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Abstract
The success of prostate brachytherapy critically depends on delivering adequate dose to the
prostate gland, and the capability of intraoperatively localizing implanted seeds provides potential
for dose evaluation and optimization during therapy. REDMAPS is a recently reported algorithm
that carries out seed localization by detecting, matching, and reconstructing seeds in only a few
seconds from three acquired x-ray images. In this paper, we present an automatic pose correction
(APC) process that is combined with REDMAPS to allow for both more accurate seed
reconstruction and the use of images with relatively large pose errors. APC uses a set of
reconstructed seeds as a fiducial and corrects the image pose by minimizing the overall projection
error. The seed matching and APC are iteratively computed until a stopping condition is met.
Simulations and clinical studies show that APC significantly improves the reconstructions with an
overall average matching rate of ≥ 99.4%, reconstruction error of ≤ 0.5 mm, and the matching
solution optimality of ≥ 99.8%.

1. Introduction
Prostate cancer is a serious health concern in North America. In 2010, there were 217,730
estimated new cases and 32,050 estimated deaths in the United States, which comprises
about 28% of all new cancers found in men and 11% of all estimated cancer deaths for men,
respectively (Jemal et al 2010). The appropriate treatment for prostate cancer depends on
whether the cancer is localized to the gland, locally advanced, or spread beyond the gland.
Especially if prostate cancer is diagnosed early, it can be treated very effectively with a near
100% five-year relative survival rate (Jemal et al 2010). Low dose rate transperineal
brachytherapy has become one of the most popular options for early stage organ-confined
prostate cancer treatment (Potters 2003), achieving outcomes that are comparable to other
treatments such as radical prostatectomy and external-beam radiation therapy while reducing
complications and side-effects to the patients (Merrick et al 2001, Blasko et al 2002, Peschel
and Colberg 2003, Cooperberg et al 2004, Lee et al 2003). It is a minimally invasive
procedure, and therefore recovery time is relatively short. In most cases, patients can be
discharged the same day of treatment and return to their normal activities within a few days
after treatment. During the procedure, the surgeon permanently implants radioactive seeds
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(125I or 103Pd) throughout the entire prostate, where the number of implanted seeds
(typically 40–130) is determined by the volume of the prostate. The clinical outcome of a
brachytherapy procedure critically depends on the ability to treat the target gland with a
sufficient therapeutic dose (Potters 2003, Kollmeier et al 2003) while minimizing radiation
toxicity to adjacent healthy tissues, most notably, the urethra and rectum (Roach 2004,
Salem et al 2003). Accordingly, achieving an optimal dose distribution is the key to
eradicating cancer and minimizing unnecessary toxicity.

In a contemporary brachytherapy procedure, transrectal ultrasound (TRUS) is typically used
to guide the implant procedure because it can visualize the prostate well, is inexpensive, and
is real-time (Prestidge et al 1998). It is, however, not effective for imaging seeds and
brachytherapy needles because they are not reliably visible on ultrasound, and needle tracks
and calcifications may create echoes similar to those created by seeds. Seed positions are
usually estimated and updated intraoperatively at the time of deposition based on the needle
tip visualized on longitudinal ultrasound images, which is often called real-time dosimetry.
However, due to procedural variations caused by patient motion, needle deviation, and soft
tissue deformation including edema, it is difficult to implant seeds at the exact planned
locations (Prestidge et al 1998, Beyer et al 2000, Nag et al 2001). Also, real-time dosimetry
does not account for these effects occurring during the implant (Waterman et al 1998, Chen
et al 2000, Dawson et al 1994, Tanaka et al 2007). Fluoroscopy can assist in identification
of implanted seed positions, but it is still challenging to identify them relative to the prostate
due to the difficulties in visualizing soft tissues using X-rays. As a consequence,
intraoperative dosimetric variations are not identified until a postoperative CT scan, and it is
sometimes necessary to implant additional seeds to underdosed regions in another implant
session which has now become technically more difficult (Davis et al 2000, Keyes et al
2004). Also, overdosed regions cannot be corrected and this results in unintended
consequences of hot spots including increased dose to critical structures and increased risk
of toxicity to the patient. To address these limitations of real-time dosimetry, a method that
provides the capability to visualize the implanted seeds and to continually adapt to the
dynamic character of implants has long been needed. This capability, termed as dynamic
dosimetry, is specifically identified as desirable and worthy to pursue (Nag et al 2001).
Therefore, multi-modal imaging approaches that combine X-ray and TRUS have been
previously proposed to visualize both prostate and seeds and reconstruct seed positions in
relation to prostate (Amols and Rosen 1981, Altschuler and Kassaee 1997, Narayanan et al
2002, Todor et al 2002, Jain et al 2005a, Lee et al 2009, Lee et al 2011), thereby permitting
intraoperative monitoring and dosimetry modifications.

