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We consider the Brownian motion of a nanoparticle in an incompressible Newtonian fluid medium

(quiescent or fully developed Poiseuille flow) with the fluctuating hydrodynamics approach. The

formalism considers situations where both the Brownian motion and the hydrodynamic interactions

are important. The flow results have been modified to account for compressibility effects. Different

nanoparticle sizes and nearly neutrally buoyant particle densities are also considered. Tracked

particles are initially located at various distances from the bounding wall to delineate wall effects.

The results for thermal equilibrium are validated by comparing the predictions for the temperatures

of the particle with those obtained from the equipartition theorem. The nature of the hydrodynamic

interactions is verified by comparing the velocity autocorrelation functions and mean square

displacements with analytical and experimental results where available. The equipartition theorem

for a Brownian particle in Poiseuille flow is verified for a range of low Reynolds numbers. Numerical

predictions of wall interactions with the particle in terms of particle diffusivities are consistent with

results, where available. VC 2011 American Institute of Physics. [doi:10.1063/1.3611026]

I. INTRODUCTION

A significant aspect of modeling nanoparticle motion in

an incompressible fluid is the accurate evaluation of the associ-

ated momentum transport with or without bulk fluid flow. The

modeling should account both for the Brownian motion and

the hydrodynamic interactions and resolve the translational

and rotational motions that arise. Effects of particle locations

in the flow domain and of the presence of the wall must be

delineated. The effects on particle diffusivity must be resolved.

The theory of non-equilibrium statistical mechanics indi-

cates that the influence of thermal fluctuations on a mechanical

system can typically be represented through the addition of

thermal forcing terms to the equations governing the system.

The thermal forcing terms following the statistics of a white

nose rapidly decorrelate in time. The related hydrodynamics,

however, involves a non-trivial structure of correlations

between the state variables. In order to achieve thermal equi-

librium, the correlations should be such that there is an energy

balance between the thermal forcing and the dissipation of the

system as required by the fluctuation-dissipation theorem.1,2

In Brownian simulations, there exist two different

approaches to couple the thermal fluctuations with the hydro-

dynamic interactions. These are Langevin approach3 and fluc-

tuating hydrodynamics approach.4 In the present study, we

adopt the fluctuating hydrodynamics approach. This essen-

tially consists of adding stochastic stresses to the stress tensor

(random stress) and stochastic fluxes to the heat flux (where

an energy equation is present in the formulation).5

Over the past decades, numerical simulations of the fluc-

tuating hydrodynamics approach have been carried out

employing the finite volume method,6,7 lattice Boltzmann

method (LBM),8–14 and stochastic immersed boundary

method.15 A coarse-graining methodology has been developed

to bridge molecular dynamics and fluctuating hydrodynamic

simulations.16,17 Serrano and Español18 and Serrano et al.19

have solved the fluctuating hydrodynamic Navier-Stokes

equations without a particle using the finite volume Lagran-

gian discretization in a moving Voronoi grid. They have

ensured that their discretized governing equations cast in the

general equation for non-equilibrium reversible=irreversible

coupling (GENERIC) formalism20,21 satisfies the fluctuation-

dissipation theorem. The GENERIC formalism proposed by

Grmela and Öttinger20 and Öttinger and Grmela21 ensures the

correct treatment of thermal fluctuations and fluctuating

hydrodynamics. Patankar has simulated the thermal motion of

two dimensional particles in a stationary medium with the

finite element method (FEM).11 Sharma and Patankar6 have

employed a distributed-Lagrangian multiplier (DLM) based

finite volume method to simulate the thermal motion of par-

ticles. The computational domain is periodic in all directions

and the thermal fluctuations are included in the fluid equations

using random stress tensor. They have validated the numerical

results by comparison with analytical expressions. Nie and

Lin14 have employed the fluctuating LBM to simulate Brown-

ian motion of particles and have validated their numerically

obtained velocity autocorrelation function (VACF) by com-

parison with theoretical predictions. It is shown that the
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temperature characterizing translational motion of the particle in

three coordinate directions agrees with each other after a lapse

of time, but the predicted particle temperature is 15% lower

than the effective temperature of the fluid fluctuations. This is in

accord with the earlier findings of Ladd,10 who first proposed

the use of fluctuating LBM. Adhikari et al.12 have established

agreement between fluctuation and dissipation by introducing

ghost noise to the fluctuating LBM in the formulation (see

Dünweg and Ladd13 for further discussions of Ref. 12).

In this paper, we employ a direct numerical simulation

(DNS) based on arbitrary Lagrangian-Eulerian (ALE) FEM

(Refs. 22–25) to accurately resolve the complicated fluid-par-

ticle interfacial motions. Both translational and rotational

motions of a nanoparticle in a (i) stationary fluid medium and

(ii) Poiseuille flow are investigated. Heat flux (energy equa-

tion) is not considered. An unstructured finite element mesh,

generated by the Delaunay-Voronoi method,26 has enabled a

significantly higher number of mesh points in the regions of

interest (i.e., close to the particle and wall surfaces compared

to the regions farther away). This feature also keeps the over-

all mesh size computationally reasonable even with a nano-

particle moving in a very large domain.22,23,27–29 Thermal

fluctuations are included in the equations of linearized hydro-

dynamics by adding stochastic components to the stress ten-

sor as white noise in space and time.4,30 As noted in Español

et al.,30 “even though the original equations of fluctuating

hydrodynamics are written in terms of stochastic partial dif-

ferential equations, at a very fundamental level, the inclusion

of thermal fluctuations requires always the notion of a

“mesoscopic cell” in order to define the fluctuating

quantities.” In Español et al.,30 it is shown that fluctuating

hydrodynamic equations discretized in terms of finite element

shape functions based on the Delaunay triangulation satisfy

the fluctuation-dissipation theorem. The numerical schemes

for the implementation of thermal fluctuations in the Landau-

Lifshitz Navier-Stokes equations are expected to perform

very delicate tasks31,32 and obtaining accurate numerical

results is a challenging endeavor.

