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Abstract
The efficient and accurate quantification of protein-ligand interactions using computational
methods is still a challenging task. Two factors strongly contribute to the failure of docking
methods to predict free energies of binding accurately: the insufficient incorporation of protein
flexibility coupled to ligand binding and the neglected dynamics of the protein-ligand complex in
current scoring schemes. We have developed a new methodology, named the ‘ligand-model’
concept, to sample protein conformations that are relevant for binding structurally diverse sets of
ligands. In the ligand-model concept, molecular-dynamics (MD) simulations are performed with a
virtual ligand, represented by a collection of functional groups that binds to the protein and
dynamically changes its shape and properties during the simulation. The ligand model essentially
represents a large ensemble of different chemical species binding to the same target protein.
Representative protein structures were obtained from the MD simulation, and docking was
performed into this ensemble of protein conformation. Similar binding poses were clustered, and
the averaged score was utilized to re-rank the poses. We demonstrate that the ligand-model
approach yields significant improvements in predicting native-like binding poses and quantifying
binding affinities compared to static docking and ensemble docking simulations into protein
structures generated from an apo MD simulation.
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Molecular recognition between receptors and ligands through non-covalent association plays
a fundamental role in virtually all processes in biological systems. Although many
computational concepts exist to simulate receptor-ligand recognition, an efficient and
accurate quantification of such interactions is still a challenging task. Force-field based
methods such as molecular dynamics (MD) or Monte-Carlo (MC) simulations locally
sample energetically accessible substates of the protein-ligand complex's free-energy
landscape. In combination with MD or MC simulations, algorithms such as free energy
perturbation1 or thermodynamic integration2 can reliably calculate relative free-energies of
binding of compounds binding to the same drug target. Unfortunately, the associated
procedures are computationally demanding and are typically limited to the comparison of
structurally similar compounds. In an effort to reduce the computational cost and allow for
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the comparison of diverse ligands, endpoint methods such as linear interaction energy (LIE)
or the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method were
developed.3, 4 Despite their success in quantifying protein-ligand interactions, MD
simulations must be performed for each individual compound making end point methods
unfeasible for virtual high-throughput screening. In addition to being computationally
expensive, the application of these techniques requires a priori knowledge of the ligand
binding mode.

To predict the binding mode of compounds, docking methods are widely utilized. Docking
methods are less computationally demanding than simulation-based free energy methods
and are used to virtually screen the vast chemical space of ligands that could bind to a
common target. With an appropriately parameterized scoring function, it is possible to
identify probable binding modes of any existing or hypothetical molecule. Unfortunately,
accurately estimating binding affinity from the quantification of the resulting protein-ligand
interactions proves to be a difficult task; the wealth of devised scoring functions can, at best,
yield semi-quantitative values5. The inability of docking methods to accurately predict free
energies of binding can be largely attributed to three factors: the simplified representation of
the physics of protein-ligand association in the scoring function, the insufficient
incorporation of protein flexibility coupled to ligand binding, and the missing dynamic
structural information of the protein-ligand complex.

The necessity to account for protein flexibility6 in docking schemes is widely accepted,7-17

and recent advances in docking algorithms begin to partially incorporate protein flexibility.
Methods such as soft-receptor modeling,18 the development of protein ensemble grids,19 the
use of rotamer libraries,20 the incorporation of MD and MC methods21,22 in docking pose
refinement, and the combination of docking with protein structure prediction are used to
model protein flexibility.11, 23

McCammon and co-workers pioneered the Relaxed Complex Scheme (RCS) that aims to
combine the efficiency of docking with the sampling capabilities of MD simulations to
account for protein flexibility24-26. In this method, multiple low-energy conformations of the
protein's binding site are sampled using MD simulations, a representative ensemble of
protein structures is generated using clustering, and the ensemble of protein structures are
subsequently used as alternative docking templates. The resulting ensemble of docking
poses is clustered based on the pairwise RMSD values between the different poses.
Averaging the score values from all docking solutions of a cluster yields an average
predicted free energy for each binding mode. Incorporating slightly different protein and
ligand configurations into the calculation of the binding affinity of a binding mode (here
represented by members of a cluster) aims to model the thermodynamic equilibrium state of
the protein-ligand complex more accurately, and results in more accurate predictions of
binding free energies.27

The underlying concept of RCS is the population-shift mechanism of ligand binding (Figure
1a): The protein exists in an ensemble of different structures with the observed ligand-free
protein structure (apo form) being energetically the most favorable state if no ligand is
bound. In the presence of the ligand, the ligand-bound protein conformation (holo form) is
selected from the ensemble of pre-existing conformations and is energetically stabilized by
the ligand. The alternative theory describing the observed conformational changes of the
protein upon ligand binding is the mechanism titled induced-fit (Figure 1b): The ligand
binds to a low energy conformation of the unbound protein and ligand binding induces a
conformational change resulting in the holo form of the protein that would be observed in
the X-ray structure of the protein-ligand complex. While many researchers favor the
population-shift mechanism, recent studies suggest that the mechanism of protein-dynamics
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coupled to ligand binding is complex and involves both the population-shift and induced-fit
mechanisms.28-31

Even if the population-shift mechanism is the dominant mechanism, in many cases the holo
conformations of the protein are rarely visited throughout the dynamics of the ligand-free
protein and sampling these rare conformations is a significant challenge for MD simulations.
If the X-ray structure of a holo protein structure is available, protein conformations could
also be sampled using MD simulations on the protein with co-crystallized ligand. But, MD
simulations of the ligand-bound form of the protein can bias the trajectory towards the
specific ligand used in the MD simulation,27 and other ligands may not be able to bind to
this biased ensemble of conformations (Figure 1c). Similar effects were recognized32 in
cross-docking studies to static apo and holo forms of various protein-ligand systems: In
several cases the holo structure was strongly adapted to compounds similar in structure to
the ligand bound in the X-ray structure. In these cases, structurally diverse compounds were
successfully docked to the apo structure and were not identified as possible leads when
docking to the holo structure. The observation of a biased selection of possible lead
compounds in virtual screening as a result of using specific holo structures has been
corroborated by other cross-docking analyses.33, 34

Based on the previous discussion, new concepts that sample protein conformations that are
relevant for binding structurally diverse ligands are highly desirable. The conformations
should be unbiased towards a particular class of ligands in order to gain higher enrichment
levels and better quantification of protein-ligand interactions for a diverse set of ligands. In
this paper we introduce the novel concept of a hypothetical ‘ligand model’, a virtual ligand
represented by a collection of functional groups, that binds to the protein and dynamically
changes its shape and properties during MD simulations. The “ligand model” essentially
represents a large ensemble of different chemical species binding to the same target protein.
As a consequence, this approach allows sampling of protein conformations relevant to
binding diverse ligands and also probes protein flexibility coupled to ligand binding.