It is well known that brachytherapy seeds can be reconstructed from at least three X-ray
images by resolving seed correspondences between images, provided that every seed is
segmented with its 2-D image coordinates in every image (Altschuler and Kassaee 1997,
Narayanan et al 2002, Todor et al 2003, Jain et al 2005a, Singh et al 2007). Seeds in
correspondence can be related to the same physical seed and the seed location can be
computed by triangulation. Recent studies further investigated the seed matching problem in
order to automatically resolve the so-called hidden seed problem where seeds cannot be
reliably identified and localized on the projection images due to a significant amount of
overlaps (Lee et al 2009, Lee et al 2011, Tutar et al 2003, Lam et al 2004, Su et al 2004,
Narayanan et al 2004, Su et al 2007b). These algorithms do not require an explicit
identification of all the seeds in every image and are able to handle different number of
detected seeds in each image. For accurate reconstruction of the implanted seeds from a
series of X-ray images, accurate estimation of image poses is critical due to the small size of
the brachytherapy seeds. Therefore, many of the previously proposed methods used
isocentric X-ray systems such as CT, C-arm CT, and radiation therapy simulators that are
equipped with rotational encoders (Altschuler and Kassaee 1997, Narayanan et al 2002,
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Tutar et al 2003, Su et al 2004, Narayanan et al 2004, Kaplan et al 2006, Westendorp et al
2007). However, since these systems are generally very expensive and require a dedicated
interventional suite, they cannot be readily adopted by local hospitals. In addition, the
patient should be re-positioned between the treatment and the X-ray image acquisition
because he cannot fit into the imaging gantry with the high lithotomy position (the pose used
in brachytherapy implantation), causing deformation of the prostate and the seeds between
the implantation and the image acquisition. Therefore, recently proposed methods were
designed to work with any X-ray imaging system that allows arbitrary source-detector
motion, e.g., non-isocentric mobile C-arm that is available in most hospitals (Lee et al 2009,
Lee et al 2011, Kon et al 2006, Siebert et al 2007). The mobile C-arm is useful for
intraoperative imaging due to its mobility, easy rotation and translation of the source-
detector, and relatively smaller system size compared to CT or radiation therapy simulator,
thus allowing imaging while the patient is in his surgical position.

The most common tracking systems that are used for intraoperative tracking of X-ray
systems are optical trackers, electromagnetic trackers, and tracking fiducials (Phillips et al
2004, Zhang et al 2004, Tang et al 2004, Jain et al 2005b, Peters and Cleary 2008).
However, tracking an arbitrary motion of the source and detector in an imaging system is
not trivial and may add complexity to the procedure. Also, external tracking systems such as
optical or electromagnetic trackers are very expensive and have limitations such as the
requirement of line-of-sight and interference with an external magnetic field, and also
require additional space within the already-crowded operating room (OR). Compared to off-
the-shelf tracking systems, radiographic fiducials are cost-effective, easy to setup, and take
relatively smaller space because they must be located within the imaging field of view.
However, their tracking performance is sometimes poorer than external tracking systems
depending on the quality of image preprocessing such as image distortion correction and
feature segmentation. With any tracking method, a seed reconstruction method that is robust
to estimated image pose errors is critical to successful seed localization because it can easily
be corrupted by small pose errors due to the small size of the brachytherapy seeds.

