Skip to main content
. 2011 Sep 13;6(9):e23576. doi: 10.1371/journal.pone.0023576

Table 3. Summary of AICc model selection statistics for evaluating (1) the intensity of C. maculata egg predation in soybean fields in Iowa and Michigan, (2) the abundance of all potential egg predators and (3) the abundance of exotic potential egg predators.

Response Model1 , 2 Log-likelihood Ki AICc Δi Wi Adjusted r2
Eggs Remaining y =  Bo + B1 (PC3)*** −13.15 3 34.70 0.00 0.92 0.53
y = Bo+B1(Area)* −17.16 3 42.72 8.02 0.02 0.17
y = Bo −18.99 2 43.06 8.36 0.01
y = Bo+B1Exotic Predators −17.46 3 43.32 8.62 0.01 0.13
y = Bo+B1Perimeter −17.6 3 43.60 8.90 0.01 0.11
y = Bo+B1All Predators −17.68 3 43.76 9.06 0.01 0.10
y = Bo+B1D −18.12 3 44.64 9.94 0.01 0.04
y = Bo+B1P(PC1) −18.82 3 46.04 11.34 0.00 −0.06
y = Bo+B1(PC2) −18.96 3 46.32 11.62 0.00 −0.08
y = Bo+B1(Prey) −18.99 3 46.38 11.68 0.00 −0.07
Potential Predators y =  Bo + B1 D* −7.19 3 22.77 0.00 0.71 0.38
y = Bo+B1PC2 −9.11 3 26.62 3.85 0.10 0.17
y = Bo −11.06 2 27.19 4.42 0.08 −0.05
y = Bo+B1(PC3) −10.28 3 28.96 6.19 0.03 0.03
y = Bo+B1(Perimeter) −10.74 3 29.88 7.11 0.02 −0.04
y = Bo+B1(Area) −10.86 3 30.11 7.34 0.02 −0.06
y = Bo+B1(Prey) −10.90 3 30.20 7.43 0.02 0.17
y = Bo+B1(PC1) −11.06 3 30.51 7.74 0.01 −0.80
Potential Exotic Predators y =  Bo + B1 D* −9.26 3 26.93 0.00 0.41 0.27
y =  Bo + B1 PC2* −10.02 3 28.44 1.51 0.19 0.18
y = Bo+B1(PC3)* −10.32 3 29.05 2.12 0.14 0.15
y = Bo −12.01 2 29.09 2.16 0.14
y = Bo+B1(Perimeter) −11.83 3 32.07 5.14 0.03 −0.06
y = Bo+B1PC1 −11.88 3 32.16 5.23 0.03 −0.06
y = Bo+B1(Prey) −11.88 3 32.16 5.23 0.03 −0.06
y = Bo+B1(Area) −11.97 3 32.34 5.41 0.03 −0.08

The minimum AICc model for each response variable and any competing models (Δi<2) are shown in bold.

1

Variables in parentheses indicate a negative relationship with response variable.

2

* P<0.1, *** P<0.01.