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Abstract

Mutation rate variation has the potential to bias evolutionary inference, particularly when rates become much higher than

the mean. We first confirm prior work that inferred the existence of cryptic, site-specific rate variation on the basis of

coincident polymorphisms—sites that are segregating in both humans and chimpanzees. Then we extend this observation to

a longer evolutionary timescale by identifying sites of coincident substitutions using four species. From these data, we

develop analytic theory to infer the variance and skewness of the distribution of mutation rates. Even excluding CpG

dinucleotides, we find a relatively large coefficient of variation and positive skew, which suggests that, although most sites in
the genome have mutation rates near the mean, the distribution contains a long right-hand tail with a small number of sites

having high mutation rates. At least for primates, these quickly mutating sites are few enough that the infinite sites model in

population genetics remains appropriate.
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Introduction

Mutation rates vary in a context-dependent fashion (Blake

et al. 1992; Hess et al. 1994; Hwang and Green 2004;

Walser and Furano 2010), which has necessitated the mod-

ification of phylogenetic and population genetic methods

to avoid bias (Yang 1996; Hernandez et al. 2007). Signif-

icant bias occurs primarily at the upper end of the mutation

rate distribution, where the infinite sites model of at most

one mutation per site breaks down and sites may be sub-

ject to multiple mutations. The dinucleotide CpG, in partic-

ular, exhibits a dramatically elevated mutation rate at the

C, and, as a result, these sites are often discarded before

performing evolutionary analyses. In general, variance

from nearest-neighbor nucleotides can be incorporated

during inference under a context-dependent model of mu-

tation (Hernandez et al. 2007). However, recent research

by Hodgkinson et al. (2009) provided evidence for cryptic

variation in the mutation rate at a fine scale that cannot be

ascribed to nearest-neighbor effects. This cryptic variation

again raises the potential for bias because it, by definition,

is not taken into account by current context-dependent

models.

Hodgkinson et al. (2009) discovered that a surprising

number of human polymorphic sites are also polymorphic

in chimpanzees. These coincident single nucleotide poly-
morphisms (cSNPs) not only occur significantly more fre-

quently than expected under independence but also

cannot be easily explained by natural selection, fine-scale

context captured by neighboring nucleotides, or large-scale

context captured by GC content (Hodgkinson et al. 2009;

Hodgkinson and Eyre-Walker 2010). However, they ana-

lyzed human and chimpanzee SNPs from the public

database dbSNP, which provides no information on ascer-
tainment strategy. Although the majority of the chimpanzee

SNPs in dbSNP originate from the chimpanzee genome pro-

ject, some SNPs stem from smaller studies that may have

been guided by knowledge about human polymorphisms.

Furthermore, humans and chimpanzees split only 4.1 Ma

and had a relatively large ancestral population size (Hobolth

et al. 2007), which means a non-negligible number of pres-

ent-day SNPs would have been polymorphic in the ancestral
population (Hobolth et al. 2007). Thus, some of those an-

cestral SNPs (acSNPs) might also have stayed polymorphic in

both populations until today (Clark 1997) to become shared

acSNPs.
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Here, we revisit this cSNP observation to determine the
extent to which the existence of cSNPs can be ascribed

to shared ancestral polymorphism, non-independent ascer-

tainment, or other technical artifacts. In addition, we extend

the timescale over which this putative mutation rate varia-

tion holds by analyzing the frequency of coincident single

nucleotide substitutions (cSNSs) between human–chimpan-

zee and orangutan–rhesus genomes. We define a novel for-

malization to quantify the excess of cSNPs and cSNSs, use
these definitions to develop theory to estimate the extent

of mutation rate variation, and conclude by discussing its

potential impact on population genetic inference.

Methods

Data

For chimpanzee, we used heterozygous sites from the diploid

genome of Clint (The Chimpanzee Sequencing and Analysis

Consortium 2005), which we downloaded from http://

www.broad.mit.edu/ftp/pub/assemblies/mammals/

chimp_SNPs/ and mapped onto the human genome coordi-

nate system using UCSC whole-genome syntenic alignments

(Kent et al. 2003).
For human, we used SNPs discovered in low-coverage

sequencing of 59 Yoruba individuals as part of the 1000 Ge-

nomes Pilot Project (The 1000 Genomes Project Consortium

2010), which we downloaded from ftp://ftp-trace.ncbi.nih.

gov/1000genomes/ftp/pilot_data/paper_data_sets/a_map_

of_human_variation/low_coverage/snps/YRI.low_coverage.