It has been extensively discussed in the literature that

the relation between fluctuation and dissipation is impacted

by the compressibility of the fluid.33–36 However, our objec-

tive is to keep the numerical model within the frame work of

an incompressible liquid assumption. To account for com-

pressibility, following Zwanzig and Bixon,34 we modify the

numerically predicted results to take into account the energy

carried by sound waves. For real liquids of technological in-

terest, such as water, blood etc., a numerical route to simu-

late the hydrodynamics is only practical by invoking this

feature. With a finite element model, the accounting for the

compressibility in the liquid medium would be very compli-

cated, even if we knew the highly non-trivial equation of

state. Furthermore, the approach employed in this paper is

easily extendable to several biological applications.37,38

The chief motivation for the present study is the simula-

tion of a nanoparticle thermal motion in a fluid flow that

occurs in targeted drug delivery (TDD) and microparticle

flows, such as the motion of a particle through a nanochan-

nel.39,40 In TDD, the drug carrying nanocarriers are intravasc-

ularly introduced into the vasculature.41–43 The drug-laden

nanocarriers are functionalized with ligands (e.g., antibodies)

and recognize specific determinants (receptors) expressed by

endothelial cells.38,44 The receptor-ligand binding interac-

tions at the involved sites define the efficacy of nanocarrier

arrest by the targeted cell. Since the drug-laden nanocarrier,

essentially neutrally buoyant, is delivered to a therapeutic tar-

get via the vasculature, its motion in a bloodstream has to be

determined accurately. In order to achieve this goal, as a first

step, it is necessary to determine the motion of a nanocarrier

(due to thermal and hydrodynamic effects) in an incompressi-

ble Newtonian fluid. The numerical methodology developed

in this study is aimed at that objective.

The paper is organized as follows. Section II describes the

mathematical formulation of the problem. Section III explains

the Galerkin finite element formulation of the momentum

equations and the generation of random stress tensor for a tet-

rahedron finite element mesh. Numerical results and discus-

sions along with the validations are presented in Sec. IV, and

the conclusions are in Sec. V.

II. FORMULATION OF THE PROBLEM

The Brownian motion of a nanoparticle in an incompres-

sible Newtonian fluid contained in a horizontal circular vessel

is considered. The fluid and particle equations are formulated

in an inertial frame of reference with the origin coinciding

with the center of the vessel (Figure 1). The diameter, D, and

the length, L, of the vessel (tube) are very large compared to

the particle size, d, the diameter of the particle. Two different

cases are considered: a fluid at rest in a cylindrical vessel and

a fully developed Poiseuille flow in a circular tube. Initially,

a nanoparticle is introduced either at the vessel (tube) center-

line or at suitably chosen locations away from the center line

towards the bounding wall. In the numerical simulation for

Poiseuille flow, the particle is initially fixed at the starting

location and the flow is allowed to evolve until the flow is

FIG. 1. Schematic representation of a nanoparticle in a cylindrical vessel

(tube) (not to scale). Diameter of the tube: D ¼ 10 lm; length of the tube:

L ¼ 10 lm; diameter of the nanoparticle: dð500 nm � d � 1000 nmÞ;
viscosity of the fluid: l ¼ 10�3 kg=ms; density of the fluid and the nanopar-

ticle: qðf Þ ¼ 103 kg=m
3

and 990 kg=m
3 � qðpÞ � 1010 kg=m

3
. Particle loca-

tions away from the center are not displayed in this figure.
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fully developed in the entire domain.28 Then, the particle is

released and allowed to move. This way, the velocity profiles

in the flow cases are fully developed in the domain of inter-

est, and the calculations are effected in the fully developed

regime. No body force is considered either for the particle or

for the fluid domain. At time t ¼ 0, the nanoparticle is sub-

jected to Brownian motion in each case. The motion of the

nanoparticle is determined by the hydrodynamic forces and

torques acting on the particle and the wall interactions.

A. Governing equations and boundary conditions

The motion of an incompressible Newtonian fluid satis-

fies the conservation of mass and momentum given by

r � u ¼ 0; (1)

qðf Þ
Du

Dt
¼ r � r; (2)

where u and qðf Þ are the velocity and density of the fluid,

respectively, and r is the stress tensor. The material deriva-

tive of the velocity in Eq. (2) is given by

Du

Dt
¼ @u

@t
þ u � rð Þu: (3)

For a Newtonian fluid, the stress tensor is given by

r ¼ �pJþ 2lD½u� þ S; D½u� ¼ 1

2
½ruþ ruð ÞT �; (4)

where p is the pressure, J is the identity tensor, l is the

dynamic viscosity, D½u� is the rate of deformation tensor,

and S is the random stress tensor. S is assumed to be a Gaus-

sian with

Sijðx; tÞ
� �

¼ 0 &

Sikðx; tÞSlmðx0; t0Þh i¼ 2kBTl dildkmþdimdklð Þdðx�x0Þdðt� t0Þ;
(5)

where h i is the ensemble average, kB is the Boltzmann con-

stant, T is the absolute temperature, dij is the Kronecker delta,

and the Dirac delta function dðx� x0Þ denotes that the com-

ponents of the random stress tensor are spatially uncorrelated

(Markovian). The right hand side of Eq. (5) shows that the

mean and variance of the thermal fluctuations are chosen to

be consistent with the fluctuation-dissipation theorem4,20,21,45

for an incompressible fluid. By including this stochastic stress

tensor due to the thermal fluctuations in the governing equa-

tions, the macroscopic hydrodynamic theory is generalized to

include the relevant physics of the mesoscopic scales ranging

from tens of nanometers to a few microns.

For a rigid particle suspended in an incompressible

Newtonian fluid, the translational motion of the particle sat-

isfies Newton’s second law,

m
dU

dt
¼ F; (6)

and the rotational motion satisfies the Euler equation,

dðIxÞ
dt
¼ T; (7)

where m is the mass of the particle, I is its moment of inertia,

and U and x are the translational and angular velocities of

the particle, respectively. The hydrodynamic force F and the

torque T acting on the particle are given by

F ¼ �
ð
@Rp

r � n̂ ds; T ¼ �
ð
@Rp

x� Xð Þ � r � n̂ð Þds; (8)

where X is the position of the centroid of the particle,

x� Xð Þ is a vector from the center of the particle to a point

on its surface, @Rp denotes the particle surface, and n̂ is the

unit normal vector on the surface of the particle pointing into

the particle.