In this paper, we first introduce the protein-ligand systems used in our study, followed by
discussions of the docking studies on the apo and holo forms of each protein system using
the static X-ray structure and the dynamic ensemble generated by MD simulations. We then
present the results of identical docking studies on the ensemble of protein conformations
generated with the new ligand-model approach. Using the ligand model we demonstrate
superior docking results compared to apo-ensemble docking.

Materials and Methods
Protein systems

Two protein systems, thrombin and acetylcholinesterase, were chosen as test systems for
binding pose prediction as several X-ray structures with structurally diverse ligands are
available in the PDB databank for both systems. 25 structures of thrombin (PDB-codes:
1a4w, 1d3d, 1d3p, 1d3q, 1d3t, 1d4p, 1dwd, 1ghw, 1kts, 1oyt, 1tom, 1vzq, 1ype, 1ypj, 1ypg,
2c8w, 2c8y, 2c8z, 2c90, 2c93, 2c8x, 2cf8, 2cf9, 2cn0, 3biu) and six structures of
acetylcholinesterase (1eve, 1gpk, 1hbj, 1qti, 1vot, 3i6m) were selected. For binding affinity
predictions, 14 compounds with consistently measured binding affinity towards thrombin
were chosen (ligands from 1ypg, 1ype, 1ypj, 1oyt, 2cf8, 2cn0, 1vzq; compounds rac-8,
rac-13a and rac-16 from35, rac-5, rac-8 and rac-9 from36, (+)-7 from37). For binding
specificity prediction, high affinity ligands for each of three different dihydrofolate
reductase (DHFR) species (human = hDHFR, Pneumocystis carinii = pcDHFR, Candida
albicans = caDHFR) were selected (see Supporting Information S1) from Bowman et al.38

Xu and Lill Page 3

J Chem Inf Model. Author manuscript; available in PMC 2012 March 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



1hfr, 1daj, and 1ai9 were chosen as target protein structures for docking to hDHFR,
pcDHFR, and caDHFR, respectively.

Docking using AutoDock Vina
All docking simulations were performed using AutoDock Vina.39 Protein and ligand
preparation was performed using our in-house PyMOL plugin40 that automatically calls the
programs prepare_receptor4.py and prepare_ligand4.py that are part of AutoDockTools41. A
cubic box with dimensions of 25Å × 25Å × 25Å centered on the centroid of each co-
crystallized ligand defined the search volume for AutoDock Vina. Standard docking settings
were used and the 10 energetically most favorable binding poses are outputted.

Relaxed Complex Scheme (RCS)26

MD simulations were employed to generate an ensemble of low-energy protein
conformations. MD simulations were carried out using Amber42 and Gromacs43, 44 on the
apo form and all 31 holo forms of thrombin and acetylcholinesterase. Two different
simulation protocols were investigated for the apo form: One “short apo” simulation
protocol (using Amber) consisted of 500 steps of energy minimization, 25ps of
equilibration, and 50ps of production used to generate the ensemble of protein structures
with a water cap of 25Å around the ligand. (This simulation protocol also was used for all
holo MD simulations.) These simulations are time efficient but raise the question whether
they extensively sample the conformational space of the protein accessible to different
ligand-bound forms. To address this issue, we also performed 30ns MD “long apo” sampling
runs (using Gromacs) using a water box with PME boundary conditions for the apo forms of
thrombin and acetylcholinesterase to investigate the influence of simulation length and
boundary conditions on the results of docking to the apo trajectory of a protein. The
resulting trajectories from both settings were then separately clustered using quality
threshold (QT) clustering. The RMSD criterion was adjusted automatically to generate
200-250 distinct protein conformations. AutoDock Vina was used to perform docking to the
ensemble of protein conformations with identical settings as used in the static docking
experiments. The top-10 ranked binding poses from each individual docking simulation
were outputted and considered for subsequent clustering. The binding poses were clustered
using QT clustering (1Å cluster radius). Following the procedure from S. Vajda and
coworkers,45 clusters with less than 15 members were discarded and the predicted free
energy of binding for a binding-mode cluster i was calculated based on the energy histogram
over all binding modes j of a cluster i using:

(1)

Pij is the probability of identifying a pose j in cluster i and ΔGj, is the score of binding pose
j.

Ligand-model concept (“Limoc”)
As discussed above, apo trajectories do not always represent an ensemble of protein
structures visited by the holo form of the same protein. In order to guide the apo simulations
into conformations visited by the ligand-bound form of the protein, we developed the
ligand-model approach: Based on the initial apo protein structure, residues spanning the
binding site of the protein are selected based on manually docked ligands chosen by the user
(Figure 2a). For the protein systems studied in this manuscript a combination of ligands was
chosen that best cover the volume of all co-crystallized ligands used in the subsequent
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docking studies. The binding modes of the ligands were obtained by aligning the associated
holo protein structures to the apo using PyMOL. Existing steric clashes with the apo protein
is not an issue as the ligands are only used to define the volume of the binding site. The use
of artificial ligands defining the binding site are possible, too. A protein residue is selected
to constitute the binding site if any atom of the residue is within a user-defined radius
around any atom of the chosen ligands (we chose a radius of 5Å). Next, the solvent-
accessible surface (SAS) of the binding pocket is computed (Figure 2b) using the NSC
module that is part of the program package ASC/GM.46, 47 The SAS is represented by
individual surface points. On this SAS, atoms of the hypothetical ligand model are
distributed, dependent on the complementary properties of the amino acids of the binding
site (Figure 2c): A hydrophobic atom with van der Waals parameters of an sp3 carbon is
placed in hydrophobic moieties of the binding pocket, a hydrogen-bond donor group
(represented by a dipole with van-der-Waals radii and masses of an oxygen and hydrogen
atom and with complementary charges of -0.4 and 0.4, respectively) next to an acceptor in
the binding site, and a hydrogen-bond acceptor (represented by an atom with van-der-Waals
radius and mass of an oxygen atom, and a lone-pair, with complementary charges of 0.4 and
-0.4, respectively) next to a donor. The discrete points of the SAS that are chosen for donor
and acceptor group are those that are optimal in hydrogen-bond distance and directionality:
For a protein's donor group, the distance between the donor hydrogen H and every surface
point S (dH-S) and the angle between donor heavy atom D, donor hydrogen H and surface
point S (∠(D,H,S)) is computed. The optimal position S to place a hydrogen-bond accepting
group of the ligand model is determined by the minimum of the following empirical
function:

(2a)

For a protein's acceptor group, the distance between acceptor heavy atom A and every
surface point S (dA-s) and the angle between acceptor heavy atom A, lone pair L, and surface
point S (∠(A,L,S)) is computed. The optimal position S to place a hydrogen-bond donating
group of the ligand model is determined by the minimum of the following empirical
function:

(2b)

As part of this assignment process, only hydrogen-bonding groups of the protein are
considered as possible hydrogen-bond partner for ligand-model groups if they are not
engaged in intra-protein hydrogen bond interactions. An intra-protein hydrogen bond is
formed if the distance between donor hydrogen and acceptor heavy atom is smaller than
2.5Å, and the angle between donor heavy atom, donor hydrogen and acceptor atom is larger
than 135°.

Hydrophobic ligand-model probes are placed on the surface points that are not occupied by
donor or acceptor groups. The hydrophobic probes are equally distributed onto the SAS with
a minimum distance of 0.8Å to other ligand-model probes to represent a smooth interaction
of the protein with the ligand model representing different ligands able to bind to the
protein. As the distance between atoms in a real ligand would be larger than 0.8Å, the van-
der-Waals interaction between protein and ligand-model atoms are down-scaled.

The underlying assumption to place the probes of the ligand model on the SAS is that the
interactions between protein and ligand, in particular hydrogen bonds, are close to optimal at
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this distance. MD simulations are run on the protein-ligand model complex using the
following Hamiltonian:

(3)

Ri are the coordinates of protein and water atoms, and ri the coordinates of the ligand
model. VP-P is the standard interaction potential between protein atoms (including water
molecules) using the Amber03 force field, VP-LM is the corresponding interaction potential
between protein and ligand model atoms. There is no interaction between individual LM
probes. In a real ligand, the different functional groups are connected to each other via the
ligand scaffold, and therefore restricted in their movement. To model this restriction during
the simulation of protein and ligand model, the atoms of the ligand model are harmonically
restrained around their equilibrium position on the SAS with a force constant that is four
times larger in parallel to the SAS than perpendicular to the SAS. This is necessary to
prevent overlaps between ligand model atoms but to allow fluctuations perpendicular to the
SAS, consistent with the dynamics of a real ligand binding to the protein. Vrestr describes
this potential in equation 3. Protein and ligand model atoms are separately coupled to a
Berendsen thermostat at a given temperature T=300K with temperature coupling time τp
=5ps. Simulations are performed with a water cap with a radius of 25Å.

Running a MD simulation of the protein with the specified ligand model, however, would
just sample conformations close to the original structures and thus would only reproduce an
ensemble of protein structures similar to the apo MD simulation. To simulate the
conformational adaptation of the protein to different ligands, we allow the ligand model to
change dynamically throughout the simulation, in an attempt to represent a large portion of
the chemical ligand space accessible to the binding site. Both properties and the shape of
ligand model are allowed to change:

1. Different positions and orientations of the hydrogen-bond donors and acceptors of the
ligand model are probed, fundamentally representing different ligands, to investigate the
capability of the protein to accommodate different configurations of the hydrogen-bond
partners (Figure 2d). In the most primitive approach, this would extend the simulation length
by a factor directly proportional to the product of the number of positions and orientations of
all hydrogen-bond probes. This approach is computationally intractable, as there are easily
several tens of different hydrogen-bond configurations for each individual probe (Figure 3,
right panel). The conformational change at this stage is expected to be localized, so we
introduced the method of Locally-Enhanced Sampling (LES) into our in-house MD code.48

The relevant portions of the simulation system are copied, which in this case are the
different conformations of the ligand model's hydrogen-bonding groups and their protein
counterpart. The individual copies of the same group, i.e. probe and directly interacting
amino acid, don't experience any interaction with other copies of the same group, and all
other parts of the simulation system experience the average interactions of all copies of the
same group. This approach results in an efficient sampling of possible hydrogen-bond
configurations without a tremendous computational overload.

In more detail, starting from the initial optimal position of a ligand-model donor or acceptor
group, the positions of ligand-model groups are identified that are a maximum distance of
2Å apart from the optimal donor or acceptor group. Furthermore, the software checks
whether these alternative ligand-model donor or acceptor positions share the same closest
complementary protein's hydrogen-bonding group. Alternative copies of ligand-model's
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hydrogen bonding groups are distributed onto these positions if both criteria (maximum
distances to ideal position and same closest protein group) are fulfilled. For each alternative
copy of a ligand-model hydrogen-bonding group an interacting copy of the protein
hydrogen-bonding residue is automatically added to the simulation topology. The
coordinates of the copied residues are initially identical but automatically adapt to the
different positions of the interacting ligand-model groups throughout the equilibration
period. This procedure also includes a copy for the hydrogen-bonding amino acid with a
hydrophobic probe as ligand partner in order to study the localized impact on the protein
configuration when a bound ligand is lacking a complementary hydrogen-bond partner at
this moiety. Figure 3 displays one of the ligand models bound to thrombin with and without
copied probes.