2010_09.sites.vcf.gz. We restricted to biallelic, non-indel

SNPs with allele counts between 1 and 117.
We identified 3.6 � 107 human–chimpanzee SNSs by

comparing the human and chimpanzee reference sequen-

ces via UCSC whole-genome syntenic alignments and re-

quiring ungapped alignment of ±2 bases around the

mismatch. We identified 1.4 � 108 orangutan–rhesus sub-

stitutions analogously and then mapped the positions of

these substitutions onto the human genome coordinate sys-

tem using UCSC orangutan–human whole-genome syn-
tenic alignments.

For all data, any site that, together with its neighboring

nucleotides, matched the pattern N[CT]G or C[GA]N was

discarded as a potential CpG site. Neighboring nucleotides

were taken from the corresponding genome sequence (e.g.,

chimpanzee genome if looking at a chimpanzee SNP).

Number of Shared Ancestral Polymorphisms

Wewish tocalculate thedistributionof thenumberofhuman–
chimpanzee acSNPs that by chance survived genetic drift.

First, we assume a simple population demography for

which analytic calculations are feasible. We assume that the

human–chimpanzee ancestral population is large enough that

splitting it into two populations of size Ne results in identical

allele distributions for the two populations. The split happens
instantaneously at t generations in the past.

Under this demography, genetic drift operates identically

whether moving forward or backward in time. Let y be the

present-day allele frequency in humans and x be the pres-

ent-day allele frequency in chimpanzees. We condition on

observing a heterozygous SNP in our chimpanzee sample

of size two and allow for 2tNe generations of drift from

chimpanzees to humans:

Prðy j t ;Ne; chimp hetÞ5R 1� 1=ð2NeÞ
1=ð2NeÞ Prðy j x; 2tNeÞPrðx j chimp hetÞdx:

Inside the integral, the first term comes from Kimura

(1955), who solved the appropriate diffusion equation as-

suming no mutation to find the probability that an allele

starting at frequency x will be segregating at frequency y
after 2tNe generations. The second term captures the pro-

cess of sampling two chimpanzee chromosomes and can be

calculated by applying Bayes theorem: Pr(xjchimp het)
} 2x(1 � x) Pr(x), where the chimpanzee population fre-

quency spectrum Pr(x) has form 1/x under neutrality.

Given the human population frequency y, now we need

to know the probability of observing both alleles in the 1000

Genomes pilot data, which sampled 118 Yoruba chromo-

somes at low coverage:

PrðacSNP j t;Ne; chimp hetÞ5R 1� 1=ð2NeÞ
1=ð2NeÞ ð1 � y118 � ð1 � yÞ118Þ

,Prðy j t;Ne; chimp hetÞdy:
ð1Þ

If we further assume that each human SNP represents an

independent sample from all possible genealogies, then the

number of observed shared ancestral polymorphisms will

follow a binomial distribution with Bernoulli probability

Pr(acSNPjt, Ne, chimp het).

To obtain more realistic estimates, we simulated data us-
ing msms (Ewing and Hermisson 2010). We simulate 3 �
105 fragments of length L 5 101 bp with h 5 0.00053/

bp (which corresponds to ĥw excluding CpGs for the

1000 Genomes data used in this study) and recombination

rate of 1 cM/Mb. These fragments are sampled from two

Wright–Fisher populations (‘‘human’’ and ‘‘chimpanzee’’)

that maintain a constant size until they merge t generations
ago, at which point the ancestral population expands to Na

individuals.

Estimating Excess of cSNPs and cSNSs

Intuitively, we clearly observe more cSNPs (or cSNSs) than

‘‘background’’ (i.e., see fig. 1). Now we develop statistics

to rigorously quantify the extent to which the number of

cSNPs or cSNSs exceeds our expectation under the null hy-

pothesis that mutation rates are independent in different

Mutation Rate Distribution GBE

Genome Biol. Evol. 3:842–850. doi:10.1093/gbe/evr044 Advance Access publication May 13, 2011 843

http://www.broad.mit.edu/ftp/pub/assemblies/mammals/chimp_SNPs/
http://www.broad.mit.edu/ftp/pub/assemblies/mammals/chimp_SNPs/
http://www.broad.mit.edu/ftp/pub/assemblies/mammals/chimp_SNPs/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/paper_data_sets/a_map_of_human_variation/low_coverage/snps/YRI.low_coverage.2010_09.sites.vcf.gz.
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/paper_data_sets/a_map_of_human_variation/low_coverage/snps/YRI.low_coverage.2010_09.sites.vcf.gz.
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/paper_data_sets/a_map_of_human_variation/low_coverage/snps/YRI.low_coverage.2010_09.sites.vcf.gz.
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/paper_data_sets/a_map_of_human_variation/low_coverage/snps/YRI.low_coverage.2010_09.sites.vcf.gz.


lineages. For all calculations, we assume that the mutation
rate at any particular site is independent of the mutation

rate at nearby sites.

