MCI),3,4

and in presymptomatic carriers of familial AD mutations.5 Furthermore, an elevation in the cho-
line (Cho)/creatine (Cr) ratio predicted future cognitive decline in cognitively normal older adults.6
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Up to 30% of cognitively normal older
adults have increased �-amyloid (A�) deposi-
tion on PET imaging with amyloid ligand
11C-Pittsburgh compound B (PiB).7 Under-
standing the relationship between A� load
and 1H MRS abnormalities in cognitively
normal older adults may give insights on the
biologic basis of 1H MRS metabolite changes
in early AD. We hypothesized that 1H MRS
metabolite abnormalities are associated with
cognitive function in cognitively normal
older adults and that preclinical AD pathol-
ogy is responsible for this association. In a
population-based cohort of cognitively nor-
mal older adults, our primary objective was to
determine the association between 1H MRS
metabolite markers and A� load. Our second-
ary objective was to determine the association
between 1H MRS markers and cognitive per-

formance and whether A� load modifies this
association.

METHODS Participants. We studied 311 cognitively nor-
mal older adults who participated in the population-based Mayo
Clinic Study of Aging (MCSA) from January 2009 through Sep-
tember 2010. MCSA is a prospective population-based study of
older adults without dementia.8 Individuals participating in the
MCSA undergo clinical examinations, a battery of neuropsycho-
logical tests, and MRI/MRS examinations every 15 months.
After completion of each evaluation, a consensus committee
meeting is held involving the behavioral neurologists, neuro-
psychologists, and nurses who evaluated the subjects to assign
a clinical diagnosis to the participant. PET studies have been
offered to all MCSA participants since January 2009 and are
performed within 6 months of the MRI/MRS and cognitive
testing.

Normal cognitive function was judged according to the pub-
lished criteria,9 and the cognitively normal subjects received a
Clinical Dementia Rating of 0. Subjects who had a contraindica-
tion for MRI, such as a pacemaker, or who were unable to par-
ticipate in imaging studies because of severe illness were
excluded. Subjects were not excluded due to neurologic, psychi-
atric, or systemic illnesses to preserve the representativeness of
the study sample.

Standard protocol approvals, registrations, and patient
consents. This study was approved by the Mayo Clinic Institu-
tional Review Board, and informed consent for participation was
obtained from every subject.

Neuropsychological testing. Memory was evaluated by 30-
minute delayed free recall scores for the Wechsler Memory
Scale–Revised Logical Memory and Visual Reproduction sub-
tests and also for the Rey Auditory Verbal Learning Test
(AVLT). Language tests measured naming to confrontation with
the Boston Naming Test and category fluency (i.e., naming ani-
mals, fruits, and vegetables). Attention/executive measures in-
cluded the Trail Making Test Part B and the Wechsler Adult
Intelligence Scale–Revised (WAIS-R) Digit Symbol subtest.
Visual-spatial processing was examined by the WAIS-R Picture
Completion and Block Design subtests. All tests were adminis-
tered by experienced psychometrists and supervised by a clinical
neuropsychologist.

MRI and 1H MRS. MRI and single voxel (SV) 1H MRS
examinations were performed at 3 T using an 8-channel phased
array coil (GE Healthcare). A 3-dimensional high-resolution
magnetization-prepared rapid gradient echo (MPRAGE) acqui-
sition with repetition time/echo time/inversion time � 7/3/900
msec, flip angle 8 degrees, in-plane resolution of 1.0 mm, and a
slice thickness of 1.2 mm was performed for anatomic segmenta-
tion and labeling of PiB PET scans and 1H MRS voxel localiza-
tion. 1H MRS studies were performed using the automated
MRS package Proton Brain Examination/SV. A point-resolved
spectroscopy sequence with repetition time � 2,000, echo
time � 30 msec, 2,048 data points, and 128 excitations was used
for the examinations.10 An 8-cm3 (2 � 2 � 2 cm) 1H MRS voxel
was prescribed on a midsagittal MPRAGE image, including
right and left posterior cingulate gyri.3 Metabolite intensity ratios
calculated at the end of each PROBE/SV acquisition were ana-
lyzed. Quantifying metabolite intensities by referencing to an
internal standard is preferred in clinical 1H MRS, because inter-
nal referencing does not require correction for coil loading, atro-
phy, and relaxation times and can readily be used in clinical