A few groups have combined the seed reconstruction with image pose adjustment using the
reconstructed seeds or resolved seed correspondences in an iterative way (Tubic et al 2001,
Lee et al 2009, Dehghan et al 2010). However, they require an explicit identification of
seeds in every image (Tubic et al 2001), accurate initial reconstruction (Tubic et al 2001,
Lee et al 2009), and relatively large number of images (Lee et al 2009), and are specifically
designed and/or tested for an isocentric X-ray imaging systems (Tubic et al 2001, Dehghan
et al 2010). In addition, all of these methods require repeated reconstructions with the same
computational complexity at every iteration, thereby adding a significant amount of
computation time.

We have previously proposed an optimal matching algorithm, called REDMAPS, that is
able to reconstruct seed positions from three or more X-ray images even when there are a
significant number of overlapping seeds in every image (Lee et al 2011). Although
REDMAPS was proven to be robust to image pose errors, e.g., up to 2° rotational errors and
5 mm translational errors with over 97.5% average seed matching rate, its performance
degrades as pose errors increase. This is not only a problem of REDMAPS but also of all
seed reconstruction algorithms that do not actively correct the image poses during the
reconstruction process. In the present paper, we describe an automatic pose correction
(APC) process that uses a set of reconstructed seeds as a fiducial and automatically corrects
the pose errors. The new reconstruction process combines APC and REDMAPS, and
iteratively solves the seed matching and the pose correction to improve the overall seed
matching rate and the reconstruction errors as well as the optimality of the matching
solution. APC-REDMAPS starts with parameters that accommodate relatively large tracking
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errors, but adaptively change them in successive reconstructions as the image pose errors are
improved by APC, thus requiring much lower computational complexity. APC-REDMAPS
was validated on both simulations and clinical data sets, specifically focusing on simulations
and data in which REDMAPS alone fails to have acceptable seed detection rates.

2. Methods
2.1. Image acquisition and pre-processing

APC-REDMAPS uses three fluoroscopy images to reconstruct implanted seeds.
Fluoroscopy images are acquired using a mobile C-arm with an X-ray image intensifier
(XRII) detector, and most XRII-based C-arm images show a considerable amount of
geometric distortion which shifts the location of the 2-D projected seeds and therefore has to
be corrected prior to reconstruction. Additionally, C-arm calibration is necessary to
determine intrinsic camera parameters, i.e., pixel size and focal spot. In our approach, C-arm
is calibrated only once prior to the surgery by using a calibration fixture (Jain 2007). Since it
is known that calibration errors do not critically affect the reconstruction result (Jain et al
2005), we only take a representative image at a vertical pose and estimate the intrinsic
camera parameters and the geometric dewarp parameters of the C-arm based on this image.

Although the C-arm is calibrated before the surgery, the C-arm pose must be computed
during the patient image acquisition to reconstruct a volume from images taken at arbitrary
poses. In order to estimate image poses, we use a fluoroscope tracking fiducial called
FTRAC that provides a comparable accuracy to other expensive external tracking devices
such as optical or electromagnetic trackers (Jain et al 2005b), and is also cost-effective.
Once an image is acquired, the image distortion is first corrected, and seeds and FTRAC
features are automatically segmented in seconds (Kuo et al 2010, Lee et al 2011). Then, the
image pose is computed by using the segmented FTRAC features.

In the current system, this pre-processing (distortion correction, segmentation, and pose
estimation) is embeded within the image acquisition pipeline so that 2-D image coordinates
of the seeds and the image pose are computed as soon as each image is acquired while a
technician is rotating the C-arm to the next image acquisition pose. Since three fluoroscopy
image acquisition only takes less than a minute and the pre-processing is completed during
the image acquisition, total processing time before an APC-REDMAPS reconstruction is
just about a minute at most or even less. These segmented seed coordinates and image poses
are the input to APC-REDMAPS.