First, we must define our notation. Let H be a binary vec-

tor of random variables Hi that contains 1 at all genomic po-

sitions i that are human SNPs and 0 otherwise. Let C and O
be the analogous vectors for chimpanzee SNPs and orang-

utan–rhesus substitutions, all on the same genomic coordi-

nate system. Lower case versions of these variables (hi, ci,
and oi) represent specific values found in a particular data

set rather than being random variables.

Define R2 to be the ratio of the probability of a cSNP to

the probability of a human SNP adjacent to a chimpanzee

SNP: R2 5 Pr(CiHi 5 1)/Pr(CiHiþ1 5 1), where i represents
an arbitrary position in the genome. Note that this definition

matches our intuitive idea of comparing observed cSNPs to

the number expected if the per-site mutation rates were in-
dependent in the human and chimpanzee lineages.

We estimate R2 fromoursamplebycountingthenumberof

cSNPs and dividing by the prediction based on the number of

adjacent SNPs. Under our assumption that themutation rates

at nearby sites are independent,RL
i51cihiþj for small j provides

anestimateof theexpectednumberofcSNPs.Wecan improve

thisestimatebyaveragingoverthesetofneighboringpositions

within 50 bp,N5f� 50; . . . ; 50gnf� 1; 0; 1g, which has car-
dinality jN j598. Note we exclude immediately adjacent posi-

tions fromN because of CpG effects (see fig. 1).

bR2 5
PL

i5 1 cihiP
j2N

PL
i5 1 cihiþ j=jN j:

AnestimateofR2canbecomputedsimilarlyfromcSNSdata.

Define R3 to be the ratio of the probability of a site being

both a cSNP and an orangutan–rhesus substitution to the

probability of an orangutan–rhesus substitution adjacent

to a human SNP adjacent to a chimpanzee SNP: R3 5 Pr(Ci

HiOi)/Pr(CiHiþ1Oiþ2). Similar to R2, R3 quantifies the excess of
these triply coincident sites relative to the number expected

if the per-site mutation rates were independent in human,

chimpanzee, and orangutan–rhesus trees. We estimate

analogously to R2:

bR3 5
PL

i5 1 cihioiP
j;k2N

PL
i5 1 cihiþ joiþ k=jN j2

:

Coefficient of Variation

Now we develop theory to connect R2 with the variance of

the mutation rate distribution, f. We ignore the low prob-

ability event of an apparent coincident mutation arising

from lineage sorting and require that multiple mutations

be used to explain the observed data.

For a particular site i, let li denote the per-site mutation
rate, which is a random variable drawnwith density f(li). We

assume that li remains constant over the evolutionary time-

scale of interest.We begin by calculating the probability that

this site is a cSNP (HiCi 5 1) conditional on the total tree

lengths of the chimpanzee lineage, Tc, and of the human

lineage, Th:

PrðCiHi 5 1jTc; ThÞ �
Z

l2i TcThfðliÞdli 5 TcThE½l2�; ð2Þ

where E½l2� represents the second moment of the mutation
rate distribution and the approximation requires that the

mutation rate be low enough that the chance of more than

onemutation within each lineage is negligible. Next we con-

sider two adjacent sites, one of which is polymorphic in

chimpanzees (Ci 5 1) and the other in humans (Hiþ1 5

1). Because these are distinct sites, we assume their muta-

tion rates are independent of each other, li ? liþ1:

PrðCiHiþ 1 5 1jTc; ThÞ
5

R
PrðCi 5 1jTc; liÞfðliÞdli

,
R
PrðHiþ 1 5 1jTh; liþ1Þfðliþ1Þdliþ1

� ðTcE½li �ÞðThE½liþ1�Þ5 TcThE½l�2;

ð3Þ

where E½l� represents the first moment of the mutation rate

distribution.

Now we see R2 is simply the ratio of equation (2) to equa-

tion (3) after integrating each equation over Tc and Th and

canceling: R2 � E½l2�=E½l�2. Note that the population sizes

of chimpanzees and humans are incorporated into the total

tree lengths Tc and Th; because these factors cancel, R2 is in-
dependent of the population sizes. After a little algebra, we
can express the coefficient of variation of f(l) in terms of R2:

cv 5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½l�

p
E½l� 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 � 1ÞE½l�2

q
E½l� 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 1

p
;

which gives us a method of moments estimate, bcv ,
by substituting in the estimated ratio from the data, bR2.
Skewness

If a site is both a human/chimpanzee cSNP (HiCi 5 1) and

a substitution between orangutan and rhesus (Oi 5 1), then

we need threemutations to explain the data. Conditional on
the total tree length of the chimpanzee lineage, Tc, human

lineage, Th, and orangutan–rhesus lineage, Tor, we again use

our assumption that li remains constant over the entire tree

and find:

PrðCiHiOi 5 1jTc; Th; TorÞ �R
l3i TcThTorfðliÞdli 5 TcThTorE½l3�;

ð4Þ

where E½l3� represents the third moment of the mutation

rate distribution and the approximation requires that the

mutation rate be low enough that the chance of more than

one mutation within each lineage is negligible. If the chance
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ofmultiplemutations in a single lineage is substantial [e.g., if
(lTor)

2 . 0.01], then equation (4) will be an overestimate.

