
A constrained, total-variation minimization algorithm for low-intensity
x-ray CT

Emil Y. Sidky,a) Yuval Duchin, and Xiaochuan Panb)

Department of Radiology, University of Chicago, 5841 S. Maryland Avenue, Chicago, Illinois 60637

Christer Ullberg
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Purpose: The authors developed an iterative image-reconstruction algorithm for application to

low-intensity computed tomography projection data, which is based on constrained, total-variation

(TV) minimization. The algorithm design focuses on recovering structure on length scales compa-

rable to a detector bin width.

Methods: Recovering the resolution on the scale of a detector bin requires that pixel size be much

smaller than the bin width. The resulting image array contains many more pixels than data, and this

undersampling is overcome with a combination of Fourier upsampling of each projection and the

use of constrained, TV minimization, as suggested by compressive sensing. The presented pseudo-

code for solving constrained, TV minimization is designed to yield an accurate solution to this opti-

mization problem within 100 iterations.

Results: The proposed image-reconstruction algorithm is applied to a low-intensity scan of a rabbit

with a thin wire to test the resolution. The proposed algorithm is compared to filtered backprojec-

tion (FBP).

Conclusions: The algorithm may have some advantage over FBP in that the resulting noise level is

lowered at equivalent contrast levels of the wire. VC 2011 American Association of Physicists in
Medicine. [DOI: 10.1118/1.3560887]
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I. INTRODUCTION

Motivated by the desire to reduce dose1 and the ever-

climbing availability of cheap computation power, much effort

has been directed to developing iterative image reconstruction

(IIR) for application in x-ray computed tomography (CT).1–4

When considering a fixed total x-ray dose for a given scan,

there is a trade-off between intensity-per-view and number-of-

views. Much of the recent work on IIR based on a constrained,

‘1 or total-variation (TV) optimization problem has explored

the sparse-view end of this trade-off.4–14 While the low-inten-

sity/many-views end of this spectrum is generally dealt with

by employing filtered backprojection (FBP) with regularization

or IIR based on a maximum-likelihood (ML) principle, the use

of the ML principle is motivated by the high noise levels in

low-intensity CT. While practical IIR on low-intensity CT

data will certainly need to incorporate some form of ML meth-

ods, we point out in this work that it may also be important to

consider angular undersampling, especially when the structures

of interest are comparable in size with the detector bins. To

address potential angular undersampling, we extend IIR based

on constrained, TV minimization to handle CT data with many

projections and low-intensity (high noise) per projection.

The use of constrained, TV minimization is derived from

recent theory in compressive sensing (CS),15–17 where certain

sparsely sampled linear systems can be inverted accurately

when the underlying object has an approximately sparse gra-

dient magnitude image. The CS-motivated optimization prob-

lem appears to be effective for accurate image reconstruction

from sparse-view data as evaluated by many image quality

metrics.18 The obvious question now is why would we want

to extend constrained, TV minimization to CT data with

many projections? The answer is that no matter how many

projections a CT data set contains, there may always be an

issue with view-angle undersampling. Particularly in diag-

nostic x-ray CT, the bar for image quality is quite high; it is

often expected that detail on the scale of a single detector bin

(0.1–0.25 mm) will be visible. At such scales, images of

structures are often degraded due to the fact that standard CT

scans—even with 1000 projections—contain too few views.

Further evidence of undersampling in CT practice is that

industry has developed a hardware solution, which is a x-ray

source with a flying focal-spot to effectively double the num-

ber of projections.19,20 The reason for the need to push for

higher sampling rates in CT is that the underlying object

function contains edge discontinuities at the interface of dif-

ferent tissues and at the object boundaries. As such, any CT

data set may benefit from the TV-minimization approach for

image reconstruction. For the present case of many views

and low x-ray intensity, the application of TV minimization

requires some technical modification to be able to handle the

noise level in the individual projections and to be able to

recover object structures on the scale of a detector bin.