The initial conditions for the problem are

Uðt ¼ 0Þ ¼ 0 uðt ¼ 0Þ ¼ 0 on R0 � @Ri; (9)

and the boundary conditions are given by

u ¼ up on @Ri; (10)

r � n̂ ¼ 0 on @Ro; (11)

u ¼ Uþ x� x� Xð Þ on @Rp; (12)

where up is the prescribed velocity (zero or fully developed

Poiseuille flow inlet profile), R0 is the domain occupied by

the fluid, and @Ri and @Ro are the inlet and outlet bounda-

ries, respectively. The stochastic governing equations (1)–(7)

along with the initial and boundary conditions (9)–(12) are

solved numerically. It is assumed that there is no body torque

acting at any point in the fluid and the viscous stress tensor,

r, is symmetric. The fluctuation-dissipation theorem for the

random stress tensor of the fluid requires that S is symmetric

as well.21,46

III. COMBINED FLUID-SOLID WEAK FORMULATION

Owing to the complex nature of the shape of the fluid-

particle domain, finite-element techniques are particularly use-

ful for discretizing the governing fluid equations. For this pur-

pose, a weak formulation that incorporates both the fluid and

particle equations (1), (2), (6), and (7) is considered.22,23,27,29

Let, V be the function space given by

V ¼ V ¼ ðu;U;xÞju 2 H1; ðU;xÞ 2 R3;

u ¼ Uþx� x�Xð Þ on @Rp and u ¼ up on @Ri:

( )
:

(13)

Here, Hilbert space H1 is defined on the fluid domain, and

the particle velocities belong to the three dimensional real

space R3. The square integrable L2 -functions in an L2 space

is chosen for the pressure and is denoted by

P ¼ fpjp 2 L2g: (14)

The test function V (variation) is considered as follows

to derive the weak formulation for the combined fluid-particle

system,

~V ¼ ð~u; ~U; ~xÞ 2 V0: (15)

073602-3 Nanoparticle Brownian motion Phys. Fluids 23, 073602 (2011)



Here, the variational space V0 is the same as V, except that

u ¼ 0 on @Ri. Multiplying Eq. (2) by the test function for the

fluid velocity, ~u, and integrating over the fluid domain at

time t givesð
R0

qðf Þ
Du

Dt
� ~u dV þ

ð
R0

r : r~udV �
ð
@Rp

r � n̂ð Þ � ~u ds ¼ 0:

(16)

It should be noted that the variations for each variable intro-

duced above are arbitrary except on the particle surface, where

the no-slip boundary condition (12) enforces the equality of

variations of fluid and particle velocities given by the follow-

ing relation

~u ¼ ~Uþ ~x� x� Xð Þ on @Rp: (17)

Using the equations of motion for the particles (6) and (7),

the surface integral in Eq. (16) may be rewritten as follows:

�
ð
@Rp

r � n̂ð Þ � ~u ds ¼ �~U �
ð
@Rp

r � n̂ð Þds

� ~x �
ð
@Rp

x� Xð Þ � r � n̂ð Þds

¼ ~U � m
dU

dt

� �
þ ~x � I

dx

dt

� �
: (18)

Substituting for stress tensor r from Eqs. (4) and (18) into

Eq. (16), the combined fluid-particle momentum equation

for the fluctuating hydrodynamics method is given byð
R0

qðf Þ
Du

Dt
� ~udV �

ð
R0

p r � ~uð ÞdV

þ
ð

R0

l ruþ ruð ÞT
h i

þ S
n o

: r~u dV

þ ~U � m
dU

dt

� �
þ ~x � I

dx

dt

� �
¼ 0: (19)

The weak formulation for the mass conservation equation is

obtained in a similar fashion. Let, ~p be the variation of pres-

sure p such that ~p 2 P. Here, the function space for both ~p
and p are chosen to be the same. The weak form of Eq. (1) is

then given by ð
R0

~p r � uð ÞdV ¼ 0: (20)

The domain movement is handled by an ALE scheme.

The details of mesh, its movement techniques, temporal dis-

cretization of time derivatives, and spatial discretization of

the domain are described below.

A. Random stress tensor for the tetrahedral finite
element mesh

Following Hu,22 Hu et al.,23 and Hughes et al.,47 the

computational domain is covered by a finite element mesh

generated using Delaunay-Voronoi methods. In this study,

the fluid domain is discretized by quadratic irregular tetrahe-

dral elements. Since the stochastic stresses in Eq. (19) are

fundamental to this problem, we now describe the procedure

for numerical simulation of the random stresses associated

with the unstructured tetrahedron mesh while conserving the

volume. A typical element is shown in Figure 2. Figure 3

shows a triangular mesh discretizing the surface of the fluid

domain (cylinder) and the surface of the nanoparticle. The

discretization of the fluid domain changes at each time step

of the simulation due to the motion of the nanoparticle.

Let V be the total volume of the system. The volume of

each quadratic tetrahedral element Ve depends on the state of

the mesh. The variance of the random stress tensor (Eq. (5))

depends on this volume element. The random stress tensor is

generated per tetrahedral element based on its volume such

that total volume of the system

V ’
XNe

i¼1

VðiÞe (21)

is conserved, where VðiÞe represents the volume of the ith tet-

rahedral element and Ne is the number of elements in the fi-

nite element mesh. Each quadratic tetrahedron element has

four vertices (numbered 1� 4 in Figure 2) and six middle

nodes (numbered 5� 10 in Figure 2).

The random stress tensor S from Eq. (5) in each tetrahe-

dral element becomes

hSxxi ¼ hSyyi ¼ hSzzi ¼ 0;

hSxyi ¼ hSyzi ¼ hSzxi ¼ 0;

hS2
xxi ¼ hS2

yyi ¼ hS2
zzi ¼

4kBTl
VeDt

;

hS2
xyi ¼ hS2

yzi ¼ hS2
zxi ¼

2kBTl
VeDt

;

(22)

where Dt is the time step for the numerical simulation. Recall

that the random stress tensor S is present in Eq. (19). As

FIG. 2. Representation of a 10-node tetrahedron.

FIG. 3. Finite element surface mesh of a cylindrical tube with one spherical

nanoparticle.
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stated earlier, an unstructured finite element mesh enables a

significantly higher number of mesh points near the nanopar-

ticle and wall surfaces compared to regions far away. As a

result, the volume of the tetrahedral elements closer to the

particle is much smaller than the elements far away.