Next we consider three adjacent sites, one of which differs

between orangutan and rhesus, the next is polymorphic in

chimpanzees, and the third is polymorphic in humans. As

with equation (3) earlier, we assume that the mutation rates

of the three sites are independent:

PrðCiHiþ 1Oiþ 2 51jTc; Th; TorÞ
5 PrðCi 5 1jTcÞPrðHiþ 1 5 1jThÞPrðOiþ 2 5 1jTorÞ
� TcThTorE½l�3:

ð5Þ

Now taking the ratio of equation (4) to equation (5), we

see R3 � E½l3�=E½l�3. Analogous to the cv calculation above,

we can write the skewness of f(l) in terms of R2 and R3:

c5 E½ð l� E½l�ffiffiffiffiffiffiffiffiffi
Var½l�

p Þ3�5 ðR3 � 3R2 þ2ÞE½l�3

Var½l�3=2

5 R3 �3R2 þ2

ðR2 �1Þ3=2
;

which yields a method of moments estimate, ĉ, after
substituting in bR3 and bR2 from the data.

Confidence Intervals

We use bootstrap resampling with replacement to generate

new lists of sites that are chimpanzee SNPs, human SNPs, and

orangutan–rhesus differences. For speed, we restrict the sam-

pling of human SNPs and orangutan–rhesus differences to

sites that are within 50 bp of a chimpanzee SNP. When

the same site is drawn more than once, we treat it as distinct.

Consider a small example: if position 10were in the chimpan-

zee SNP list once and the human SNP list contained position
10 twice, then wewould count this as two cSNPs. From these

three new lists of sites, we estimate bR2; bR3; bcv , and ĉ and then

take the 0.025 and 0.975 quantiles from these sampling dis-

tributions as our 95% confidence intervals.

Mutation Rates from Nearest-Neighbor Context

We can also calculate mutation rates under a model of near-

est-neighbor context dependence. This model assumes that

the mutation rate for a particular site, i, is completely spec-

ified by the triplet of nucleotides at positions i� 1, i, and iþ 1.
Thus, we can estimate mutation rates by simply counting the

number of occurrences of each distinct triplet at human SNPs

after CpG filtering. Because we do not know which allele is

ancestral, each SNP counts toward two triplets: one for each

allele. From this distribution of counts, we can directly calcu-

late the coefficient of variation and skewness of themutation

rate distribution because these statistics are scale invariant.

Results

We start with 1.3 � 106 chimpanzee SNPs from the chim-

panzee genome project and 1.1 � 107 human SNPs from

the 1000 Genomes pilot. Given that CpG sites in primates

are known to have a mutation rate ;30 times higher than
other dinucleotide contexts (Hwang and Green 2004), we

eliminate these sites from all further results, leaving us with

8.8 � 105 chimpanzee SNPs and 7.1 � 106 human SNPs for

a total of 6,452 cSNPs. Similarly, we find 2.4 � 107 substi-

tutions between the human and the chimpanzee genomes

after CpG filtering, 1.3 � 106 of which are coincident sub-

stitutions (cSNSs) in that these sites also differ between

orangutan and rhesus macaque.
Should we be surprised by these numbers?

Excess of cSNPs and cSNSs

We expect some cSNPs to arise due to repeated

mutations—one within the human and one within the chim-

panzee genealogy. In figure 1A, we plot the number of hu-

man SNPs that fall within a window of ±50 bases of

a chimpanzee SNP. The observed cSNPs fall at position 0,

which shows a clear excess relative to background withbR252:5 (95% confidence interval of 2.4–2.6). If all sites

had the samemutation rateordrew independently fromadis-

tribution, then we would expect to see cSNPs as often as we

see human SNPs at positions adjacent to chimpanzee SNPs

(i.e., R2 5 1). Note that eliminating chimpanzee CpG SNPs

causes spillover effects for human SNPs at adjacent positions

�1 andþ1. Mutations are generally biased from ancestral C/

G to derived A/T, so CpGfiltering reduces the number of SNPs
at these positions (see also supplementary fig. S2, Supple-

mentary Material online).