2. To study the effect of topologically different ligands binding to the protein, i.e. portions of
the ligand smaller or larger in size, we run locally-steered MD simulations of the ligand
model to slightly enlarge or decrease the size of the SAS accommodating the groups of the
ligand model (Figure 2e). The amplitude of steering each ligand-model probe is determined
by an initial principal component analysis of the covariance matrix derived from the short
50ps apo simulation. In more detail, the atomic coordinates of residues lining the active site
in the initial protein structure are translated by the first principal component in both
directions, and the modified SAS is calculated for the protein structures resulting from both
translations. The size of protein's conformational change is limited to approximately 1-2Å
RMSD. A new ligand model is generated as previously described utilizing the modified
atomic protein coordinates. The coordinates of the probes of the new ligand model are used
in subsequent steered MD simulations. In this process, the closest new ligand model group
for each original ligand-model group is computed. This point determines the end point of the
steered MD simulation for each ligand-model atom. The steering procedure is performed in
both directions of the first principal component changing the equilibrium position of each
ligand-model probe linearly throughout the steered MD simulation. After steered MD and
equilibration, standard conformational sampling with the previously described ligand model
is performed. The total simulation length was 20ps using a water cap of 25Å radius.
Inclusion of copied atoms in the LES approach increases the CPU time per MD simulation
step to approximately a factor of two compared to standard MD. The simulation time of
20ps, thus, is comparable in CPU time to the short apo simulations and significantly more
efficient than the 30ns long apo MD simulations.

The underlying procedure to prepare and run Limoc simulations is fully automatic and
default parameters are heuristically defined. In principle, the user is able to change most
parameters using a parameter file, but we chose default settings for all protein systems
studied in this manuscript. The only user input required to run a “ligand-model” simulation
is the initial choice of ligands to define the size of binding pocket.

After MD simulation with the ligand-model, the trajectory was clustered in two steps: First,
for each MD snapshot distinct clusters were identified for the copied amino acids. Second,
all resulting MD frames were subsequently clustered producing an ensemble of 200-250
protein conformations for subsequent docking.

Results and Discussion
Chemical space covered by ligand model

Before utilizing the ligand-model approach for docking, we addressed the question whether
the probes of the ligand model sufficiently cover the chemical space of structurally diverse
compounds binding to a common target protein. As examples, we selected the 13 most
diverse ligands from the thrombin dataset and analyzed the occupancy density of ligand

Xu and Lill Page 7

J Chem Inf Model. Author manuscript; available in PMC 2012 March 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



atoms throughout the corresponding 13 holo MD simulations. We used ptraj from the
Amber suite to create a grid in X-Plor density format that presents the occupancy of donor,
acceptor, and any ligand atom in each grid cell throughout the MD simulations. The same
analysis was repeated for the MD simulations on the ligand model-protein complex. The
results are displayed in Figure 4, and demonstrate that the molecular probes of the ligand
model (mesh) are covering the chemical space of the 13 structurally diverse ligands (density
in surface representation). It should be noted that the ligand-model probes sample multiple
additional interactions that are not present in the 13 co-crystallized ligands but could be
potential interaction sites for other ligands.

Docking to apo and holo X-ray structures
To demonstrate the importance of including protein flexibility in docking and to validate the
utility of AutoDock Vina for thrombin and acetylcholinesterase we performed static docking
to the apo structures of both systems and to each individual holo structure. From 31 ligands
bound to thrombin or acetylcholinesterase only 8, 9, 12 and 15 compounds could be
successfully docked (RMSD < 2.5Å to the experimentally observed native binding pose) to
the apo form of the protein among the top-1, top-2, top-5, and top-10 ranked poses,
respectively (Figure 5, blue bars). When docking compounds to their native holo
conformation of the protein, more than 70% of all compounds had a binding pose with an
RMSD smaller than 2.5Å to the native pose for the top-ranked pose. When considering the
top-10 ranked poses all except one ligand could be docked with RMSD < 2.5Å to the native
ligand conformation (Figure 5, red bars).

In summary, AutoDock Vina is able to reproduce the experimentally observed ligand
binding pose if the native holo conformation of the protein for each ligand is known, but
fails to do so in most cases when the apo form of the protein is used.

Cross-docking to holo X-ray structures
In real-life applications usually few or no holo X-ray structures are known and docking is
performed into the apo form or an individual ligand-bound form of the protein. Thus, cross-
docking experiments were performed for eight diverse ligands binding to thrombin. Each
ligand is docked into the rigid protein structures of all seven other ligand-bound forms of
thrombin used in this study. From seven ligands docked to each protein structure, between
zero to five compounds can be successfully docked within an RMSD of 2.5Å (Figure 6, red
bars). Thus, no holo structure is pre-organized to allow successful docking of all ligands to
its binding site without additional protein flexibility. One X-ray structure (PDB-code: 1kts)
is adapted to its own ligand such that not a single ligand other than its co-crystallized ligand
can be successfully docked to its binding site, despite the fact that the overall RMSD
deviation of residues in the binding site (0.79 Å) is inside the range of observed deviations
of all holo structures from the apo form (0.44-0.87 Å).

Binding mode prediction using RCS on apo and holo trajectories
MD trajectories were generated for the apo forms of thrombin and acetylcholinesterase,
along with each of the 25 and 6 holo forms for the two protein systems, respectively. For the
apo forms two different settings were investigated: A short 50ps MD simulation using a
water cap to simulate small protein fluctuations and a long 30ns simulation for each protein
system to allow for sampling more diverse protein conformations. After QT clustering of
each trajectory into 200-250 representative protein conformations, docking into each
ensemble member was performed using AutoDock Vina. The individual poses were
clustered and the scores of all members of a cluster were averaged using canonical ensemble
statistics yielding a final predicted score for each cluster of binding poses, which are named
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RCS-poses in the following discussion. Results for the short and long apo as well as the holo
ensemble docking results are displayed in Figure 7.

Although no improvement in predicting the bioactive conformations of ligands can be
observed for the top-1, -2, and -5 ranked RCS-poses when docking to the short apo MD
simulation ensemble, a 10% improvement can be identified for the top-10 ranked RCS-
poses. A significant improvement over the static apo docking results is observed if the
ligands are docked to the long apo MD simulation ensemble, suggesting that alternative
protein conformations relevant for docking diverse ligands can only be sampled using longer
apo MD simulations. However, one third of the ligands still cannot be docked to the long
apo MD simulation ensemble, suggesting that protein conformations important for binding a
significant portion of the ligand library have not been sampled throughout the long MD
simulations.