Table 1 Demographic characteristics and the raw scores on individual
neuropsychometric tests in the participants (i.e., study sample),
nonparticipants (i.e., MCSA subjects who did not participate in the
current imaging study), and the entire cognitively normal MCSA
cohort (combined group of PET/MRS study participants and
nonparticipants) from January 2009 through September 2010

PET/MRS study
participants
(n � 311)

PET/MRS study
nonparticipants
(n � 1,236)

MCSA cognitively
normal subjects
(n � 1,547)

No. women (%) 139 (45) 649 (53) 787 (51)

No. of APOE �4 carriers (%)a 65 (25) 221 (23) 286 (24)

Age, y, mean (95% CI) 79.1 (78.6–79.7) 80.3 (80.0–80.6) 80.1 (79.8–80.3)

Education, y, mean (95% CI) 14.3 (14.0–14.6) 14.1 (14.0–14.3) 14.2 (14.0–14.3)

Score, median
(interquartile range)b

AVLT Delayed Recall (0–15) 8 (5, 10) 7 (5, 10) 7 (5, 10)

WMS-R Logical Memory II (0–50) 20 (14, 24) 18 (12, 23) 18 (13, 24)

WMS-R Visual Reproduction
II (0–41) 23 (18, 29) 22 (15, 27) 22 (15, 28)

Trail Making Test Part B (<300) 96 (71, 126) 101 (78, 130) 99 (76, 129)

WAIS-R Digit Symbol (0–93) 43 (35, 50) 42 (35, 49) 42 (35, 49)

Boston Naming (0–60) 56 (54, 58) 56 (52, 58) 56 (53, 58)

Category Fluency (unlimited) 42 (37, 49) 42 (36, 48) 42 (36, 48)

WAIS-R Picture Completion
(0–20) 14 (12, 16) 14 (11, 15) 14 (11, 15)

WAIS-R Block Design (0–51) 24 (19, 31) 22 (17, 27) 22 (18, 28)

Abbreviations: AVLT � Rey Auditory Verbal Learning Test; CI � confidence interval; 1H
MRS � proton magnetic resonance spectroscopy; MCSA � Mayo Clinic Study of Aging;
WAIS-R � Wechsler Adult Intelligence Scale–Revised; WMS-R � Wechsler Memory
Scale–Revised.
a APOE genotype is missing in 17% of the participants, 24% of the nonparticipants, and
22% of the entire MCSA cognitively normal group.
b Median (interquartile range), defined as the 25th and 75th percentiles (quartile 1, quartile
3), are given for neuropsychometric tests. The ranges of possible scores are indicated after
the test names.
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practice with standard equipment and vendor-provided process-
ing software.

PiB PET. PET images were acquired using a PET/CT scanner
(DRX, GE Healthcare) operating in 3-dimensional mode. The
subjects were injected with 292–729 MBq 11C-PiB. A CT image
was obtained for attenuation correction. After a 40-minute up-
take period, a 20-minute PiB scan was obtained. The PiB PET
acquisition consisted of 4 5-minute dynamic frames, acquired
from 40 to 60 minutes after injection. Standard corrections were
applied. The pixel size for PET images was 1.0 mm, and the slice
thickness was 3.3 mm. PiB PET quantitative image analysis was
performed using the fully automated image processing pipeline
as described in detail previously.11 In brief, the method includes
gray matter (GM) sharpening of PET images using MRI and
partial volume correction of CSF and tissue compartments using
statistical parametric mapping 5. PiB PET cortical ratio images
were calculated by dividing each PiB PET GM voxel value by the
median value in the cerebellar GM region in the patient’s MRI
space. The global cortical PiB retention was calculated by taking
the median value of the PiB PET GM ratio from the bilateral
parietal, posterior cingulate, precuneus, temporal, prefrontal, or-
bitofrontal, and anterior cingulate GM regions in the in-house
modified anatomic labeling atlas.11,12