The main goal of this article is to report a constrained, TV-

minimization IIR algorithm for low-intensity=many-view CT

projection data. The algorithm is derived from a framework
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we have been developing where constrained, TV minimiza-

tion is solved with a combination of steepest-descent (SD), to

reduce image TV, and projection onto convex sets (POCS), to

enforce data error and other image constraints. As the step

size of the SD component of the algorithm is adaptively

adjusted, the algorithm framework is referred to as adaptive

SD-POCS (ASD-POCS). The particular flavor of ASD-POCS

presented here is designed to solve constrained, TV minimiza-

tion accurately in a reasonable number of iterations (100 itera-

tions). This ASD-POCS algorithm is demonstrated with an

XCounter CT scan of a rabbit with a thin wire taped to the

outside of the sample holder. The data are of low intensity

and contain 1878 projections with a 2266� 64 bin detector at

a resolution of 0.1 mm. The thin wire provides a good test for

the image-reconstruction algorithm because this object has a

width similar to the detector bin size. For our purpose, we

take the middle row on the detector from this data set and

focus on 2D fan-beam CT reconstruction with 1878 projec-

tions on a 2266-bin linear detector array. This small object

forces the use of a super-resolution grid, which increases the

ill-posedness of the image-reconstruction problem. This ill-

posedness and the high noise level are dealt with by the pres-

ent implementation of ASD-POCS. In Sec. II, we discuss a

fundamental issue of sampling for IIR in detail; in Sec. III, we

present the ASD-POCS algorithm for low-intensity CT; and

in Sec. IV, the algorithm is applied to the rabbit scan.

II. SAMPLING AND IMAGE REPRESENTATION FOR
HIGH-RESOLUTION CT IMAGING

For FBP, which is an analytic-inverse-based image-

reconstruction algorithm, the data sampling requirements are

guided by the fact that one needs a good estimate of the continu-

ous projection data. Whether or not done explicitly, the dis-

cretely sampled x-ray transform is interpolated to a continuous

function and then fed into an analytic-inverse formula for the x-

ray transform. In the theory for CT sampling, there is much dis-

cussion about satisfying a Nyquist sampling condition for the

data, but, in practice, this condition is used only as an estimate

of resolution for a given CT system. Often objects being scanned

in CT have edge discontinuities, which violate the band-limited

requirement of Nyquist sampling. Furthermore, most implemen-

tations of FBP use linear interpolation in the filtering and back-

projection integrals instead of the sinc-interpolation called for by

the sampling theorem. In any case, the CT sampling issue boils

down to how well the interpolated data function matches the

continuous projection of the underlying object function. The

FBP image can be displayed on a grid of any size because FBP

provides a closed-form expression for the image in terms of the

data. The accuracy of this image, however, depends on the accu-

racy of the interpolation of the data function.

For IIR, which uses a discrete data model, the image reso-

lution depends on two things: (1) The expansion set used to

represent the image and (2) the number of measurements

available to determine the expansion coefficients. The first

step is to design an expansion set for the underlying object

function. For the present work, we choose image pixels as

this expansion set. Fixing the expansion set, the next step to

understanding the sampling is to determine if there are

enough ray-integration measurements to specify the expan-

sion coefficients. The required amount of data to determine a

unique image depends on the number of expansion elements.

To explain this sampling issue for IIR more concretely, we use

the configuration of the XCounter CT of a rabbit-plus-wire.

The projection of the rabbit is confined to the middle 1266

bins of the detector so the data size is effectively 1878 views

by 1266 bins with each bin measuring 0.1 mm in width. We

would like to resolve structure within a 0:1 mmð Þ2 region,

and as a result, the pixels representing the image must be

much smaller than this 0.1 mm square.21 Say, we choose pix-

els of size 0.025 mm so that the 0.1 mm square has 16 subele-

ments. It turns out that the support of the rabbit can be

covered by a 4096� 4096 array of pixels of size

0:025 mmð Þ2. With this choice of parameters, the number of

pixels is much larger than the number of measurements. If

instead we had decided to use 0:1 mmð Þ2 pixels, the discrete

data model would not be an underdetermined linear system. It

is clear, however, that the data model will always be underde-

termined if the pixel size is chosen to be smaller than the de-

tector bin width. Using alternative basis functions does not

resolve this dilemma; whenever it is desirable to recover

structure on the scale of a detector bin, there will be many

more expansion elements than measurements.