B. Mesh movement: ALE technique

When a nanoparticle moves in a fluid medium, the do-

main of interest occupied by the fluid is irregular and

changes with time. An ALE technique has been used to han-

dle the movement of this domain. The material derivative of

uðx; tÞ in an ALE formulation is given as

Du

Dt
ðx; tÞ ¼ du

dt
þ ðu� umÞ � r½ �u; (23)

where

du

dt
¼ @

@t
uðxðu; tÞ; tÞ

����
u is fixed

and
d

dt
xðu; tÞ ¼ um (24)

are, respectively, the referential time derivative and the mesh ve-

locity (domain velocity). The function xðu; tÞ is the mapping

from the fixed referential frame to the spatial domain R0ðtÞ, do-

main occupied by the fluid at a given time instant t. When the

referential and spatial domains coincide at the current instant,

um ¼ 0, the referential time derivative in Eq. (23) reduces to the

local Eulerian time derivative. When the mesh velocity coin-

cides with the particle velocity, um ¼ u, the referential time de-

rivative in Eq. (23) regains the Lagrangian time derivative.

The mesh velocity in Eq. (24) is arbitrary in the interior

of the domain. The mesh velocity on the boundaries has to

follow the motion of the particle and the motion of the con-

fining fluid geometry. The movement of all the interior verti-

ces is computed using the Laplace’s equation

r � eerumð Þ ¼ 0 in RðtÞ; (25)

um ¼ Uþ x� x� Xð Þ on @Rp; (26)

um ¼ U � î
� �

î on @Ri & @Ro; (27)

um ¼ U � î
� �

î on @Rw; (28)

where @Rw denotes the tube wall and î is a unit vector along

the axis of the tube. The volume of the tetrahedral elements

closer to the particle is much smaller than the elements far

away. Here, function ee controls the deformation of the mesh,

such that the regions away from the particle absorb most of

the deformation, while the region close to the particle is rela-

tively stiff. We choose ee ¼ 1=Ve, where Ve is the volume of

the quadratic tetrahedral element. Similarly, the acceleration

field, amðx; tÞ, of the mesh vertices is chosen to satisfy

r � eeramð Þ ¼ 0 in RðtÞ; (29)

am ¼
dU

dt
þ dx

dt
� x� Xð Þ � x� U on @Rp; (30)

am ¼
dU

dt
� î

	 

î on @Ri & @Ro; (31)

am ¼
dU

dt
� î

	 

î on @Rw: (32)

This mesh acceleration field is used for the second order

mesh movement scheme. The position of the particle and the

nodal points of the mesh are updated explicitly. Particle and

fluid velocities are calculated semi-implicitly. This explicit-

implicit scheme is numerically unconditionally stable. The

weak formulations for Eqs. (25) and (29) are obtained in a

way similar to that outlined in Sec. III.

C. Spatial and temporal discretization

A numerical simulation at a mesoscopic scale involving a

particle in a fluid could be based on a discretization of the

Eqs. (1)–(7). However, the discrete forms have to satisfy the

fluctuation-dissipation theorem.6,18–21,48,49 Español and

Zúñiga50 and Español et al.30 have shown that a well behaved

set of discrete equations obtained in terms of the finite element

shape functions based on the Delaunay triangulation con-

serves mass, momentum, and energy while ensuring thermo-

dynamic consistency. Furthermore, Español et al.30 have cast

their discrete hydrodynamic equations in the GENERIC struc-

ture and observed that the resulting reversible matrix does not

satisfy the Jacobi identity and the degeneracy conditions of

GENERIC structure.20,21 But, these conditions are of the order

of the cell size and vanish in the continuum limit.30 In effect,

Español et al.30 have shown that the finite element discretiza-

tion procedure based on Delaunay triangulation is an appropri-

ate procedure for discretizing the compressible fluctuating

Navier-Stokes equations. In the present study, we obtain the

discrete hydrodynamic equations using finite element shape

functions based on the Delaunay-Voronoi tetrahedrizations.

The fluid domain is discretized by quadratic tetrahedral fi-

nite-elements (10 nodes defined per tetrahedron with 10 basis

functions that are second-order polynomials; see Figure 2). The

discrete solution for the fluid velocity is approximated in terms

of piecewise quadratic functions and is assumed to be continu-

ous over the domain (P2 elements). The discrete solution for

the pressure is taken to be piecewise linear and continuous (P1

element). This P1=P2 element for the pressure and the velocity

is consistent with the Ladyzhenskaya-Babuska-Brezzi (LBB) or

inf-sup condition and yields convergent solutions.22,23 The pres-

sure and the velocities of the fluid are associated with each

node in the system, and the thermal noise (random stresses) is

associated with each subelement in the system. The white noise

property of stochastic stress tensor is implemented as an ab-

sence of correlations between different subelements.30

The time derivatives in the combined fluid-solid weak for-

mulation are discretized using a finite difference second-order

Crank-Nicolson scheme. The time derivatives in Eq. (19) are

replaced by the following expressions:

Du

Dt
ðx; tnþ1Þ � 2

uðx; tnþ1Þ � uðx0; tnÞ
Dt

� du

dt
ðx0; tnÞ

þ uðx; tnþ1Þ � umðx; tnþ1Þð Þ � r½ �uðx; tnþ1Þ;
(33)

dU

dt
ðtnþ1Þ � 2

Uðtnþ1Þ � UðtnÞ
Dt

� d

dt
UðtnÞ; (34)
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d

dt
Ixð Þðtnþ1Þ � 2

Ixð Þðtnþ1Þ � Ixð ÞðtnÞ
Dt

� d

dt
Ixð ÞðtnÞ; (35)

where Dt ¼ tnþ1 � tn and x ¼ x0 þ umðx0; tnÞDtþ amðx0; tnÞ
ðDtÞ2

2
. In order to prevent the distortion of the shape of the

rigid particle during simulation, the nodes on the particle sur-

face are reset to the surface at each time step.