Statistical analysis. We summarize associations between nu-
meric variables using Spearman partial rank order correlations,
which we denote by partial rs.13 This statistic can be thought of as
a nonparametric correlation between 2 variables (e.g., PiB and
Cho/Cr) after partialling out, or controlling for, possible con-
founders. For testing associations involving MRS and PiB, we
control for age and sex. In testing associations involving neuro-
psychological variables, we control for age, sex, and years of edu-
cation. We used rank sum tests for between-group comparisons
and partial rs to quantify associations because some neuropsy-
chological variables were found to be highly non-normal with
skewness and floor or ceiling effects, and the PiB distributions
were highly skewed and possibly bimodal. In simulation studies,
this statistic was found to perform well with highly non-normal
data.13 As with other correlation measures, partial rs values are

bounded between �1 and �1. A general interpretation of partial
rs is that significant values indicate that as values in one variable
increase, values in the other variable tend to increase (or decrease),
after controlling for possible confounders. To estimate and test dif-
ferences in partial rs between subjects found to have global PiB �1.5
vs those found to have global PiB �1.5, we used large-sample meth-
ods based on the estimated difference � 1.96 SE, where SE is the
estimated SE of the difference in partial rs. We used SAS soft-
ware version 9.2.1 and the CORR procedure (SAS Institute Inc.,
Cary, NC; www.sas.com) to calculate estimates and confidence
intervals for rs and differences in rs. Other analyses were per-
formed using R version 2.11 (R Foundation for Statistical Com-
puting, Vienna Austria, www.r-project.org).

RESULTS Study sample. Characteristics of the study
sample are listed in table 1. The demographic fea-
tures of the MRI/MRS and PET study sample (par-
ticipants) were on average similar to those of the
MCSA subjects who were evaluated from January
2009 through September 2010 but did not partici-
pate in the MRI/MRS and PET studies (nonpartici-
pants). The only exception was that the fraction of
female participants was slightly less than the fraction
of female nonparticipants. The cognitive perfor-
mance of the participants was similar to that of the
nonparticipants on neuropsychometric tests; how-
ever, the participants on average performed a few
points better on tests that assessed memory, visual-
spatial function, and attention/executive function.

Correlations between A� load and 1H MRS metabolites.
Statistical summaries of 1H MRS metabolite ratios in
the whole sample of PET/MRS study participants
and in participants with low (�1.5) and high (�1.5)
PiB retention are listed in table 2. The 1H MRS me-
tabolite ratios that correlated with the global cortical
PiB uptake ratio were mI/Cr (Spearman partial rs �

0.17; p � 0.003) and Cho/Cr (Spearman partial rs �

0.13; p � 0.03) after adjusting for age and sex. Al-
though NAA/Cr levels decreased with increasing PiB
retention, there was no association between neuronal
marker NAA/Cr and global cortical PiB retention
(Spearman partial rs � �0.07; p � 0.24). Because
1H MRS metabolite ratios were acquired from the
posterior cingulate gyrus, we also tested the associ-
ations between 1H MRS metabolite ratios and cor-
tical PiB retention in the posterior cingulate gyrus.
The strength of the associations with mI/Cr
(Spearman partial rs � 0.15; p � 0.007) and
Cho/Cr (Spearman partial rs � 0.15; p � 0.01)
was similar to that of the associations we found
with the global cortical PiB retention after adjust-
ment for age and sex (figure 1).