Cross-docking simulations were repeated for the same eight thrombin ligands as described
earlier in “Cross-docking to holo X-ray structures”, but using the holo MD ensembles.
Figure 6 (blue bars) shows that on average no significant improvement was observed using
the RCS approach on the holo MD ensembles compared to the static cross-docking
experiments. MD simulations of a ligand-bound form of the protein biases the trajectory
towards the ligand used in the MD simulation. Other ligands are not able to bind to this
biased ensemble of conformations.

Binding mode prediction using RCS on ligand-model trajectories
We hypothesize that induced fit of the protein is required upon ligand binding and that these
conformational changes are not generally observed in the population of protein structures
sampled throughout the apo MD simulations. Our ligand-model approach aims to sample
protein conformations observed upon binding of structurally different ligands. Starting from
the apo form of each protein, short 25ps MD simulations were run with the ligand model.
After QT clustering of the MD trajectory, docking simulations were performed into an
ensemble of 200-250 protein conformations. After clustering the binding poses, the
predicted binding affinity was determined by the canonical ensemble average of the score of
all members of a binding pose cluster. The results of docking into the ligand-model MD
ensemble are shown in Figure 7 (green bars). A significant improvement in successfully
predicting the bioactive conformations of the 31 ligands binding to thrombin and
acetylcholinesterase can be observed compared to both the static and the MD ensembles on
the apo form of the proteins. Compared to the short apo MD simulation, the rate of
predicting the bioactive conformation increases for the ligand-model simulation by 35% to
48% for the top-1 to top-10 ranked poses. Even compared to the ensemble generated by
computationally considerably more expensive long apo MD simulation, the success rate
increases significantly by between 16% and 29% for top-1, top-2, top-5, and top-10 ranked
poses. Success rates similar to docking into the holo form of each individual protein-ligand
complex can be achieved when considering the top-2, top-5 or top-10 ranked poses.

Thus, our new ligand-model approach seems to be able to generate protein conformations
that allow for successful docking of structurally diverse ligands to the same protein. These
results also suggest that the ligand model stabilizes protein conformations through direct
interactions with the protein throughout the MD simulation, which are absent in the apo
simulations and that may reflect additional induced fit of the protein necessary to
accommodate a ligand.

The significance of the induced fit associated with ligand binding is underlined in Figure 8
for the three thrombin ligands BMZ (PDB-code: 1ghw), DA2K (1a4w), C24 (1kts), and one
acetylcholinesterase ligand G3X (3i6m). Histograms displaying the probability of
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indentifying poses with a certain predicted free energy show a shift in energy towards more
negative values for the holo-docking simulations in comparison to the apo-docking
simulations. Upon ligand binding, additional adaptation of the protein yields an optimally
adapted protein-ligand complex with more negative predicted binding energies than
observed for the poses generated by docking into the apo MD simulation. The corresponding
histograms (Figure 8) for docking into the ligand-model MD ensemble show a shift from the
apo histograms towards more negative predicted free energies that are generally in better
agreement with the holo histograms. This shift of the ligand-model histogram is consistent
with the improved results of docking into the ligand-model MD ensemble compared to the
apo MD ensemble, and further suggests that using our ligand-model approach an ensemble
of protein conformations can be generated that include a significant portion of the protein
adaptation to the bound ligand as observed in the holo ensemble.

For ligand BMZ (Figure 8a), for example, the histogram of the ligand model overlaps rather
well with the histogram of the holo form. The same is also true when considering only the
population of poses with an RMSD < 2.5Å (Figure 8b). The figure also shows that the total
number of good binding poses is relatively similar between holo and ligand model docking
simulations, slightly larger than that for the long apo, and significantly larger than that of the
short apo docking simulation. Consequently, a good RCS-binding pose can be identified at
the top-1 position for ligand model and holo ensemble, at top-2 position for long apo but
only at top-7 position for the short apo ensemble.

For ligand DA2K (Figure 8c) the difference between the ligand model and long apo
histogram is even more pronounced, and no good binding poses are identified for the short
apo ensemble. The ligand model ensemble, however, fails to produce the population of
binding poses with scores between -10kcal/mol and -9kcal/mol for the holo ensemble.
Consequently, the best ranked RCS-pose for docking into the holo ensemble is ranked at
first position, whereas it is ranked second for the ligand model simulation. No RCS-pose
among the top-10 ranked RCS-poses can be identified for either apo ensemble docking
simulations.

The shift in energy between holo docking ensemble and ligand model simulation is largest
for ligand C24 (Figure 8e). Although binding poses with RMSD < 2.5Å are observed for
docking into apo and ligand model ensembles (Figure 8f), no RCS-pose is identified among
the top-10 ranked solutions. The reason is that many solutions with RMSD > 2.5Å have
more negative scores than poses with RMSD < 2.5Å. Additional induced fit not simulated in
the apo and ligand model simulation seems to be necessary for stabilizing low RMSD poses
which then would yield to more favorable scores.

For the acetylcholinesterase inhibitor G3X (Figure 8g and h), holo and ligand model
histograms are almost identical, whereas the histograms of the apo ensembles are shifted to
more positive energies. Consequently, the top-ranked RCS-pose of the ligand model
ensemble displays an RMSD < 1.0Å, but no RCS-pose among the top-10 ranked poses could
be identified for the long apo ensemble with an RMSD < 2.5 Å.

Structural analysis of trajectories
To further understand how the structural variations between holo, apo and ligand model MD
ensembles result in the observed differences in docking success we address two particular
questions. First, which structural differences between the holo structure and other protein
structures sampled throughout the various MD simulations lead to failures in generating
native-like ligand poses? Docking ligand DA2K to the short apo simulation of thrombin, for
example, results in more energetically favorable binding poses than docking to the long apo
simulation, but no ligand poses with an RMSD < 2.5Å to the native form are generated for
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the short apo simulation. Second, which structural differences between holo ensemble and
apo ensembles result in the observed shift to more positive scores for docking into the apo
MD ensembles as observed in Figure 8?