The translational and rotational motions of the particle

are updated using a second order explicit method as

Xðtnþ1Þ ¼ XðtnÞ þ DtUðtnÞ þ
ðDtÞ2

2

dU

dt
ðtnÞ; (36)

hðtnþ1Þ ¼ hðtnÞ þ DtxðtnÞ þ
ðDtÞ2

2

dx

dt
ðtnÞ: (37)

For a given finite element mesh and with the finite ele-

ment interpolation functions as described above, the com-

bined fluid-solid weak formulations (19) and (20) would

reduce to a nonlinear system of algebraic equations, which is

solved by a Newton-Raphson algorithm. Similarly, the weak

formulations for the mesh velocity (25) and the mesh accel-

eration (29) are also reduced to linear systems of algebraic

equations. These linear system of algebraic equations are

solved using a biconjugate gradient stabilized algorithm.51

D. Time scales

The time scale for the computation of the Brownian

motion of the particle may be derived from evaluating the var-

ious time scales (macroscopic and mesoscopic) governing the

problem. The different time scales involved in this study are

(i) hydrodynamic time scale, s� ¼ a2=� (the time scale for

momentum to diffuse over a distance equal to the radius of

the nanoparticle); Brownian time scales, (ii) sb ¼ m=fðtÞ

(Brownian relaxation time over which velocity correlations

decay in the Langevin equation), and (iii) sd ¼ a2fðtÞ=kBT
(Brownian diffusion time over which the nanoparticle diffuses

over a distance equal to its radius). Here, a is the radius of the

nanoparticle, � is the kinematic viscosity, and fðtÞ ¼ 6pla is

the Stokes dissipative friction force coefficient for a sphere.

It is noted that the time scales encountered in this problem

are such that sb < s� < sd. For a nanoparticle of radius

250 nm, sb � 1:38� 10�8 s, s� � 6:25� 10�8 s, and sd

� 6:88� 10�2 s. As a consequence, the relevant time scales

for the Brownian motion of a nanoparticle in an incompressible

fluid can span many orders of magnitude. In this study, the time

step for the numerical simulation Dt has been chosen such that

the combined fluid-particle system reproduces the expected

Brownian behavior (equipartition theorem, algebraic decay of

VACF) arising due to thermal fluctuations. It is required that Dt
be smaller than the smallest of all the physical time scales. The

simulations presented in this study have been carried out for

long enough durations to allow for the temperature of the parti-

cle to equilibrate—i.e., if N is the number of simulated time

steps then N � Dt ¼ t� s� .

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we numerically predict (i) the transla-

tional and rotational temperatures of the nanoparticle with

and without bulk flow; the temperature calculation is carried

out till thermal equilibration is obtained between the particle

and the fluid medium; (ii) the translational and rotational tem-

peratures of nearly neutrally buoyant Brownian particles, ther-

mally equilibrated, in a quiescent fluid; (iii) the translational

and rotational velocity distributions of the nanoparticle motion

with and without bulk flow; (iv) the translational and rota-

tional VACFs in a quiescent fluid; (v) the translational and

rotational mean square displacements (MSD) of the particle in

a quiescent fluid, both for ballistic and diffusive regimes; (vi)

the effects of the presence of the bounding wall on particles of

different radii initially placed at various locations are eval-

uated for several cases with and without bulk flow; and (vii)

provide the computational cost for fluctuating hydrodynamics.

The various numerical predictions have been compared with

analytical and experimental results, where available.

A solid spherical particle of radius a ¼ 250 nm is ini-

tially placed at the center of a cylindrical tube (R ¼ 5 lm)

containing a Newtonian fluid. Both, quiescent and fully

developed Poiseuille flows are considered. The computational

domain moves with the particle, and from the particle loca-

tion, the ends of the computational domain are at a distance

of 20a at any instant of time.27 For a Poiseuille flow, the pre-

scribed velocity up ¼ Umax 1� r2=R2ð Þî, where Umax is the

maximum fluid velocity, and r is the radial distance of

the tube from the center line (x-axis). As mentioned earlier,

the particle is initially fixed at the starting location and the

flow is allowed to evolve until the flow is fully developed in

the entire domain.28 The time taken for the flow to fully de-

velop over the entire computational domain is t=s� ¼ 24.

Now, the time is reset to zero and the particle is released. Fig-

ure 4 shows the fully developed analytical and the numerical

profiles for Poiseuille flow in the cylindrical tube. The physi-

cal parameters used are kB ¼ 1:3806503� 10�23 kg m2 =s
2
K;

l ¼ 10�3 kg=ms; qðf Þ ¼ 103 kg=m
3
; and five particle den-

sities in the range, 990 kg=m
3 � qðpÞ � 1010 kg=m

3
. The tem-

perature of the fluid is initially set to T ¼ 310 K and the particle

at zero Kelvin. The maximum fluid velocities (for Poiseuille

flow) presented in this study range from Umax ¼ 10�4 to

10 mm=s, relevant to some biological applications.37 The flow

Reynolds number (Ref ¼ qðf ÞRUmax=l) ranges from 5� 10�7

to 5� 10�2 for Poiseuille flow. The particle Reynolds number

(Rep ¼ qðf ÞaUmax=l) ranges from 2:5� 10�8 to 2:5� 10�3

for Poiseuille flow. Before the introduction of the nanoparticle,

we have ascertained that the solutions to the continuum equa-

tions of fluctuating hydrodynamics (Eqs. (1)–(5)) reproduce the

Gaussian field with regard to the distribution of fluid velocities

in confirmation with results of Donev et al.7

For a given nanoparticle of radius a and tube radius R, a

“realization” consists of N time steps (approximately 10 s wall

clock time for each time step that is generally considered in this

study). The number of time steps depends upon equilibration of

particle temperature or determination of VACFs and MSD. In

order to ensure the uniqueness of the realizations, different ini-

tial seeds are chosen for a Gaussian random number generator.

A. Temperature of the nanoparticle

From the equipartition theorem, at thermal equilibrium,

the translational and rotational temperatures of the nanopar-

ticle are given by

073602-6 Uma et al. Phys. Fluids 23, 073602 (2011)



TðtÞ ¼
m U2
� �
3kB

; TðrÞ ¼
I x2
� �
3kB

: (38)

Since we have considered an incompressible fluid, in our simu-

lations, to account for compressibility effects, the particle mass

m is augmented by an added mass m0=2, where m0 is the mass

of the displaced fluid. In other words, the particle will respond

to an imposed force as if its mass were M ¼ mþ m0=2, where

M is the virtual or added mass of the particle.33,34,36 The rota-

tional motion of the nanoparticle is unaffected by the incom-

pressibility of the fluid. With the incompressibility assumption,

the translational and rotational temperatures of the fluctuating

nanoparticle are evaluated from

TðtÞ ¼
M U2
� �
3kB

; TðrÞ ¼
I x2
� �
3kB

: (39)

Figure 5 shows the time evolution of the ensemble aver-

age of the mean square translational and rotational velocities

of neutrally buoyant particle (a ¼ 250 nm), normalized by

3kBT=M and 3kBT=I, respectively, in a stationary fluid me-

dium. These are obtained from five different realizations in

each coordinate direction. Each realization consists of

N ¼ 20 000 time steps. Thus, to evaluate the equilibration of

the particle temperature with the preset fluid temperature, we

have employed 3� 5� 20 000 ¼ 300 000 time steps. The

temperatures characterizing translational and rotational

motion of the particle agree with the preset temperature of the

fluid within 5% error, after an initial transient. Furthermore,

the number of realizations case has been arrived such that any

further increase in the number of realizations does not signifi-

cantly change the prediction of temperature equilibration.