Within the framework of optimization-based image recon-

struction, such undersampling problems are resolved by the

exploitation of some kind of prior knowledge. One possible

choice is to exploit sparsity in the gradient magnitude image

and employ constrained, TV minimization. Mathematically,

the constraints of having to agree with the data and image

non-negativity yield a multiplicity of images. However, there

will, in general, be one image, with in this feasible subset,

that has a minimum image TV. While constrained, TV mini-

mization has proved useful for angular undersampling, it may

not be as effective when both the scanning angle and the de-

tector bin direction are undersampled, as is the case here.

A possible solution to the problem of how to employ a

super-resolution grid of pixels comes from analyzing the sam-

pling for FBP. CT sampling is not uniform and the limiting

factor is usually the angular sampling rate. As a prior on the

system, we can assume that the sampling along the projection

does satisfy the Nyquist sampling condition. If this is the case,

we can generate more samples by Fourier interpolation, zero-

padding the projection’s Fourier transform, to augment the

data set to 1878 views by 5064 4� 1266ð Þ bins. With this set

of data, we are no longer undersampled on the direction along

the detector. Now, we can exploit sparsity in the gradient

magnitude image by basing the IIR algorithm on constrained,

TV minimization. Moreover, we can expect this strategy to be

successful, as constrained, TV minimization has been demon-

strated to be effective against angular undersampling.

Although we have chosen a factor of 4, the method can be

extended to even larger subsampling factors because, under

the assumption of Nyquist sampling along the detector, the

number of samples per projection can scale with the pixel grid

size. Another extension of this idea is to use other methods to

interpolate the projections, for example, linear interpolation.
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III. THE ASD-POCS ALGORITHM FOR
LOW-INTENSITY CT

The main new idea of this article is to employ upsampling

on the individual CT projections in combination with con-

strained, TV minimization, which we now briefly describe.

The specific data model for our system is a linear equation,

~g ¼ X~f ; (1)

where ~g represents the augmented projection data, in this

case a vector of length 1878� 5064; ~f is a vector of pixel

values on the super-resolution grid, here 4096� 4096; and X
is the ray-driven model of the x-ray transform where system

matrix element is the intersection length of a given ray

through a given pixel. An IIR algorithm based on con-

strained, TV minimization aims at solving

~f � ¼ arg min ~f
���
���

TV
such that X~f � ~g

���
���
2

� �2; ~f � 0; (2)

where ~f
���
���

TV
is the sum over the gradient magnitude image

and e is a data error tolerance parameter. Because there will

be no image that exactly reproduces the data, due to noise

and other physical factors, there will be a nonzero minimum

data error tolerance emin. The optimization problem in Eq.

(2) has been studied extensively recently, and much litera-

ture has been devoted to algorithms for solving it, see for

example.22 We would also like to highlight POCS-type algo-

rithms described in Refs. 23 and 24, which could be poten-

tially adapted to our system and which could have the

necessary computational efficiency. For the present applica-

tion, any of these algorithms could benefit from upsampling

the CT projection data.

The remainder of this section describes how we adapted

our ASD-POCS algorithm for the present CT sampling con-

ditions. We do not claim that ASD-POCS is better than other

algorithms designed to solve Eq. (2). We continue to develop

ASD-POCS because algorithm efficiency continues to be a

concern in CT as the data set sizes are typically quite large. As

a result, IIR algorithms developed for x-ray tomography are of-

ten run at very low iteration numbers. This is demonstrated in

literature on digital breast tomosynthesis, an x-ray tomographic

modality where IIR is applied in practice.10,25,26 The iteration

number for this application is typically 10 or less.

Up until now, we have not addressed the issue of the high

noise level at each projection. In this work, we do not explic-

itly incorporate a noise model into the design of the IIR algo-

rithm. Instead, the consideration of noise is more of a

practical issue in that it turns out to be difficult to solve the

constrained, TV-minimization problem with a large number

of views and a high noise level per view. The optimization

problem [Eq. (2)] can be difficult to solve for our system;

especially, because we are interested in values of e near emin.

An alternate version of ASD-POCS can be designed to

solve this problem efficiently by converting Eq. (2) to an

equivalent least-absolute-shrinkage-and-selection-operator

(LASSO) optimization problem.27 In the LASSO form, the

term representing the data error goes into the objective func-

tion and the image TV is swapped out as a constraint,

~f � ¼ arg min X~f � ~g
���

���
2

such that ~f
���
���

TV
� t0; ~f � 0; (3)

where the parameter t0 is the maximum allowed image TV.