To answer those questions, detailed analysis was performed characterizing the structural
changes of the protein relevant to ligand binding by distances between residues of the
binding site. In detail, the backbone of each amino acid is represented by the Cα atom and
one atom represents the side-chain of each residue (except glycine): Cβ for Ala, Nε for Arg,
Cγ for Asn, Cγ for Asp, Sγ for Cys, Cδ for Gln, Cδ for Glu, Cγ for His, Cγ1 for Ile, Cγ for
Leu, Cε for Lys, Sδ for Met, Cγ for Phe, Cγ for Pro, Oγ for Ser, Cβ for Thr, Cδ2 for Trp, Cζ
for Tyr, and Cβ for Val. Distances dij are computed between all those representing atoms of
the residues that directly interact with the ligand in its bioactive conformations. For
thrombin residues His57, Tyr60A, Trp60D, Lys60F, Leu99, Ile174, Asp189, Ala190,
Cys191, Glu192, Ser195, Va1213, Trp215, Gly216, Gly219, and Gly226, for
acytylcholinesterase residues Asp72, Trp84, Gly119, Tyr121, Ser122, Tyr130, Glu199,
Ser200, Phe288, Phe290, Phe330, Phe331, Tyr334, His440, and Gly441 are considered to
directly interact with the individual ligands. We assume that the holo MD simulation
samples distances between residues in the binding site optimal for the particular protein-
ligand complex. We first identify the top-N% ranked poses from docking to the holo
ensemble with RMSD < 2.5Å. From these top-N% docking poses, we compute the range of
distances for each dij the minimum dij,min and maximum dij,max value for each distance is
identified. Two variables describing the deviations from the optimal range of dij ∈
⌊dij,mindij,max⌋ in positive and negative direction are computed:

(4a)

and

(4b)

This separation into smaller and larger than optimal dij values is due to the assumption that
values that are too small might not provide enough space for binding the ligand in this
particular moiety of the binding site, whereas excessively large distances might not provide
optimal interactions between ligand and protein, resulting in a shift to more unfavorable
score values.

To address the first question, which structural variations lead to failure in identifying
nativelike binding poses, we correlated the RMSD of the binding poses to the native ligand
conformation with  and , characterizing the relative positions of amino acids in the
binding site and their deviations from the optimal holo protein structure. We performed
multi-linear regression analysis for all four ligands in Figure 8 using SAS software49

correlating  and  with the RMSD deviation from the native ligand conformation:

(5a)
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where c0, ,  are the regression coefficients. For the definition of dij,min and dij,max all top-
ranked poses from docking into the holo ensemble with RMSD < 2.5Å were considered
(N=100). The optimal set of  and  are identified using stepwise regression. To ensure
low multicolinearity among the predictors, Variance Inflation (VIF) is utilized to monitor
the degree of multicolinearity in the model. The VIFs for all descriptors in the model are
aimed to be smaller than 5. To achieve this goal, the significance level to stay (SLS) in the
model is set to between 0.0001 and 0.0549.

The results for all four ligands are presented as Supporting Information S2. In the following
discussion, we will focus on the structural interpretation of the results for DA2K as an
example. For DA2K binding to thrombin, eleven descriptors are identified in the multi-
linear regression with an overall regression coefficient of r2 = 0.75. Five out of eleven
descriptors are distances that include the side chain-representing atom Cδ of Glu192
suggesting that the conformation of this particular residue is crucial for DA2K binding.
Furthermore, a single descriptor d<(Cδ,Glu192−Cα,Trp60D) explains about one half of the
total variance in the RMSD data. In the context of the X-ray structure of DA2K-bound
thrombin (see Figure 9a), a side-chain orientation of Glu192 located closer to the opposite
site of the binding pocket (here represented by Trp60D) does not allow enough space for
binding DA2K in its native conformation. This inward-pointing conformation of Glu192 is
predominant in the short apo simulation (percentage of
d(Cδ,Glu192−Cα,Trp60D)<dmin(Cδ,Glu192−Cα,Trp60D) is 100%). Thus, no native-like
binding poses could be identified when docking to the short-apo MD simulation. Although
the short apo MD simulation doesn't have enough time to sample Glu192 side-chain
conformations with d(Cδ, Glu192−Cα, Trp60D) values larger than dmin(Cδ, Glu192−Cα,
Trp60D), that is not the case for the long apo MD simulation, where Glu192 conformations
are identified with d(Cδ,Glu192−CαTrp60D)>dmin(Cδ,Glu192−CαTrp60D) in more than
70% of all snapshots.

A similar probability of obtaining native-like poses is achieved for long apo and ligand-
model docking simulations (see Figure 8d). The score, however, of the good binding poses
of the long apo docking simulation is significantly shifted to less favorable values, resulting
in a native-like RCS pose being ranked outside of the top-10.

To address the question why the score for good binding poses is shifted to positive values
for the long apo simulation with respect to holo and also ligand-model docking simulations,
we performed a multi-linear regression analysis between score and distance descriptors 
and , focusing only on good binding poses:

(5b)

The range of optimal dij values (dij,min <dij < dij,max) was defined by the range of dij values
for the top-5% highest ranked poses from the holo MD docking simulations. Details of the
multi-linear regression for all four compounds from Figure 8 can be found as Supporting
Information S3. Only two descriptors, d>(Cα,His57 - Cα,Glu192) and d>(Cδ2,Trp60D -
Cα,Asp189)), are needed to explain 68% of the score variance of DA2K docked into the
various ensembles. Both distances include two residues that snuggly accommodate the
ligand from two almost opposite sites and thus stabilize the native ligand conformation
(Figure 9b). Trp60D even fills a small cleft in the ligand similar to a wedge. On the opposite
side, Asp189 forms crucial salt bridges with the guanidinium group of the ligand. If the
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distance between both those residues is too large, an optimal interaction between protein and
ligand is unlikely. As shown in Figure 9d, the distance between holo and ligand-model is
quite similar. Due to the lack of a stabilizing effect of ligand or ligand model in the long apo
simulation, predominantly larger distances are sampled between Trp60D and Asp189. The
same shift to longer distances from the holo to the long apo docking ensemble is observed in
Figure 9c for the residue pair His57-Glu192. In the ligand-model ensemble, however, the
distances are on average also slightly shifted to larger values, resulting in slightly worse
docking performance when compared to the holo-docking simulations.