Figure 6 shows the translational and rotational tempera-

tures of the particle in a stationary medium as a function of

the normalized surface mesh length (mesh length divided by

particle radius) for two different values of the step size Dt.
The error bars have been plotted from standard deviations of

the temperatures obtained with 15 different realizations (5

FIG. 4. Analytical and computational profiles for Pois-

euille flow in the xy slice. Profiles at inlet, outlet, and in

the flow domain, in the absence of the particle are the

same as shown here.

FIG. 5. Time evolution of the mean square transla-

tional and rotational velocities of neutrally buoyant par-

ticle (a ¼ 250 nm) normalized by 3kBT=M and 3kBT=I,

respectively, in a stationary fluid medium.
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realizations in each direction). For a given Dt, convergence

is noted as the normalized mesh size is decreased. Further-

more, for the appropriately chosen values of Dt, the conver-

gence in the temperature is also noted. It is observed that

translational and rotational temperatures of the nanoparticle

agree with the preset temperature to within 5% error.

Figure 7 shows that translational and rotational tempera-

tures of nearly neutrally buoyant Brownian particles, ther-

mally equilibrated, in a quiescent fluid medium are

independent of the density of the particle in relation to that

of fluid. This has been discussed in Hauge and Martin-Löf,45

although no quantitative results specific to this issue are pro-

vided there.

Figure 8 shows the translational and rotational tempera-

ture equilibration of a nanoparticle initially placed at the cen-

ter of a cylindrical tube as a function of the particle

Reynolds number for Poiseuille flow. A convergence in the

observed temperature is achieved for Dt ¼ 0:0016. It is

observed that the calculated temperature of the nanoparticle

in the Poiseuille flow is essentially independent of the fluid

velocity for the range of Reynolds numbers investigated and

agrees with the preset temperature (< 5% error).

B. Velocity of the nanoparticle

At thermal equilibrium, the probability distribution of

the velocity of the fluctuating nanoparticle follows the Boltz-

mann distribution. The equilibrium statistics of the three

components of U and x along the three coordinate directions

are independent of each other.

The apparent translational and rotational velocities of

the nanoparticle are determined as ðU� UÞ and ðx� xÞ,
where U and x are the average translational and rotational

velocities of the particle in the flowing incompressible fluid.

FIG. 6. Translational and rotational temperatures of the

nanoparticle as a function of the normalized surface

mesh length (mesh length divided by particle radius)

for two different values of the computational time Dt in

a stationary Newtonian fluid medium. The preset tem-

perature is 310 K, and Dt=s� ¼ 0:0016; 0:0008,

qðpÞ=qðf Þ ¼ 1.

FIG. 7. Translational and rotational temperatures of a

nearly neutrally buoyant nanoparticle (a ¼ 250 nm) in

a stationary fluid medium using fluctuating hydrody-

namics approach as a function of the particle density

normalized with fluid density.
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For determining the velocity distribution of the nanopar-

ticle, 5 realizations in each coordinate direction consisting

of 5� 20 000 ¼ 100 000 time steps have been computed.

Thus, a total of 300 000 time steps have been computed.

For the Poiseuille flow in the flow direction, 100 000 time

steps have been computed (5 realizations). In Figure 9, the

numerically simulated components of ðU� UÞ (Figure 9(a))

and ðx� xÞ (Figure 9(b)) (represented by three different

symbols) of the nanoparticle with radius a ¼ 250 nm are

compared with the analytical Maxwell-Boltzmann distribution

with a zero mean and variance of kBT=M and kBT=I, respec-

tively. It is observed that each degree of freedom individually

follows a Gaussian distribution. In particular, the mean and

the variance calculated by using the fluctuating hydrody-

namics approach agrees within 5% error (see dotted line in

Figure 9) with that of the analytical Maxwell-Boltzmann

distribution. This validates the numerical procedure

employed in this study.

We have also computed that (i) the average velocity of

the particle initially placed at the center of the tube in a Pois-

euille flow with velocity Umax ¼ 0:01 m=s (upjr¼0

¼ ð0:01; 0:0; 0:0Þm=s) is equal to U=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=M

p
¼ ð1:49

60:05; 0:0560:05; 0:00460:03Þ and x=
ffiffiffiffiffiffiffiffiffiffiffiffi
kBT=I

p
¼ ð0:001

60:01; 0:00660:004; 0:00460:004Þ, where the 6 quantity

denotes standard deviation calculated from five different real-

izations. The average translational velocity, U=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=M

p
,

obtained here is consistent with up=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=M

p
¼ ð1:51;

0:0; 0:0Þ; (ii) the average velocity of the particle initially

placed at r ¼ 2R=5 in a Poiseuille flow with velocity

Umax ¼ 0:01m=s (upjr¼2R=5 ¼ ð0:0084; 0:0; 0:0Þm=s) is equal

to U=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=M

p
¼ ð1:2760:02; 0:0360:04; 0:0460:02Þ and

x=
ffiffiffiffiffiffiffiffiffiffiffiffi
kBT=I

p
¼ð0:00160:01;0:00560:03;0:00560:146Þ. When

the particle is placed at r ¼ 2R=5 in a Poiseuille flow, the av-

erage translational velocity, U=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=M

p
, obtained here is

consistent with upjr¼2R=5=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=M

p
¼ ð1:27; 0:0; 0:0Þ and

the average rotational velocity of the particle is consistent

with the average angular velocity, Xð¼ 1=2ðdU=drÞjr¼2R=5Þ,
of the particle in Stokes flow, X=

ffiffiffiffiffiffiffiffiffiffiffiffi
kBT=I

p
¼ ð0:0; 0:0; 0:03Þ.