2.2. Seed reconstruction
In our previous work (Lee et al 2011), we formulated the seed reconstruction as a
combinatorial optimization problem. It is well-known that at least three images are required
to eliminate ambiguity and reliably reconstruct seeds. When three images are used, the seed
reconstruction problem can be formulated as

(1)
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(2)

where N is the number of implanted seeds, N1,N2,N3 are the numbers of identified seeds by
segmentation in images 1, 2, 3, respectively, cijk is a matching cost for a combination of
seeds i, j, k in images 1, 2, 3, respectively, and xijk is an indicator that is equal to one when
the combination 〈i, j, k〉 is chosen in the solution and is zero otherwise. We use
reconstruction accuracy (RA) (Lee et al 2011, Siddon and Chin 1985) as our cost metric,
and in this paper, we vary cijk as a function of C-arm pose, i.e., rotation Φ = (ϕ1, ϕ2, ϕ3) and
translation t = (t1, t2, t3) in order to jointly optimize the seed correspondence and the C-arm
pose. Since xijk is binary, this combinatorial optimization problem is a binary integer
programming (BIP) problem. The inequalities in (2) imply that every seed in every image
must be chosen at least once in the solution and also permit more than one assignment to
each seed to take hidden seeds into account during the optimization. The equality in (2)
guarantees that the total number of combinations chosen in the solution is equal to the
number of implanted seeds N.

Due to the large number (~100) of implanted seeds in brachytherapy and the computational
complexity of the combinatorial optimization, we first reduce the dimensionality of this
optimization by using a pruning algorithm before solving the BIP problem (Lee et al 2011,
Section II-D). Extensive simulations as well as phantom and clinical studies showed that
over 99% of the variables in the original BIP problem can be eliminated, and the reduced
BIP can be solved by linear programming with relaxed fractional constraints in near real-
time when the C-arm pose is reasonably estimated (Lee et al 2011, Section III). If the
dimensionality reduction is properly performed, the reduced BIP still contains the globally
optimal solution. Therefore, if the solution of the linear programming with relaxed
constraints is binary, this solution will be the globally optimal solution of the original BIP
problem. However, due to image pose errors, solutions are not always binary but are
sometimes fractional. In this case, we must round the fractional solution to get a binary
solution, and this rounded binary solution may no longer be a globally optimal solution. We
have shown that about 85% of the REDMAPS solutions with realistic image pose errors are
globally optimal, but this leaves 15% of the solutions that may not be globally optimal (Lee
et al 2011). Theoretically, when the image poses are accurate with no errors, the minimal
RA cost is zero and the corresponding binary correspondences will be our globally optimal
solution. Therefore, by reducing the image pose error, we have a higher chance to have a
globally optimal solution.

2.3. Automatic pose correction
The key idea of dimensionality reduction is that the optimal solution has near-zero cost
when the poses of the acquired images are known to be within a small error. However,
intraoperative pose tracking of non-encoded mobile C-arm is challenging, and sometimes
there is a considerable amount of tracking error. In this case, the underlying assumption of
dimensionality reduction may not be valid. Nonetheless, REDMAPS has been shown to
correctly recover most of the seed correspondences even when the pose errors are relatively
large, e.g., up to 5° rotation and 10 mm translation pose errors (Lee et al 2011, Figure 4).
Therefore, once the initial BIP problem is solved by REDMAPS, most of the seed
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correspondences are correct, even though the locations of their intersections (and therefore
the seed positions) might be inaccurate. We can therefore use the seed correspondences to
jointly adjust the C-arm pose and improve the seed matching and positioning in an iterative
fashion.