Next we follow an analogous procedure to estimate the

ratio R2 for cSNSs (fig. 1B) and find it to be less at 1.638

(95% confidence interval of 1.635–1.641). This difference

in estimated R2 ratios suggests that not all our assumptions

hold at both timescales (see Discussion).

Finally, we estimate the relative number of sites that are
both a cSNP and an orangutan–rhesus substitution to bebR357:0 (95% confidence interval of 5.7–8.4). However,

the same factors that lead to the substitution bR2 being less

than the polymorphism bR2 also likely depress our estimate of

R3 because this quantity depends on orangutan–rhesus dif-

ferences as well. Thus, our bR3 should be a lower bound on

the true R3.
In all cases, we find a clear excess of observed coincident

sites relative to the number expected if mutation rates were

independent.

Artifacts that Could Explain the Observation

The excess of cSNPs and cSNSs could arise from either inter-

esting biology or less interesting technical artifacts. Before

investigating the former, we must first rule out the latter:
ascertainment bias, collapsed duplications in the genome

assemblies, or repeated sequencing errors.

Ascertainment bias would lead to cSNPs if the discovery of

polymorphisms in one species were influenced by discovery in

the other. However, this cannot explain the cSNS results and,
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regardless, we only use polymorphic sites discovered in full
sequence data, which avoids this problem entirely.

Collapsed paralogs in the genome assemblies would cre-

ate both apparent cSNPs and cSNSs. If these were the case,

then coincident sites would fall preferentially into regions

that align to multiple locations in the genome and have el-

evated read coverage in whole-genome shotgun sequenc-

ing. We see neither trend. First, we extract ±50 bases of

sequence around each SNP and ask what proportion aligns
to multiple locations in the human genome with percent

identity .92% across a gapped alignment of at least 28

contiguous bases. We find 87% of cSNPs align to multiple

locations, 83% of chimpanzee SNPs, and 89% of human

SNPs. Second, we examined the raw alignments of Illumina

reads from 1000 Genomes Pilot Yoruba individual NA19240

and find the read coverage at cSNPs to be qualitatively

similar to the coverage at other chimpanzee SNPs. Quanti-
tatively, cSNPs actually have a slightly lower median cover-

age (34) relative to the other chimpanzee SNPs (35) due to

a very long right tail of the distribution.

If sequencing errors were elevated in a consistent, site-

specific fashion, then it would create apparent cSNPs and

lead to upward bias in bR2. However, this scenario seems im-

plausible given that the results are robust across different

sources of human data with varying error profiles (see Dis-
cussion). Furthermore, if a significant proportion of cSNPs

was due to coincident errors, we would expect the site fre-

quency spectrum (SFS) of cSNPs within humans—that is, the

proportion of polymorphic sites within the genome that are

found at a given frequency in the population—to differ from

that of other SNPs. In particular, the SFS of cSNPs would be

more shifted toward rare alleles relative to the SFS of other

SNPs. However, the two distributions are very similar,
especially in the low frequency range (fig. 3A), which implies

that only a minor fraction of the cSNPs could be due to co-
incident errors.

On the other hand, if sequencing errors were elevated

uniformly across the genome, then it would push bR2 toward

1 by increasing the numerator (number of cSNPs) to a lesser

degree than the denominator (expected number of cSNPs).

Significant bias in bR2 requires a relatively high SNP false-pos-

itive rate (supplementary material, Supplementary Material

online), which would be clearly visible in the SFS (supple-
mentary fig. S1, Supplementary Material online). Further-

more, we would expect the SFS of all SNPs to be shifted

even more toward rare alleles than the SFS of cSNPs, which

we do not observe (fig. 3A).
After failing to find a convincing explanation for the ob-

served cSNPs on the basis of an artifact, we now turn toward

the potential biological explanations of neutral or selected

ancestral polymorphisms and mutation rate variation.

Shared Ancestral Polymorphisms versus Mutation
Rate Variation

In the following, we test three predictions for shared ances-

tral polymorphisms that should distinguish them from recur-
rent mutations:

1. Shared ancestral polymorphisms should have the
same two alleles in both species.

2. The number of cSNPs must be compatible with what
we know about demography and speciation of
humans and chimpanzees.

3. The SFS of very old polymorphisms will no longer
exhibit the otherwise characteristic L-shape.

First, a startling number of cSNPs exhibit the same two al-

leles in both species and a similar, albeit less extreme, pattern
holds for cSNSs (table 1). Note that, conditional on the alleles
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FIG. 1.—Frequency of observed coincident (position 0) versus expected (position 6¼ 0) sites. (A) Relative counts of human SNPs in a window of ±50

bp around a chimpanzee SNP. (B) Relative counts of human–chimpanzee substitutions in a window of ±50 bp around an orangutan–rhesus substitution.