This parameter replaces e from Eq. (2). To solve Eq. (2), one

selects a t0 and then solves Eq. (3). The value of e corre-

sponding to t0 is found by simply evaluating the objective

function for ~f �. This optimization problem is more amenable

for algorithm design for a few reasons: (1) We are interested

in low e that corresponds to high t0 —thus the feasible set of

images is large; (2) the initial estimate of a zero image has

zero image-TV and is thus in the feasible set from the begin-

ning; and (3) it is efficient to project images into the feasible

set because the constraints can be evaluated quickly for a

given image estimate. The optimality conditions for Eq. (3)

fall into two cases: First, if t0 is chosen too large, then the

image-TV constraint is satisfied with a strict inequality; the

image is non-negative; and the gradient of the data-residual

objective function, masked by the image estimate support,

has zero length. The masking by the image support comes

from the non-negativity constraint.9 Second, the more useful

case, which is equivalent to Eq. (2), is when the image-TV

constraint is active and is therefore satisfied with equality. In

this case, we define an angle a between the gradient of the

data residual, masked by the image support, and the gradient

of the image TV, also masked by the image support. At opti-

mality, this angle should be 180� or cos a ¼ �1 and, of

course, the image should be non-negative. This condition is

derived and described in more detail in Ref. 9. The condition

cos a ¼ �1 is a very sensitive test and is therefore quite use-

ful for the present purposes because we aim at solving Eq. (3)

accurately. The use of a data error plot with iteration number,

as is often done, does not indicate convergence because we

are solving an underdetermined problem and there is a large

multiplicity of images for a given data residual.

For readers interested in the algorithm design, we present

its details here; otherwise, one can skip to Sec. IV. The algo-

rithm designed to solve Eq. (3) is an ASD-POCS algorithm

in that SD with an adaptive step size is used to lower image

TV and POCS is employed to lower the data-residual objec-

tive function. The pseudocode is

1: b :¼ 1:0; bred :¼ 0:7; bmin :¼ 10�5

2: qmin :¼ 1:1; qmax :¼ 2:0;

3: cred :¼ 0:8

4: ~f :¼ 0

5: while b � bmin do

6: ~f0 :¼ ~f
7: for j ¼ 1, Nd do ~f :¼ ~f þ b~Xj

gj�~Xj �~f
~Xj �~Xj

8: ~f :¼ Pos ~f
� �

9: ~p :¼ ~f �~f0
10: q :¼ S TV ~f0 þ q~p

� �
� t0 ¼ 0; q

h i

11: q :¼ min q; qmaxð Þ
12: ~f :¼ ~f0 þ q~p

13: if TV ~f
� �

¼ t0 and q < qmin then

b :¼ b � bred

14: ~fres :¼ ~f
15: dp :¼ ~f �~f0

���
���
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16: if TV ~f
� �
¼ t0 then

17: ~df :¼ r~f TV ~f
� �

18: d̂f :¼ df= ~df
���
���

19: ~f 0 :¼ ~f � dp � d̂f

20: ~f 0 :¼ Pos ~f 0
� �

21: c :¼ 1:0

22: while TV ~f 0
� �

> t0 do

23: c :¼ c � cred

24: ~f 0 :¼ ~f � cdp � d̂f

25: ~f 0 :¼ Pos ~f 0
� �

26: end while

27: ~f :¼ ~f 0
28: end if

29: end while

30: return ~fres

The general idea of the algorithm is to start with a zero

image estimate, which obviously satisfies non-negativity and

the image TV constraints. A POCS step is computed, which

reduces the data error while maintaining non-negativity.

This step is scaled so that the image estimate goes to the

boundary of the feasible space TVð~f Þ ¼ t0. A single SD step

on the image TV is then taken with a line search to ensure

that the image TV is reduced, taking the image estimate to

the interior of the TV constraint. The image estimate after a

single loop of POCS and SD will, on the average, have a

lower data residual and will remain in the interior of the TV

constraint. Repetition of this loop will slide the image along

the boundary of the TV constraint, maintaining non-negativ-

ity, until a minimum data error is reached.