Binding affinity prediction using RCS on apo and ligand-model trajectories
In a final experiment we addressed the question of whether the improved incorporation of
holo-like protein structures using the ligand-model approach can yield a more accurate
prediction of binding affinities using RCS. We docked 14 ligands with known binding
affinities from a single laboratory into the ligand-model and long apo simulation ensemble
of thrombin. Docking into the apo MD simulation resulted in an r2 = 0.51, and docking to
the ligand-model MD simulation resulted in an r2 = 0.69 using the RCS pose with lowest
RMSD to the x-ray structures (see Supporting Information S4 for details). Observed
correlations between experimental and predicted binding affinities using docking and
scoring methods are often dominated or at least strongly influenced by the inherent
relationship between affinity and size of the ligands.50, 51 To test the specificity of our
correlation we computed the r2 value of experimental affinity with the number of heavy
atoms, approximately representing the size of each ligands. The resulting r2 of 0.31 suggests
that there is some correlation between affinity and size of the ligand but that the correlation
between predicted and experimental binding affinities using docking into the ligand-model
MD ensemble is significantly stronger than the correlation by size only, and also stronger
than the correlation obtained by docking into the apo MD ensemble.

Binding specificity prediction using RCS on DHFR
Including protein flexibility into structure-based virtual screening generates a larger pool of
potential target conformations which can expand the chemical space of identified potential
hits. As pointed out by Carlson and co-workers38, this increase in potentially accessible
chemical space might on the other hand allow the binding of more promiscuous ligands that
must be separated from high affinity ligands using the scoring function. Considering the
known issues with scoring functions used in docking, this increased pool of potential binders
can finally result in reduced performance of the virtual screening protocol. This raises the
question whether the previously demonstrated improvement in predicting binding modes
and binding affinities compared to utilizing a static protein structure can compensate the
expected reduction in selectivity prediction performance. Based on the suggestion of one of
the referees, we approached the question by predicting selectivity between three different
DHFR species (human = hDHFR, P. carinii = pcDHFR, C. albicans = caDHFR). 20 high
affinity ligands were selected for hDHFR and pcDHFR, and 19 ligands for caDHFR from
Carlson and co-workers.38 These 59 ligands were docked into each of the three species and
enrichment of the species-specific high affinity ligands against the other 39 or 40
compounds was computed (Figure 10). Virtual screening studies were performed on a static
protein structure and on the Limoc-sampled protein structures utilizing RCS.

The area-under-the-curve (AUC) of the ROC plot ‘True positives versus false positives”
(Figure 10) was computed for all three DHFR species. Using the static X-ray structure only
hDHFR displays significant enrichment (AUC = 0.90; ideal = 1.0; random = 0.5) whereas
no significant enrichment was observed for pcDHFR (AUC = 0.47) and caDHFR (0.59).
Performing the same studies using the Limoc-RCS scheme similar enrichment for hDHFR
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(0.86), slightly improved enrichment for pcDHFR (0.57) and a drop in enrichment for
caDHFR (0.27) was obtained.

We attribute this latter drop in enrichment to the combination of three factors: First,
caDHFR-specific ligands are typically smaller than the selected hDHFR-specific ligands.
Second, the scoring function is additive in character exaggerating the influence of ligand
size onto binding affinity. Third, the scoring function of AutoDock Vina doesn't display
strong energetic differentiation between hDHFR- and caDHFR-specific ligands binding to
the static caDHFR structure; the score for 90% of the compounds ranges from -8.3 to -7.1
kcal/mol. Considering that there is no conformational change observed between apo and
several holo structures for caDHFR (based on a superposition of 1ai9 with 1aoe, 1ia1, 1ia2,
1m7a, 1m78, 1m79 using PyMOL), the apo X-ray structure of caDHFR is optimally adapted
to bind caDHFR-specific ligands. Thus, small conformational changes in the protein provide
alternative structures that can accommodate hDHFR-specific ligands but do not additionally
favor the binding of caDHFR-specific ligands. As a result, the binding affinity of hDHFR-
specific ligands relative to caDHFR-specific ligands is increased in schemes that include
protein flexibility into docking. Together with the three previously mentioned factors, this
explains why hDHFR-specific ligands are ranked higher in the Limoc-RCS scheme
compared to the static docking scheme. This trend is unlikely to be specific to the Limoc-
RCS scheme but will probably be observed for other approaches that include protein
flexibility in conjunction with additive scoring function such as AutoDock Vina.

Furthermore, utilizing receptor-based pharmacophore models based on multiple X-ray
structures for the same three DHFR species, Carlson and co-workers also observed that
caDHFR-models performed poorer in identifying species-specific ligands compared to
hDHFR-and pcDHFR models.38