The dip at positions ±1 is an artifact of discarding CpG sites (see supplementary material, Supplementary Material online).
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in one species, the typical level of transition/transversion bias

(�2; Zhang and Gerstein 2003) explains only a fraction of this
observation because the same set of alleles appear in the

other species significantly more than twice as often. Further-

more, we see a bias for the transversion AT to coincide with

another AT, both in the cSNP data and, to a lesser extent, in

the cSNS data. Thus, these observations immediately suggest

the possibility of a single, shared mutation event (i.e., shared

ancestral polymorphism) instead of two independent muta-

tion events (i.e., mutation rate variation).
Next, we calculate the expected number of shared poly-

morphisms. Under simplifying demographic assumptions

(see Methods), we can analytically calculate the probability

of a shared ancestral polymorphism (acSNP) beingmaintained

since the human and chimpanzee populations split. For this,

we need estimates of the split time and the post-split long-

term effective population size. In order to attribute all cSNPs

to ancestral polymorphism [observed cSNPs/chimp SNPs 5

6,452/8.8 � 105 5 0.0073 5 Pr(acSNPjchimp SNP, Ne, t)],
the long-term Ne would need to be at least 35,000 for both

populations and the split time could be no less than

3,500,000/20 generations. (fig. 2, area above dashed line).

In order to relax someof themoreunrealistic assumptions of

our analytical calculations,we also conducted coalescent simu-

lations.Most importantly,we introduced a finite ancestral pop-

ulation size Na of humans and chimpanzees, which has been

estimated to be between 65,000 and 100,000 (Hobolth et al.

2007; Burgess and Yang 2008). Althoughwe varyNa, we keep

the species split time fixed at t5 4,100,000/20 generations. In

agreement with the analytical results, coalescent simulations

only yield sufficiently many acSNPs with a long-term post-split

Ne� 35,000, atwhich point the probability of an acSNP condi-

tionalonachimpanzeeSNPapproachestheobservedfrequency

ofcSNPs (0.0083forNa5100,000and0.0055forNa565,000

vs. 0.0073 observed; supplementary table S1, Supplementary

Material online).

Third, we examine the SFS of the cSNPs and of sites linked
to cSNPs. We begin by comparing the SFS between bi- and

triallelic cSNPs, reasoning that only biallelic cSNPs could be

ancestral. Indeed, we find that the SFS of triallelic cSNPs is

indistinguishable from that of any SNP, although biallelic

cSNPs tend to have slightly higher frequencies (fig. 3A).
In contrast, theory (Kimura 1955) and simulation predict

a near-uniform frequency spectrum for alleles that have

been segregating for a long time, so the clear excess of rare
variants in both bi- and triallelic cSNPs makes these unlikely

to be ancestral polymorphisms maintained either by chance

or by balancing selection. In addition, sites linked to a shared

ancestral polymorphism will also have a slightly flatter SFS;

however, we again see an excess of rare variants at linked

sites (fig. 3B). Thus, although it is still possible that some of

the observed cSNPs are ancestral polymorphisms, the SFS

makes this explanation unlikely for the majority of cSNPs.

Mutation Rate Distribution

After rejecting the above hypotheses, we conclude that the

majority of these cSNPs and cSNSs must arise as a result of

elevated mutation rate at these sites.

Using the theory developed in Methods and the bR2 value
from cSNPs, we estimate the coefficient of variation for the

mutation rate distribution to be bcv 5 1.22 (bootstrap 95%

confidence interval of 1.18–1.27). Combining this bR2 value

with our bR3 value, we estimate the skewness of the mutation

Table 1

Coincident Mutation Matrices

AC AG AT CG CT GT

AC 0.0542 0.0108 0.0031 0.0077 0.0208 0.0000

AG 0.0130 0.2091 0.0113 0.0166 0.0002 0.0195

AT 0.0033 0.0129 0.1519 0.0000 0.0113 0.0026

CG 0.0068 0.0177 0.0002 0.0271 0.0198 0.0060

CT 0.0161 0.0002 0.0116 0.0177 0.2120 0.0095

GT 0.0002 0.0229 0.0031 0.0076 0.0101 0.0631

AC 0.0251 0.0159 0.0050 0.0083 0.0271 0.0005

AG 0.0192 0.2485 0.0157 0.0241 0.0009 0.0235

AT 0.0052 0.0146 0.0337 0.0004 0.0147 0.0051

CG 0.0086 0.0269 0.0005 0.0277 0.0272 0.0084

CT 0.0235 0.0009 0.0157 0.0241 0.2475 0.0191

GT 0.0005 0.0275 0.0048 0.0083 0.0160 0.0254

Top, cSNPs where rows correspond to human alleles and columns to chimpanzee

alleles; bottom, cSNSs where rows correspond to human þ chimpanzee and columns

to orangutan þ rhesus. Transition mutations are shaded and tables are normalized to