C. VACF of the nanoparticle

A nanoparticle experiencing Brownian motion in a fluid

is influenced by the hydrodynamic interactions. The fluid

around the particle is dragged in the direction of motion of

the particle. On the other hand, the motion of the particle is

resisted by viscous forces arising due to its motion relative to

the surrounding fluid. The momentum of the fluid surround-

ing the particle at any instant is related to its recent history.

The friction coefficient is time dependent and is no longer

given by the constant Stokes value.

Figure 10 shows the VACF of the translational and rota-

tional motions of a nanoparticle (a ¼ 250 nm) in a quiescent

fluid medium in a circular vessel as obtained from our nu-

merical simulations. For determining the VACF of the nano-

particle, 45 (15� 3 ¼ 45) realizations have been employed

with total computation of 45� 100 000 ¼ 4 500 000 time

steps. It may be observed that the translational and rotational

VACFs of the Brownian particle have power-law decays

over long times that are 	t�3=2 and 	t�5=2, respectively.

In this context, Zwanzig and Bixon33 have shown that

for constant friction coefficient fðtÞ, the VACF of the particle

in a simple fluid obeys

UðtÞUð0Þh i ¼ 3kBT

M
e�fðtÞt=M; xðtÞxð0Þh i ¼ 3kBT

I
e�fðrÞt=I;

(40)

which denote exponential decays, while for the time depend-

ent friction coefficient, the decay of the VACF at long times

obeys a power-law:45

UðtÞUð0Þh i ’ kBTqðf Þ1=2

4p3=2l3=2

	 

t�3=2;

xðtÞxð0Þh i ’ 3kBTqðf Þ3=2

32p3=2l5=2

	 

t�5=2: (41)

Based on our numerical simulation, for the parameters con-

sidered, the translational VACF follows an exponential

decay in the range for t � 0:343s� and an algebraic tail for

t 
 1:202s� . Our simulation also predicts the transitional

range. Similarly, the rotational VACF follows an exponential

decay, for t � 0:115s� and an algebraic tail for t 
 0:495s� .
Our computed results are in good agreement with the predic-

tions of the above Eqs. (40) and (41) for short and long

times, respectively, and also predict the transition between

the two. The error bars have been plotted from standard devi-

ations of the decay at particular time instants obtained with

45 different realizations.

FIG. 8. Translational and rotational temperatures of the

nanoparticle (a ¼ 250 nm) initially placed at the center

of a cylindrical tube as a function of particle Reynolds

number in Poiseuille flow. The preset temperature is

310 K and qðpÞ=qðf Þ ¼ 1.
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D. Diffusion of the nanoparticle

Figure 11 shows the numerically obtained translational

and rotational MSDs (measures of diffusion) of a neutrally

buoyant nanoparticle (a ¼ 250 nm) in a quiescent fluid me-

dium, initially placed at the center of the vessel (R ¼ 5 lm),

for both short and long times. It is observed that in the re-

gime where the particle’s motion is dominated by its own

inertia (ballistic), 0:346s� � t � 0:63s� (translation), and

0:174s� � t � 0:316s� (rotation), the translational and rota-

tional motions of the particle follow ð3kBT=MÞt2 and

ð3kBT=IÞt2, respectively. In the diffusive regime, t� sb, and

when t 
 7s� (translation) and t 
 1:2s� (rotation), the trans-

lational and rotational MSDs increase linearly in time to fol-

low 6DðtÞ1 t and 6DðrÞ1 t, respectively, where DðtÞ1 ¼ kBT=fðtÞ

and DðrÞ1 ¼ kBT=fðrÞ (fðrÞ ¼ 8pla3) are the translational and

rotational self-diffusion coefficients. The MSDs in an inter-

mediate regime between the ballistic and the diffusive are

related to hydrodynamic memory effects, and these are also

displayed by our simulation. The above numerical estimates

were developed from 45 realizations (3� 5 ¼ 45), each real-

ization computed up to 100 000 time steps.

It is also observed from Figure 11 that in the diffusive

regime, the translational and rotational MSDs of the particle

follow Stokes-Einstein52,53 and Stokes-Einstein-Debye54

relations, respectively. Recently, Huang et al.36 have experi-

mentally investigated the Brownian motion of a single parti-

cle in a liquid and provided results for the translational

FIG. 9. Equilibrium probability of the (a) translational

and (b) rotational velocities of the nanoparticle

(a ¼ 250 nm) in a Newtonian fluid using fluctuating

hydrodynamics for qðpÞ=qðf Þ ¼ 1. QF: Quiescent fluid;

POF: Poiseuille flow; MBD: Maxwell-Boltzmann

distribution.
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MSDs in both the ballistic and the diffusive regimes corre-

sponding to thermal equilibration. Our numerical predictions

of ballistic and diffusive motion of a particle in a fluid are in

good agreement with Huang et al.36

E. Wall effects

As stated earlier, our main motivation for the present

study is to simulate a nanoparticle thermal motion in a fluid

flow that occurs in TDD and similar microparticle flows. In

such flows, the hydrodynamic wall effects on the particle dif-

fusivity are relevant. For a particle initially located at the cen-

ter of the cylindrical vessel, the wall effects play a minimal

role (� 3%, compared to an unbounded fluid domain) on the

diffusion coefficient (see Figure 11).55 When a particle of ra-

dius a is initially placed at a distance h from the tube wall to

the center of the particle, h < R, the particle-wall interactions

modify the particle diffusivity. For a� R, in a quiescent

fluid, the Brownian motion near the vessel wall is similar to

that of motion in the vicinity of a plane wall (curvature

effects may be neglected).55,56 For a particle initially located

in the near vicinity of the wall, there is reduced space for the

surrounding fluid to negotiate the particle and the correspond-

ing drag force in a direction parallel to the wall is higher. The

diffusivity of the particle in the proximity of the wall may be

estimated to be D
ðtÞ
w ¼ DðtÞ1ðfðtÞw =f

ðtÞÞ�1
in x, y, and z direc-

tions,57 while fðtÞw depends on the particular direction.

Figure 12 shows the numerically obtained parallel (x
direction) and perpendicular (y direction) diffusion coeffi-

cients of neutrally buoyant particles of different radii initially

placed at various distances from the tube wall, in a quiescent

medium. As mentioned earlier, in the diffusive regime, the

FIG. 10. (a) Translational (B ¼ Mqðf Þ1=2=12p3=2l3=2)

and (b) rotational (C ¼ Iqðf Þ3=2=32p3=2l5=2) VACFs of

a neutrally buoyant Brownian particle (a ¼ 250 nm) in

a stationary fluid medium in a circular vessel

(R ¼ 5 lm) using fluctuating hydrodynamics.
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translational MSD of the particle increases linearly in time.