The data error reduction happens at line 7 with the stand-

ard algebraic reconstruction technique (ART) loop, where ~Xj

is the row of the system matrix yielding an estimate for the

ray integration corresponding to the data element gj and Nd

is the number of ray measurements in the augmented data

set; for the results below, Nd ¼ 1878� 5064. Line 8 enfor-

ces non-negativity with the function Pos �ð Þ, which puts zeros

in any component of the argument that are negative; lines 7

and 8 together are POCS. The relaxation factor b at line 7

starts at a value of 1.0 and is reduced aggressively by a factor

bred defined at line 1. Termination of the program is based

on testing b against a minimum value at line 5. The program

is designed so that the current image estimate ~f before ART

at line 7 satisfies the image TV constraint, TVð~f Þ < t0, with

inequality. A POCS step is then computed at lines 7 and 8,

and this step is scaled at line 10 so that the image estimate

satisfies the TV constraint with equality. (The function

S½TVð~f0 þ q~pÞ � t0 ¼ 0; q	 solves the nonlinear equation in

the first argument of S �; �½ 	 for q, the second argument of

S �; �½ 	.) It is here where the LASSO form enters into the algo-

rithm design. It is much more efficient to solve the equation

TVð~f0 þ q~pÞ � t0 ¼ 0 for q than it would be to perform the

equivalent on a data error constraint (data error computation

requires a forward projection which is time-consuming).

If there is no solution at line 10, the value of q is selected

that minimizes the difference magnitude on the left-hand

side; if this is the case, the resulting image TV will be less

than t0 instead of greater. The scale factor q is needed to

bring the TV of the image estimate to t0. This factor is

bounded above at line 11 by the value 2 in order that the

ART step does not increase the data error. The ART step

with a scale factor is added to the image estimate at line 12.

There are two conditions for reducing the relaxation factor at

line 13. The first condition checks if the POCS step with scal-

ing could successfully bring the image estimate to the bound-

ary of the feasible space. This check is necessary because it

is possible that the relaxation factor is reduced too fast. If this

is the case the image estimate will remain in the interior of

the TV constraint after POCS, and in this case, we do not

want to reduce the relaxation factor further. The second

checks if the scale factor q is below a minimum value. This

test effectively adjusts the ART-step size quickly to the prob-

lem at hand. The image estimate is stored in ~fres at line 14;

this will be the final image on the termination of the program.

The magnitude of the image change due to POCS, dp, is

computed at line 15 for use in the adaptive SD on the image

TV. The SD portion of the program at lines 16–28 are exe-

cuted only if the POCS step successfully reached an image

TV of t0. If this is not the case, the image TV will be less

than t0 and we do not want to reduce it further. The adaptive

aspect of the SD step is seen at line 20 where the step search

is started with the value of dp. The choice of algorithm pa-

rameters at lines 1–3 are what we used in Sec. IV.

The critical parameters are bred and qmin. If bred is chosen

too small, then the program terminates too quickly, well

before convergence. Likewise, higher values of qmin cause

the relaxation factor to be reduced more often. A value of

qmin should be greater than or equal to 1.0, with higher val-

ues reducing the number of iterations. Critical is the

cos a ¼ �1 test. A good strategy is to start with aggressive

parameters, where it will be clear whether or not conver-

gence can be achieved within 10–20 iterations. If not, then

bred can be increased or qmin can be reduced. cos a will, in

general, not reach �1.0, but values below �0.5 generally

indicate proximity to the solution. Because of the high

dimensionality of the image coefficient vector, cos a < �0:5
indicates a small error per pixel, if the error is distributed

evenly over all pixels.

We stress that this form of the ASD-POCS algorithm is

designed for IIR in the situation where the desired operating

range for image regularization is relatively weak and the

data error tolerance is near its minimum possible value.

Qualitatively, the resulting images will still have speckle

noise, albeit at a lower level. If images are desired, which

are regularized to the point where the speckle noise is

removed, then it is better to use the basis pursuit [Eq. (2)]

optimization problem to design an algorithm because the

feasible region for the LASSO problem shrinks while that of

the basis pursuit expands.