sum to 1.
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FIG. 2.—Contour plot of the probability of observing an acSNP in

a sample of 118 human chromosomes as a function of species split time

and population size, conditional on observing a heterozygous SNP in

chimpanzees—see equation (1). Dashed contour indicates frequency of

observed cSNPs. Both humans and chimpanzees were assumed to have

a generation time of 20 years.
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rate distribution to be ĉ50:81 (bootstrap 95% confidence

interval of 0.11–1.61). Skewness grows monotonically as

a function of R3, so, because our estimate of R3 is a lower

bound (see Discussion), our estimate of c also forms a lower

bound. Thus, the distribution has considerable spread and is
positively skewed, with the bulk of the distribution mass at

lower mutation rates and a long tail reaching into higher mu-

tation rates. Note that, as with all data presented in this pa-

per, these estimates do not include CpG dinucleotides, which

would generate additional positive skew.

As expected from the cryptic nature of this variation, our

estimate for cvbasedoncoincident sites is significantly higher
than an estimate that assumes nearest-neighbor context ex-
plains all variation (fig. 4A). Interestingly, the equivalent com-

parison of skewness finds our estimate of c consistent with

the nearest-neighbor estimates (fig. 4B), although this may

be an artifact of ĉ being a lower bound.

Discussion

The fundamental observation of an excess of coincident
SNPs holds regardless of the underlying source of variable

sites. Hodgkinson et al. (2009) used sites retrieved from

dbSNP, whereas we used sites identified from the diploid ge-

nome of a single chimpanzee (Sanger sequencing) and the

1000 Genomes Yoruba low-coverage pilot (454, Illumina

and SOLiD sequencing). Similar estimates for R2 also arise

(results not shown) when we use human SNPs from the

Sanger-sequenced diploid genome of a single European in-
dividual (Levy et al. 2007), from five Illumina-sequenced,

medium-coverage diploid genomes from disparate human

populations (Green et al. 2010), from the National Institute

of Environmental Health Sciences Environmental Genome

Project (http://egp.gs.washington.edu), and from the Seat-

tleSNPs (http://pga.gs.washington.edu).

Each apparent cSNP derives from one of four sources:

collapsed paralogs, sequencing error, shared ancestral poly-

morphism, or coincident (repeat) mutations in each species.
Paralogs are ruled out by comparing the alignment and read

coverage of cSNPs relative to other SNPs. Sequencing errors

are ruled out by comparing the SFS of cSNPs relative to other

SNPs. Furthermore, the estimator R̂2 is relatively robust with

respect to sequencing errors and paralogs because, in

addition to biasing the observed number of cSNPs, these

artifacts also bias the number of adjacent SNPs (the denom-

inator of R2), leading to little overall change in the ratio
(see supplementary material, Supplementary Material

online, for analytic analysis of the effect of sequencing er-

ror). Thus, the observed excess of cSNPs must arise from one

of the two biological sources.

Shared ancestral polymorphisms are polymorphic sites

that originated in the ancestral species and have survived

genetic drift in both the human and the chimpanzee pop-

ulations. This survival probability depends strongly on the
split time and the post-split effective population size, Ne. Al-

though fairly good estimates exist for the former, relatively

little is known about the dynamics of Ne since the split. Any

value between 7,000 and 100,000 including our estimate

(Ne � 35,000) seems possible (Hobolth et al. 2007; Burgess

and Yang 2008; Gutenkunst et al. 2009; Hey 2010). Hence,

the bare number of cSNPs cannot exclude shared ancestral

polymorphisms. On the other hand, after more than 4Ne

generations of genetic drift, all allele frequencies are ap-

proximately equally likely for surviving polymorphisms,

and hence, the SFS should be flat. Instead, the human

SFS for cSNPs is indistinguishable from that of other human
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FIG. 3.—Folded SFS from 118 Yoruba chromosomes downsampled to 31 chromosomes. (A) SFS of cSNPs compared with simulated acSNPs and

background (‘‘linked to chimp SNP’’). (B) SFS of sites tightly linked to cSNPs (±50 bp) compared with sites linked to simulated acSNPs and background. In

both cases, cSNPs are more similar to background than acSNPs. Because we do not know which allele is ancestral, we fold the spectrum by summing

frequencies f and 1 � f. The background SFS is generated using human SNPs found within 50 bp of chimpanzee SNPs; however, using random human

SNPs yields the same SFS (results not shown).
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SNPs. This observation leaves us with only one viable source

for the majority of cSNPs: coincident mutations.