Conclusions
We have presented the development and validation of a new methodology, named the
‘ligand-model’ concept (“Limoc”), to sample protein conformations that are relevant for
binding structurally diverse sets of ligands and that are unbiased towards a particular class of
ligands. In this concept, MD simulations are performed with a virtual ligand, represented by
a collection of functional groups, which binds to the protein. The ligand model dynamically
changes its shape and properties during the simulations, essentially representing a large
ensemble of different chemical species binding to the same target protein. We demonstrated
that this approach allows sampling of protein conformations relevant to its interaction with
different ligands. In combination with RCS, we obtained significant improvement in
docking success compared to docking simulations into the ensembles of protein structures
generated in short and long apo MD simulations: First, the percentage of reproducing native-
like poses (RMSD < 2.5Å) for 31 compounds binding to thrombin or acetylcholinesterase
among the top-1, -2, -5, -10 ranked RCS poses increased by between 16% and 29%
compared with the long apo simulation docking results. Second, distances between amino
acids in the binding site, that are critical for ligand binding, are more similar to the holo
structure in the ligand-model MD ensemble than in the apo ensembles. That yields to the
observed shift to more negative binding free energies for the ligand-model docking results
compared to those of the apo simulations. Third, a stronger correlation between
experimental and predicted binding affinity was observed for the RCS poses resulting from
the ligand-model ensemble compared to the apo ensemble. That suggests that our ligand-
model approach, in conjunction with RCS, is able to predict binding affinities and rank
structurally diverse compounds more accurately.
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We emphasize that our approach does not require knowledge of a ligand-bound X-ray
structure. The co-crystallized ligands are currently only used to define the space of the
binding pocket. For both systems discussed here, the sampling of protein conformations
with the ligand-model concept started from an unbound structure. We also point out,
however, that with the current implementation of the ligand-model approach it is only
feasible to sample protein conformations that are distinct by approximately 1-2Å RMSD.
Although it is possible to combine our approach with other protein conformational search
methods (e.g. elastic network models,52-58 loop prediction,59-64 etc.) for sampling large
conformational changes, we do not expect the ligand-model approach alone to be feasible
for sampling large scale changes in protein structure, such as alternative loop conformation
or large hinge-bending motions. Despite these shortcomings, however, the ‘ligand-model’
concept should prove to be a valuable tool for exposing previously inaccessible protein
conformations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) In the population-shift model of protein flexibility coupled to ligand binding, different
protein conformations are sampled by the ligand-free form of the protein (protein: blue
shapes). A ligand (orange circle) binds to the ligand-bound form and stabilizes the particular
protein conformation. (b) In the induced-fit mechanism the ligand binds to the apo form of
the protein, and this interaction triggers a conformational change of the protein to
accommodate the ligand. (c) Protein conformations sampled for different ligand-bound
forms of the protein might be biased for their bound ligand (different ligands: rectangle and
triangle). Other ligands (here: circle) might not be able to bind to the protein conformations
biased by the other ligands.

Xu and Lill Page 19

J Chem Inf Model. Author manuscript; available in PMC 2012 March 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Scheme of ligand-model approach: Given a starting protein structure the binding site is
identified (a) and the solvent-accessible surface for this binding site is computed (b).
Molecular probes complementary to the physico-chemical properties of the residues of the
binding site are distributed onto the solvent accessible surface (c) (gray: hydrophobic probe;
blue-white: hydrogen-bond donor; red-orange: hydrogen-bond acceptor). Throughout the
MD simulation the probes are harmonically restrained. (d) To sample the interactions
different possible ligands binding to the same binding site would experience, donor and
acceptor groups are copied and placed at positions nearby the optimally complementary
position. They interact with different copies of the same complementary residue of the
binding site using the Locally-Enhanced Sampling method (LES).48 (e) To sample the
interactions of different sized ligands in various moieties of the binding site, the equilibrium
position of a probe is altered, following the first principal component of a previous short
MD simulation without ligand model.

Xu and Lill Page 20

J Chem Inf Model. Author manuscript; available in PMC 2012 March 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Example of ligand model binding to thrombin. Left: Initial frame of ligand model-protein
complex without copying the molecular probes and their interacting protein (blue: hydrogen-
bond donor probe (dark) and protein (light) atoms; red: acceptor probe (dark) and protein
(light) atoms; green: protein groups that can be both donor and acceptor; brown:
hydrophobic probe atoms). Right: Snapshot of MD simulation of ligand model-protein
complex in which donor and acceptor probes, and interacting residues are copied. Only
donor and acceptor probes and copied residues are displayed.
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Figure 4.
Density map over MD trajectories of 13 holo structures of thrombin (surface
representations) and the ligand-model simulation (mesh representation). Overlap of
occupied grid points by any atom (left, brown colors), acceptor groups (middle, red) and
donor groups (right, blue). The corresponding physico-chemical properties of the protein are
projected onto the protein's surface for the right two panels (light blue: hydrogen-bond donor
atoms; light red: acceptor atoms; green: protein groups that can be both donor and acceptor).
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Figure 5.
Percentage of successfully docked ligands into the static apo (blue bars) and holo (red)
conformations of thrombin and acetylcholinesterase. A ligand is successfully docked if the
RMSD between predicted and experimentally observed binding pose is less than 2.5 Å.
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Figure 6.
Cross-docking results: Percentage of successfully docked ligands (RMSD < 2.5Å ranked as
top-1) to eight different X-ray holo structures of thrombin. In red are shown the results for
docking into the x-ray holo structures, in blue those for docking into the holo MD
ensembles.
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Figure 7.
Percentage of ligands successfully docked into the ensemble of protein conformations
generated by a short (blue bars) and long (purple) MD simulation of the apo forms of
thrombin and acetylcholinesterase as well as from short MD simulations of the holo forms
(red) and from our ligand model simulations (green). A ligand is successfully docked if the
RMSD between predicted and experimentally observed binding pose is less than 2.5Å.
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Figure 8.
Histograms showing the probability of identifying poses with a certain predicted free energy
for docking into holo (purple), long apo (red), short apo (orange) and ligand model (green)
MD ensembles for three thrombin (BMZ, DA2K, C24) and one (G3X) acetylcholinesterase
inhibitor.

Xu and Lill Page 26

J Chem Inf Model. Author manuscript; available in PMC 2012 March 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
DA2K-bound X-ray structure of thrombin (top panel) with (a) distances that cause non-
native binding poses when (magenta) smaller, or (black) smaller or larger than the
corresponding distances in the holo MD ensemble. (b) Distances that cause more positive
predicted binding affinities when larger than the poses resulting in lowest predicted free
energies. The histograms for the distances in (b) for holo, long apo and ligand-model
ensemble are shown in (c: d(Cα,His57 - Cα,Glu192)) and (d: d(Cδ2,Trp60D - Cα,Asp189)).
dij,min and dij,max are displayed as dashed vertical lines in (c) and (d).
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Figure 10.
ROC curves for selectivity prediction accuracy of high-affinity ligands binding to three
different DHFR species (a: hDHFR, b: pcDHFR, c: caDHFR). Plots of true positives (e.g.
hDHFR-specific ligands for hDHFR) versus false positives (e.g. caDHFR- and pcDHFR-
specific ligands for hDHFR) are displayed for docking to the X-ray structure (blue) or
Limoc-generated conformational ensemble (red) of each DHFR species.
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