Finally, because the goal of the algorithm is an accurate

solution to Eq. (3), the resulting images can be regarded as a

function of only the scanning parameters and t0. The details

of the algorithm, both particular parameter settings of meth-

ods for reducing data error or image TV, are only important

for algorithm efficiency and they do not affect the final

image. On the other hand, this means we must take the
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optimality conditions seriously. In Sec. IV, we give a sense

of image dependence on cos a to demonstrate that the error

in solving the LASSO equation is well below the visual

threshold of detecting a difference in the image. A question

arises on how to choose t0. As the application here is to per-

form image reconstruction, which has a lower noise level

than that obtained by standard FBP, the FBP image itself

provides a reference value for t0. In Sec. IV, we show images

for different values of t0, and the optimal value will depend

on imaging task.

IV. RESULTS: LASSO-FORM ASD-POCS APPLIED
TO A RABBIT SCAN WITH A THIN WIRE

We use the rabbit scan with a thin wire to demonstrate the

LASSO form of the ASD-POCS algorithm on finely sampled

projection data with low x-ray intensity. The first set of

results is aimed at illustrating various points about the algo-

rithm itself; we discuss algorithm convergence and the need

to perform upsampling in the projection data. The second set

of results compares the LASSO-form ASD-POCS algorithm

with a standard FBP algorithm over a range of image

regularizations.

IV.A. Illustration of the LASSO-form ASD-POCS IIR
algorithm: Convergence and upsampling

As noted above, the size of the reconstruction problem

solved here is relatively large for a 2D CT system. The

image array consists of 4096� 4096 pixels and the

upsampled data contain 1878� 5064 measurements result-

ing in a system matrix of size 
 107 � 1:6� 107ð Þ. Fortu-

nately, computations on a commodity graphics processing

unit (GPU), originally introduced to the medical imaging

community by Xu and Mueller,28 make possible a substan-

tial acceleration by approximately a factor of 10, for our

case. Even though we have implemented the ART step of

line 7 in CUDA using a Tesla C1060 GPU, this step still

takes a few minutes of computation time. Thus, efficiency of

the ASD-POCS algorithm itself is still important.

To demonstrate convergence of one of the ASD-POCS

reconstructions, we show cos a as a function of iteration

number in Fig. 1. We point out that all other constraints of

Eq. (3), positivity and the TV bound, are satisfied. Within

tens of iterations cos a drops below �0.5, a value which on

the face of it seems rather far from the truly converged value

of �1.0. However, the image space here is large—

16� 106 pixels. With such high dimensionality, a value of

�0.5 results in a fairly accurate image. For example, suppose

that the error from the true solution is a random image fol-

lowing an independent uniform Gaussian distribution. One

can show that the average deviation per pixel from the true

solution is 0.04% for cos a ¼ �0:5. Of course, we do not

expect that the error image follows this model, but at least

this gives a sense of the meaning of cos a. As an independent

demonstration of convergence, we show a series of one

dimensional profiles, through the wire object, corresponding

to different iteration numbers in Fig. 2. The difference in the

profiles between 50 and 100 iterations is imperceptible, even

though cos a drops from �0.31 to �0.74 over this range.

The difference images as a function of iteration seems to

agree with the Gaussian error model. Although we show

only one example here, we have verified similar convergence

properties for this version of ASD-POCS for numerous scan-

ning conditions. Thus, we claim that the images shown in

this article are visually indistinguishable from the true solu-

tion of Eq. (3) for the grayscale ranges shown.

To demonstrate the importance of the projection data

upsampling to squeeze out the resolution contained in the

data, we compare images for three cases shown in Fig. 3.

First, we show the ASD-POCS image obtained when the

image array is 1024� 1024 at a pixel size is 0:1 mmð Þ2, the

same as the detector bin size, and no upsampling of the data

is performed. Second, we increase the image array to

4096� 4096, or, equivalently, decrease the pixel size to

0:025 mmð Þ2, and no upsampling of the data is performed.

Finally, the 4096� 4096 image array is employed with each

projection being upsampled by a factor of 4. All computa-

tions are done at equivalent t0. The small image array is

clearly not up to the task as the wire appears as a single

square. Moreover, the overall impression of the image

appears blotchy—a criticism that has been leveled against

the use of TV in many articles. Going to the larger array,

without data upsampling, improves the image, but the recon-

struction is a difficult inversion problem in this case because

the undersampling factor is not small and both dimensions

of the data space are undersampled relative to the pixel

FIG. 1. Evolution of cos a with iteration number for an example run of the

LASSO-form ASD-POCS algorithm.
FIG. 2. Profile through wire for different iteration numbers of an example

run of the LASSO-form ASD-POCS algorithm.
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array. Inspection of the image shows some peculiarities in

the noise pattern, where widely spaced, large-amplitude,

salt-and-pepper noise appears, and artifacts are clearly visi-

ble in the lower left panel where gaps between the measure-

ment rays cause some striping. High values of the noise

pattern could be mistaken as tiny microcalcifications.