Correlations between 1H MRS and cognition and the
effect of A� load on these correlations. Among the 3
metabolite ratios, only Cho/Cr correlated with cog-
nitive function after adjustment for age, sex, and ed-

Table 2 Statistical summaries of 1H MRS metabolite ratios in the whole
sample of PET/MRS study participants and in participants with low
(<1.5) and high (>1.5) PiB retention

All PET/MRS
study participants
(n � 311)

Participants with
low PiB retention
(n � 209)

Participants with
high PiB retention
(n � 102) pa

NAA/Cr

Mean (95% CI) 1.67 (1.65–1.68) 1.67 (1.66–1.68) 1.66 (1.64–1.68) 0.16

Median (IQR) 1.65 (1.60, 1.72) 1.66 (1.60, 1.73) 1.65 (1.59, 1.70)

Cho/Cr

Mean (95% CI) 0.63 (0.62–0.64) 0.62 (0.61–0.63) 0.65 (0.63–0.66) 0.002

Median (IQR) 0.63 (0.59, 0.67) 0.62 (0.58, 0.66) 0.64 (0.60, 0.69)

mI/Cr

Mean (95% CI) 0.52 (0.52–0.53) 0.51 (0.51–0.52) 0.54 (0.53–0.55) �0.001

Median (IQR) 0.52 (0.48, 0.57) 0.52 (0.48, 0.55) 0.54 (0.50, 0.58)

Abbreviations: Cho � choline; CI � confidence interval; Cr � creatine; IQR � interquartile
range, defined as the 25th and 75th percentiles; mI � myoinositol; MRS � magnetic reso-
nance spectroscopy; NAA � N-acetylaspartate; PiB � 11C-Pittsburgh compound B.
a p Value from rank sum tests comparing participants with high and low PiB retention.
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ucation. A higher Cho/Cr ratio was associated with
worse performance on the AVLT Delayed Recall
(Spearman partial rs � �0.12; p � 0.04), Trail
Making Test Part B (Spearman partial rs � 0.12; p �
0.04), WAIS-R Digit Symbol (Spearman partial
rs � �0.18; p � 0.001), and WAIS-R Block Design
Tests (Spearman partial rs � �0.12; p � 0.03) after
adjustment for age, sex, and education. To determine
the effects of A� load, we tested for the association
between Cho/Cr ratio and cognitive function in the
high and low PiB retention groups separately as dem-
onstrated in figure 2. Higher Cho/Cr levels were as-
sociated with lower WAIS-R Digit Symbol scores in
the high PiB retention group (Spearman partial rs �
�0.25; p � 0.014), but this was only a trend in the
low PiB retention group (Spearman partial rs �
�0.13; p � 0.071). Nonetheless, we did not find
any evidence that the Spearman partial correlations
between 1H MRS variables and neuropsychological
scores were significantly different between partici-

pants with high vs low PiB retention (table e-1 on the
Neurology® Web site at www.neurology.org).

DISCUSSION In a population-based sample of cog-
nitively normal older adults, we showed that 1) ele-
vated Cho/Cr and mI/Cr ratios on 1H MRS
correlate with increased PiB retention, 2) the Cho/Cr
ratio correlates with memory, attention/executive,
and visual-spatial performance, and 3) the correla-
tion between Cho/Cr ratio and cognitive function is
not modified by PiB retention.