The molecular mechanism underlying this variation re-

mains unknown, although the data contain a couple of tan-

talizing hints. First, not surprisingly, transition mutations
dominate over transversions at coincident sites. More sur-

prisingly, however, we see the transversion A 4 T dramat-

ically more often than all other transversions in cSNPs (table

1), similar to the findings of Hodgkinson et al. (2009). Sec-

ond, cSNPs fall in regions of simple sequence repeats and

low-complexity sequence as identified by RepeatMasker

(Smit et al. 1996–2010) more often than other SNPs

(;15% of cSNPs vs. ;6% of human or chimpanzee SNPs).
These two observations suggest that the signal driving this

variation may still lie in the local nucleotide sequence

composition.

The excess of coincident substitutions implies that the

forces driving this cryptic variation extend to a timescale sig-

nificantly beyond that of cSNPs. However, the longer time-

scale of substitutions also provides greater opportunity for

the action of potential confounding factors such as variation
in the mutation rate of a particular site, which could contrib-

ute to the discrepancy between bR2 calculated from cSNPs

(2.5) and bR2 calculated from cSNSs (1.6). Our derivation

for bR2 and bR3 assumes that the mutation rate at a particular

site will not change over the timescale of the input data. One

potential mechanism for such variation would be self-

destruction of mutation hotspots that require a specific nu-

cleotide present at the cSNP. If this was the case, then the
very act of mutating would decrease the future mutation

rate. Although this mechanism is consistent with the ob-

served tendency to find the same two alleles in both pop-

ulations (diagonal in table 1), it requires that the elevated

mutation rate is not only single-base specific in action but

also single-base specific in cause. Regardless of the under-

lying reason, if the mutation rate at a particular site does

change over time, then the numerator of the R2 and R3
statistics will decrease to become closer to the denominator.

Because the polymorphism timescale encompasses less time

for this assumption to be violated, the cSNP data should be

closer to the true mutation spectrum than the cSNS data.
Thus, we use the polymorphism-based bR2 and considerbR3 to be a lower bound when calculating ĉ.

Given our inferred bcv and ĉ, we now turn toward the

question of whether this cryptic variation will bias typical hu-

man population genetic estimates.

The most likely impact of an excess of recurrent muta-

tions on population genetic estimators is that it leads to mis-

identification of the ancestral allele. The simplest method of
identification involves calling the human allele that matches

the chimpanzee as ancestral; however, this procedure im-

plicitly assumes that no new mutation at this site occurred

in either chimpanzees or the lineage leading to the common

ancestor of all humans. The probability of such a mutation

happening corresponds roughly to R2 times the chimpan-

zee–human divergence (dch � 0.9% without CpGs) minus

the amount of human diversity (h � 0.05% without CpGs):
R2�(dch � h) � 0.02. Given this probability, correcting pop-

ulation genetic estimates for ancestral misidentification is

straightforward (Hernandez et al. 2007).

Violations of the infinite sites model of mutation within

one population, on the other hand, have the potential to

be more troublesome, particularly when 4Nel � 0.05 (Desai

and Plotkin 2008) where l is the per-site mutation rate. Es-

timates for the mean human mutation rate are on the order
of 10�8 per site (Lynch 2010), and estimates of the effective

population size are around 104. The inferred coefficient of

variation (bcv51:2) and skewness (ĉ50:81) do not completely

specify the underlying mutation rate distribution, but we can

examine either a gamma distribution or a worst-case distri-

bution consisting of two point masses, one of which is at

l5 0.05/(4Ne). For these distributions, if wematch themean
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and our ĉv, then the skewness will be higher than our lower
bound estimate (c 5 2.4 and 103, respectively). If the true

mutation rate distributions were to follow the gamma distri-

bution, then the probability of having a mutation rate greater

than 0.05/(4Ne) is vanishingly low and the infinite sites as-

sumption works well. In our worst-case scenario, if the true

distribution consisted of two point masses, then the proba-

bility of having a mutation rate of 0.05/(4Ne) rises to;10�4,

which amounts to many sites across the genome.
Thus, although population geneticists studying humans

need not worry about cryptic variation causing ancestral mis-

identification, the infinite sites assumption might still be dan-

gerous, particularly when conducting genome-wide surveys.

More broadly, population genetic studies of non-primate spe-

cies could also be influenced by cryptic variation. Further in-

vestigation of this phenomenon lies beyond the scope of this

study, but the statistic R2 and methods to infer cv can be ap-
plied equally well to any pair of closely related species.

Supplementary Material

Supplementary data, figures S1 and S2, and table S1 are

available at Genome Biology and Evolution Online (http://

www.gbe.oxfordjournals.org/).
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