Finally, the high resolution array combined with the

upsampled data appears to properly reconstruct the wire

while not introducing a strange noise pattern or artifacts. We

reiterate here that the upsampling strategy is not only useful

for ASD-POCS; it should help for other algorithms which

aim at solving Eq. (2).

We also point out here that the strategy of upsampling the

data is not the only possibility of improving the condition

number of the discrete imaging model. A strip integration

model for the projection data, where the extended x-ray

source-spot and detector bin are taken into account, would

likely yield decent image quality with the large image array.

However, this seemingly more realistic model does not nec-

essarily model the CT system better than the present upsam-

pling approach because an accurate model of the physics

would include a nonlinear averaging of the rays in the strip

and not just straight summation of the rays contributing to a

single measurement.29 We leave the investigation of alter-

nate projection models to future work.

IV.B. Image regularization through varying t0

The main practical impact of the present ASD-POCS

algorithm comes if there is some potential advantage over

standard fan-beam FBP. Recall that the sampling here is of

high density. Because the sampling is so fine, we do not

expect a dramatic improvement in image quality in going

from FBP to an IIR algorithm similar to what is seen with

CS-style image reconstruction with sparse views (see, e.g.,

Ref. 9). A word about FBP is in order here. The fan-beam

FBP algorithm employed involves no rounding of the ramp

filter, and the corresponding unregularized image is shown

in Fig. 4. The TV of this fan-beam FBP reconstruction,

denoted by tFBP, is computed as a reference value for the

ASD-POCS algorithm. Image reconstruction with ASD-

POCS is performed for values t0 ¼ tFBP=2, tFBP=4, tFBP=8,

and tFBP=16. As t0 is decreased, one can expect that the noise

level in the image will be lower. To find a counterpart FBP

image, we smoothed the unfiltered image with a Gaussian

kernel, where the kernel width is selected so that the wire

amplitude matches the corresponding ASD-POCS image.

The widths of the Gaussian kernels found in this way turn

out to be r ¼ 0:5, 1.2, 2.2, and 2.8, respectively, in units of

FIG. 3. Top: ASD-POCS reconstruction from 1878� 1266 data set to a

1024� 1024 image array. Middle: ASD-POCS reconstruction from same

data set to a 4096� 4096 image array. Bottom: ASD-POCS reconstruction

from 1878� 5064 upsampled data set to a 4096� 4096 image array. For

each image, the grayscale is 0; 0:06½ 	 mm�1 except for the top, left ROI con-

taining the cross section of the wire, which is displayed in a window of

0; 0:1½ 	 mm�1.

FIG. 4. Unregularized FBP image reconstructed onto a 4096� 4096 image

array.
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pixel widths. (The corresponding full width half maximum

values are 1.18, 2.35, 5.18, and 6.59 pixel widths). The com-

parison with smoothed FBP is done because it is a standard

processing technique, but we point out that FBP reconstruc-

tion followed by TV denoising30 is an interesting alternate

approach.

In Figs. 5 and 6, we show comparisons between the ASD-

POCS images with the corresponding regularized FBP image

for the least and greatest, respectively, amount of regulariza-

tion. Additionally, for more quantitative comparison, we

show a series of ASD-POCS profiles through the wire in Fig.

7 and the corresponding FBP profiles in Fig. 8.