We observed high levels of PiB retention (�1.5
global cortical retention ratio) in 33% of the cogni-
tively normal individuals at or older than 70 years.
This is on a par with the 20%–30% rate of high
cortical PiB retention ratio that we and others have
reported in the literature7,11,14,15 but lower than the
47% rate reported in the AD Neuroimaging Initia-
tive cognitively normal cohort.16 The differences are
most likely due to the methods of subject ascertain-

Figure 1 Association between 1H magnetic resonance spectroscopy metabolite ratios and cortical
11C-Pittsburgh compound B (PiB) retention ratio

Scatterplots demonstrate the association between log-transformed global cortical PiB retention ratio and choline (Cho)/
creatine (Cr) and myoinositol (mI)/Cr (upper panels) and between log-transformed posterior cingulate cortical PiB retention
ratio and Cho/Cr and mI/Cr (lower panels).
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ment and recruitment. In the current study, we re-
cruited subjects who had been randomly selected
from the Olmsted County population. This is in
contrast to the previously studied cohorts of cogni-
tively normal volunteers recruited through advertise-
ments or memory clinics,7,11,14,15 which increases the
potential for selection or volunteer bias. Although it
is possible that people with poor general health
would be less likely to participate in imaging studies,
we did not exclude subjects due to neurologic, psy-
chiatric, or systemic illnesses to study a representative
sample of the population. The cognitive function in
participants and nonparticipants in the randomly
sampled population was on average similar, although

participants performed a few points better on tests
that assessed memory, visual-spatial function, and at-
tention/executive function, suggesting minimal non-
participation bias, if any.

Although 1H MRS metabolite ratios were mea-
sured from the posterior cingulate gyri, both global
cortical PiB retention and posterior cingulate gyri
PiB retention similarly correlated with the 1H MRS
metabolite levels. This result is expected given that
the regional variability of PiB retention in cognitively
normal individuals is typically low among regions
that are included in the global cortical PiB retention
ratio (i.e., posterior cingulate gyri and temporal, pa-
rietal, and frontal lobe association cortices).11,14 In

Figure 2 Spearman partial correlations between choline (Cho)/creatine (Cr) and cognitive performance

Black circles indicate partial rs in the whole sample of PET/magnetic resonance spectroscopy study participants, blue
squares indicate the partial rs in participants with low 11C-Pittsburgh compound B (PiB) retention, and red triangles indicate
the partial rs in participants with high PiB retention. The gray lines are the confidence intervals. For the Trail Making Test
Part B, a higher score indicates worse performance. For all other neuropsychometric tests, a lower score indicates worse
performance. A higher Cho/Cr ratio was associated with worse performance on Rey Auditory Verbal Learning Test (AVLT)
Delayed Recall (p � 0.04), Trail Making Test Part B (p � 0.04), Wechsler Adult Intelligence Scale–Revised (WAIS-R) Digit
Symbol (p � 0.001), and WAIS-R Block Design (p � 0.03) after adjustment for age, sex, and education. However, we did not
find any evidence that the Spearman partial rs values between Cho/Cr and neuropsychological scores were significantly
different between participants with high vs low PiB retention (table e-1).
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our sample, we found a modest correlation between
PiB retention and both mI/Cr and Cho/Cr. How-
ever, in an earlier imaging–autopsy correlation study,
only antemortem mI/Cr levels correlated with the
density of neuritic plaques in subjects at autopsy,
who spanned the cognitive spectrum.2 Therefore,
mechanisms underlying the association between PiB
retention and mI/Cr are likely to be different from
the mechanisms underlying the association between
PiB retention and Cho/Cr.

1H MRS findings in patients with MCI3,17,18 and
mild AD19 and in presymptomatic carriers of the fa-
milial AD mutations5 suggest that mI/Cr elevation is
an early event in the progression of AD pathology.
The mI peak consists of glial metabolites that are
responsible for osmoregulation.20–23 mI/Cr levels in-
crease with age in the APP-PS1 mouse model of AD,
coinciding with the timing of microglial activation in
these mice.24 It is thought that the elevation of the
mI peak is related to glial proliferation and astrocytic
and microglial activation in AD.25 In the human
brain, PiB labels both dense core and diffuse plaques,
although labeling of diffuse plaques is less prominent
than that of compact/cored plaques.26–28 Although
most of the amyloid deposits in cognitively normal
individuals are noncompact or diffuse and display
only minimal glial reaction, the dense cored amyloid
deposits in AD are surrounded by clusters of micro-
glia and astrocytes.29 If mI/Cr is a marker of astro-
cytic and microglial activation associated with the
amyloid pathology of AD, then the association we
observed between mI/Cr levels and PiB retention
may be directly related to the presence of compact/
cored A� plaques. Based on this, we might expect to
find an association between higher mI/Cr and worse
cognitive performance. The absence of this expected
correlation requires further investigation.