Let IFS be the 3 × 4 perspective projection matrix from X-ray source frame to image frame
and SFW be the 4 × 4 transformation between world to X-ray source frames, derived as

(3)

where f is the focal length, (sx, sy) is the pixel sampling interval, (ox, oy) is the image origin,
and the upper left 3 × 3 matrix R and the upper right 3 × 1 vector t of SFW are the rotation
and translation of the X-ray source pose, respectively. Then a 3 × 4 projection matrix can be
computed as P(Φ, t) = IFS

SFW, and the projected 2-D image coordinates  of
a 3-D seed coordinate  in the world frame is derived as

(4)

Since we already know the correspondence between this 3-D seed  and its
corresponding 2-D segmented seeds  , the projection error can be computed as

(5)

and its first order approximation is

(6)

where J is the Jacobian and ΔE = (Δϕ1,Δϕ2,Δϕ3,Δt1,Δt2,Δt3)t is the pose error. The Jacobian
J can be explicitly computed in the following way. For rotation,

(7)
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(8)

and for translation,

(9)

(10)

(11)

(12)

(13)

(14)

Using (6)–(14), we estimate the pose error ΔE using Newton’s method (Bertsekas 1999).
The current pose Rk (rotation) and tk (translation) are updated using the currently estimated
pose error ΔEk = (ΔRk,Δtk) as follows

(15)

This method has been reported to be more robust and less sensitive to numerical errors than
directly updating the rotation angles and translation vector, i.e., Φk+1 = Φk + ΔΦk, tk+1 = tk +
Δtk (Jain et al 2005b). The optimization stops when the mean RA cost difference between
successive reconstructions is less than 0.1% of the current RA cost, i.e.,

. In simulations, we observed that the optimization
converges within 20 iterations in all cases with this stopping condition (see section 3.3), and
therefore set the maximum number of iterations to be 50.

The automatic pose correction (APC) process is combined with REDMAPS seed
reconstruction and given the name APC-REDMAPS, and the seed matching and the pose
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correction are iteratively updated until the APC optimization converges. Figure 1 shows the
APC-REDMAPS flowchart.

2.4. Adaptive dimensionality reduction
When three images are used, the lower bound of RA cost associated with a combination of
seeds 〈i1, i2, i3〉 can be derived by using Lemma II.2 in (Lee et al 2011) as

(16)

where d(lij, lik) is the Euclidean distance between lines lij and lik that originate from seeds ij
and ik in images j and k, respectively. Therefore, we set a dimensionality reduction threshold
η, and eliminate infeasible combinations that yield RA(i1, i2, i3)2 ≥ 1/12 ∑j,k∈{1,2,3}, k>j d(lij,
lik)

2 > η from further consideration in the reduced BIP problem.

As the APC process improves the C-arm pose, η can be adaptively reduced because more
accurate image poses result in smaller RA cost. Therefore, for every iteration, we change η
by η = s × max cijk for {i, j, k|xijk = 1} where s is set to be 2 in this paper. By adaptively
reducing η, we can achieve larger dimensionality reduction and reduced computation time in
successive iterations. At the same time, this process is much faster than use of a lesser
dimensionality reduction factor and still has a high probability of yielding a binary solution
that is globally optimal.

3. Results and discussion
3.1. Simulations

We first evaluated APC-REDMAPS on varying levels of simulated pose errors. In our
previous study (Lee et al 2011), REDMAPS was shown to be robust to errors in seed
segmentation and intrinsic camera calibration errors (i.e., focal length and image origin).
Therefore, our simulations here were focused on the robustness of APC-REDMAPS to
rotational and translational pose errors which are the two major errors that affect
reconstruction results.