We discuss the possible advantage of IIR with the present

ASD-POCS algorithm. We point out again and it is clear

from the images that potential advantages will be small as

we are trying to squeeze out more information from a very

finely sampled system. Nevertheless, there appears to be

some advantage. Comparing Figs. 4 and 5, one can see that

the level of FBP regularization is negligible as both FBP

images appear very similar. The corresponding ASD-POCS

image has some visible advantage as the noise level is lower;

this is most easily seen in the lower left ROIs in the dark

regions of the images. For all the image pairs, the noise level

of the ASD-POCS image is perceptibly lower than the corre-

sponding FBP image. This can be seen quantitatively by

computing the mean and standard deviation of pixel values

in a 200� 200 square just above and to the right of the bone,

where the subject’s gray value is uniform. The resulting val-

ues are displayed in a bar chart shown in Fig. 9. The profile

plots in Figs. 7 and 8 illustrate another possible advantage to

the ASD-POCS algorithm. For ASD-POCS, the wire profiles

maintain their width as image TV is decreased, while the

Gaussian smoothed FBP profiles show spreading with

increasing regularization. This trend in the wire profile is

FIG. 5. Top: FBP image convolved with a Gaussian of width r ¼ 0:5. Bot-

tom: ASD-POCS reconstruction for t0 ¼ tFBP=2. For each image, the gray-

scale is 0; 0:06½ 	 mm�1 except for the top, left ROI containing the cross

section of the wire, which is displayed in a window of 0; 0:1½ 	 mm�1.

FIG. 6. Top: FBP image convolved with a Gaussian of width r ¼ 2:8. Bot-

tom: ASD-POCS reconstruction for t0 ¼ tFBP=16. For each image, the gray-

scale is 0; 0:06½ 	 mm�1 except for the top, left ROI containing the cross

section of the wire, which is displayed in a window of 0; 0:1½ 	 mm�1.

FIG. 7. The solid curves represent the wire profile for ASD-POCS images

for different values of t0. The dotted curve is the same profile for the unregu-

larized FBP image.
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also apparent in the 2D image of Fig. 6. In all the ASD-

POCS images the smallest ROI containing the wire cross

section still has some perceptible graininess. This graininess

can be effectively removed by further upsampling the data

and reconstructing onto an 8192� 8192 image array. We

found, however, that the resulting gain in image quality is

minimal for our purpose.

V. CONCLUSION

We have developed a CS-style image-reconstruction

algorithm for finely sampled projection data obtained with a

low-intensity x-ray beam. The main goals of the IIR algo-

rithm are to provide control over the image regularity and to

image small objects of width comparable to the detector bin.

The technical points to achieve these goals are (1) an upsam-

pling scheme for the projection data, which takes advantage

of the asymmetry in data sampling, namely, that recognizes

that the bin direction of the data is sampled more finely than

the angular direction, and (2) conversion of the constrained,

TV-minimization problem to a LASSO formulation for the

purpose of deriving an alternate ASD-POCS algorithm,

which efficiently solves the corresponding optimization

problem to a high degree of accuracy. The resulting algo-

rithm appears to achieve the above mentioned goals.

Anecdotally, there have been complaints from radiolog-

ists that IIR images yield unrealistic looking images, which

has been blamed on the different noise patterns from IIR and

FBP algorithms. We speculate that the real issue is that IIR

algorithms implemented on commercial scanners reduce the

image resolution to gain in noise reduction in a way that is

difficult to control. Objects of size on the order of the detec-

tor bin are highly distorted in standard IIR implementations.

The presented ASD-POCS algorithm allows for more control

over this trade-off. We point out that the upsampling idea

can be used in conjunction with any IIR algorithm—a sub-

ject for future investigation. Another direction which the cur-

rent work can be extended is the inclusion of more physics

of the imaging process in the LASSO optimization problem;

for example, a data error term could be designed to more

closely match the noise model of this CT system. After

accounting for a realistic noise model in the data divergence

term, we will validate the ASD-POCS algorithm on a series

of computer-simulated data sets, where the impact of noise

model and angular undersampling can be unambiguously

quantified.

Addressing now the main practical issue of dose reduc-

tion while maintaining image quality, we have developed an

IIR algorithm for the extreme where IIR should have the

least impact—namely, fine sampling in the projection angle.

Fixing the overall dose, but decreasing the number of views

should result in equal or better image quality for ASD-POCS

as it is originally designed for sparse-view sampling. Thus,

for a given image task, there is a potential not only to reduce

dose but also to eliminate the need for expensive flying

focal-spot technology on the x-ray source.31 This point, how-

ever, is presently speculation as it requires a more in-depth

study on data sets with similar exposure and different num-

bers of projections and there may be an additional practical

issue from blurring if the x-ray source moves at a constant

rotation rate with fewer sampling intervals.
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