We have numerically evaluated the gradient of the linear

profile, normalized by the translational self-diffusion coeffi-

cient, DðtÞ1 , plotted as a function of a=h. Our numerical results

are in agreement with the predictions of Happel and

Brenner.55

For the motion of a Brownian particle in shear flows, we

have to consider an additional time scale 1= _c, where _c is the

rate of shear. Where sb � t� 1= _c, the effect of convection

due to the shear flow is weak. This is referred to as the diffu-

sive regime for shear flows. The regime where t� 1= _c is

dominated by convection. In this study, we have only explored

the diffusive regime. In this regime, for the time scales consid-

ered, the MSDs in x, y, and z directions are all ’ 2DðtÞ1 t.58,59

We have numerically evaluated the diffusivity of a parti-

cle, D
ðtÞ
w , initially located close to the wall in Poiseuille flow.

The flow and particle Reynolds numbers are Ref ¼ 0:005

and Rep ¼ 0:0025, respectively. Figure 13 shows the parallel

(x direction) and perpendicular (y direction) translational dif-

fusion coefficients which have been normalized with DðtÞ1 as

a function of a=h. These are for neutrally buoyant particles

of different radii a initially placed at various locations h
from the tube wall. There are analytical studies which predict

the diffusivities, D
ðtÞ
w , by perturbation theory.55,57,60 Our nu-

merical predictions show good comparison with the theoreti-

cal results. This capability of the simulation is particularly

useful in the context of TDD.

Figure 14 demonstrates the approximate number of CPU

cycles required for the computation of a single time step for

a particle of radius 250 nm in a cylindrical tube of radius

5 lm. All simulations are carried out on a 2.93 GHz proces-

sor. Each CPU cycle displayed on the figure corresponds to

FIG. 11. The MSD of a neutrally buoyant Brownian

particle (a ¼ 250 nm) in a stationary fluid medium

using fluctuating hydrodynamics.
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the average of 300 time steps, spread across three realiza-

tions. The number of mesh nodes is displayed on the hori-

zontal axis. Number of days required to complete the

simulations with 20 000 time steps are specified inside the

brackets and for 100 000 time steps this will be five times

higher.

In regard to mesh nodes, we offer the following esti-

mates from our numerical simulation corresponding to con-

verged solutions. For a particle that is initially located at the

center of the circular vessel in a quiescent medium, a small

region (1 lm3 cube) around the particle (a ¼ 250 nm) is

noted to have 34% of total number of mesh nodes in the

entire volume, at convergence. For a particle initially located

at a distance half way between the vessel center and the ves-

sel wall (h ¼ R=2), in an equivalent volume, we note there

are 35% of total number of mesh nodes. Finally, when

h < R=2, the estimate is 38%. These observations imply that

for tracking a nanoparticle Brownian motion in a quiescent

fluid, the mesh size has to be considerably smaller even at

regions far away from the wall and would have to be finer in

the vicinity of the wall. Our numerical simulation has

handled these features in a comprehensive way yielding con-

verged solutions to desired levels of accuracy ðOð10�9ÞÞ.

V. CONCLUSIONS

A direct numerical simulation based on ALE FEM is

employed to simulate the Brownian motion of a nanoparticle

in an incompressible Newtonian fluid. Corrections for com-

pressibility effects are introduced. The thermal force from

the fluid is incorporated by the fluctuating hydrodynamics

approach. Both the translational and rotational motions of a

FIG. 12. The translational diffusion coefficient of neu-

trally buoyant Brownian particles of different radii a
initially placed at different locations h from the wall of

the circular vessel in a quiescent medium. Solid and

dashed lines correspond to the perturbation solutions

given in Happel and Brenner (Ref. 55).

FIG. 13. The translational diffusion coefficient of neu-

trally buoyant Brownian particles of different radii a
initially placed at different locations h from the wall of

the circular tube in Poiseuille flow, in the diffusive re-

gime sb � t� 1= _c. Solid and dashed lines correspond

to the perturbation solutions given in Happel and Bren-

ner (Ref. 55) and Goldman et al. (Ref. 60).
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nanoparticle in (i) a quiescent fluid and (ii) a fully developed

Poiseuille flow are considered. The thermal fluctuations are

modeled as random stress tensors in the fluid equation that

depend on the temperature and viscosity of the fluid. At ther-

mal equilibrium, the numerical predictions are validated

with analytical results, where available.

We have numerically predicted:

(a) The translational and rotational temperatures of the parti-

cle with and without bulk flow. The temperature calcula-

tion is carried out till thermal equilibration is obtained

between the particle and the fluid medium. Both for qui-

escent and Poiseuille flow, in the range of fluid velocities

considered, the equipartition theorem is satisfied.

(b) The translational and rotational temperatures of nearly

neutrally buoyant Brownian particles, thermally equili-

brated, in a quiescent fluid. These temperatures are noted

to be independent of the density of the particle in relation

to that of the fluid.

(c) The translational and rotational velocity distributions of

the nanoparticle motion with and without bulk flow.

(d) The translational and rotational VACFs in a quiescent

fluid. Over long times, the decay of the VACF captures

algebraic tails for the translational (t�3=2) and the rota-

tional (t�5=2) motions of the nanoparticle.

(e) The translational and rotational MSDs of the particle in a

quiescent fluid, both for ballistic and diffusive regimes.

At short times, translational and rotational MSDs in a

quiescent fluid are proportional to t2, and in the diffusive

regime (t� sb), they agree with the Stokes-Einstein and

Stokes-Einstein-Debye theories.

(f) The effects of the presence of the bounding wall on par-

ticles of different radii initially placed at various locations

are evaluated for several cases with and without bulk

flow. The translational diffusion coefficients for parallel

and perpendicular directions have been displayed. Very

good agreement with published results, where available.

We have also provided the computational cost for fluctu-

ating hydrodynamics.

In regard to biological applications intended in this

study, it is noted that this method may be used to investigate

the fluctuating motion of a nanocarrier in a particulate sus-

pension where the dispersion in nanocarrier velocities are

athermal in origin caused by collisions with red-blood cells.

In such an application, the preset temperature must be

replaced by a particulate temperature of blood plasma,37 and

this will form a part of our future work.
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