The only 1H MRS marker that significantly cor-
related with cognitive function in cognitively normal
older adults specifically in the attention/executive,
memory, and visual-spatial function domains was
Cho/Cr ratio. This is in agreement with a previous
population-based study showing that Cho/Cr levels
predict future cognitive decline in cognitively normal
adults.6 The biologic significance of Cho/Cr eleva-
tion in patients with AD and in patients with mild
cognitive impairment is not fully understood.30 The
Cho peak is composed of cytosolic glycerophospho-
choline and phosphocholine, which are the products
of membrane phosphatidylcholine breakdown and
precursors of choline and acetylcholine synthesis.31

One possible explanation for the elevation of Cho in
AD is increased membrane turnover due to neurode-
generation. It has also been hypothesized that the
elevation of the Cho peak is the consequence of

membrane phosphatidylcholine catabolism to pro-
vide free choline for the chronically deficient acetyl-
choline production in AD.32,33 Elevated Cho/Cr
levels in patients with dementia with Lewy bodies
characterized by a profound cholinergic deficit fur-
ther support the hypothesis that elevation in Cho/Cr
may be associated with cholinergic dysfunction.34

Cho/Cr levels decrease with cholinergic agonist treat-
ment in AD, suggesting that downregulation of cho-
line acetyltransferase activity may be responsible for
the elevation of Cho.35 If indeed there is a relation-
ship between Cho/Cr and cholinergic function in
cognitively normal older adults, then Cho/Cr would
be a potential biomarker for the cholinergic response
in preclinical AD.

We did not find a correlation between NAA/Cr
and cognitive function, nor did we find a significant
correlation between NAA/Cr and A� load in cogni-
tively normal older adults. Although the neuronal in-
tegrity marker NAA/Cr level is associated with
cognitive function in patients with AD,36,37 both
cross-sectional and longitudinal studies in patients
with amnestic MCI and AD suggest that the eleva-
tion in mI/Cr and Cho/Cr precedes the decline in
NAA/Cr in the temporal sequence of 1H MRS
changes in AD.30,38 Although NAA/Cr gradually de-
clines in the course of AD starting from the amnestic
MCI stage, NAA/Cr levels have been relatively stable
in cognitively normal older adults during longitudi-
nal studies in different cohorts.39,40 The relative sta-
bility of NAA/Cr in cognitively normal older adults
suggests that the decline in NAA/Cr is associated
with a diagnosis of amnestic MCI or AD but is not a
significant feature of the preclinical disease process.
The lack of an association between NAA/Cr and cog-
nitive function in the cognitively normal subjects of
this study agrees with this hypothesis.

Although the associations between 1H MRS me-
tabolites and A� pathology are modest, our data give
insights on the significance of 1H MRS metabolite
markers in cognitively normal older adults. Our data
showed that Cho/Cr level was associated with cogni-
tive function independent of PiB retention. Cho/Cr
correlated with WAIS-R Digit Symbol scores even in
participants with low PiB retention, suggesting that
the elevation of Cho/Cr is dependent on other
pathophysiologic mechanisms characterized by ele-
vated Cho/Cr levels in addition to A� pathology.
These mechanisms may be increased membrane
turnover due to preclinical vascular disease6 or cho-
linergic dysfunction due to preclinical Lewy body
disease.34 Longitudinal follow-up and postmortem
pathologic confirmation may further clarify the un-
derpinnings of MRS metabolite changes in cogni-
tively normal older adults.
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