We considered a nominal 50 cc prostate with four different seed densities varying from 1.0
to 2.5 seeds/cc with 0.5 seeds/cc increments, resulting in N = {54, 72, 96, 128} implanted
seeds. Each seed was modeled as a cylinder that is 1.45 mm in length and 0.8 mm in
diameter to create a similar X-ray projection image of a 103Pd seed. We assumed that X-ray
projections were acquired using a C-arm with a focal length of 1000 mm and image pixel
size of 0.44 × 0.44 mm2. For each seed density, we generated 30 data sets, and created three
projections on a 20° cone around the AP-axis in each data set. In every image, 3.2% on
average and up to 11.7% of the seeds were hidden. We added varying levels of pose errors
that are randomly generated from a uniform distribution on [−h, h] to the known rotation
and translation. Rotational pose error varied from h = 0° to 5° with 1° increment, and
translational pose error varied from h = 0 mm to 12 mm with 2 mm steps. The
dimensionality reduction threshold was initially set as η = 9 so that any combination that
yields RA cost larger than 3 mm was rejected (see (16)), and was adaptively reduced as the
iterations progressed. Above 5° rotational and 12 mm translational pose errors, REDMAPS
often failed to find the seed correspondence with this initial threshold, in which case we
could not process APC. Larger pose errors can be handled by increasing the initial
dimensionality reduction threshold, but, in turn, it will reduce the amount of dimensionality
reduction and increase the computation time at the first several iterations. A total of 720 (4
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seed densities × 30 data sets × 6 rotational error levels) and 840 (4 seed densities × 30 data
sets × 7 translational error levels) reconstructions were computed for rotational and
translational pose errors, respectively, using both REDMAPS and APC-REDMAPS.

The reconstruction results are plotted in figure 2. In comparison to REDMAPS, APC-
REDMAPS improves the reconstruction results in every aspect; seed matching rate,
reconstruction error, and optimality of the solution. Even when the initial seed matching rate
is about 70%, APC-REDMAPS almost perfectly recovered the seed correspondences. In
order to evaluate the reconstruction accuracy, we compared the reconstructed seeds with the
ground truth seed locations. The reconstructed seeds could be systematically rotated or
shifted in the APC-REDMAPS reconstruction because we corrected all three poses.
However, since reconstructed seeds will be registered to the TRUS prostate volume and the
dose field will be computed based on the registered seed cloud, these systematic rotation and
translation will not affect the final dosimetry. Therefore, we computed relative
reconstruction errors of the matched seeds in order to assess the reconstruction accuracy
after performing rigid point-cloud (reconstruction) to point-cloud (ground truth) registration
(Horn 1987, Besl and McKay 1992). The reconstruction errors were always less than 0.05
mm as shown in figure 2(c) and (d). By adjusting the image poses, we could significantly
improve the optimality of the solution. In all cases, the resulting solutions of APC-
REDMAPS were binary and therefore globally optimal.

3.2. Clinical study
APC-REDMAPS was evaluated on 15 patient data sets that were collected under IRB-
approved protocols at Johns Hopkins Hospital. For all patients, 103Pd seeds (Theragenics®,
GA, United States) were implanted. For each patient data set, we acquired 6–9 images
within 20° cone around the AP-axis, and each image pose was tracked by using FTRAC.
From among the collected images, we selected 6–9 images that were not acquired at the
same pose and their poses could be estimated well using FTRAC. We then computed 958
reconstructions using all possible combinations of 3 images. For ground truth, we selected
5–6 images with the smallest residual pose errors (computed using FTRAC software),
visually validated and manually corrected the automatic seed segmentations, and
reconstructed seeds using REDMAPS. Since more images yield better reconstructions in
general (Lee et al 2011) and there are no ground truth seed positions for the clinical cases,
we used the REDMAPS reconstruction from these 5–6 images as our ground truth. We
compared all reconstructions to the ground truth and computed the seed matching rate, the
relative reconstruction error of the correctly matched seeds, and the optimality of the
solution.

The results are summarized in table 1. When the angular separations of the images were
very small, e.g., 1° – 2°, REDMAPS could not recover the initial seed correspondences
correctly. In addition, relatively large pose errors in some images due to patient motion
during image acquisition, missing features of FTRAC in the projection, and/or relatively
large segmentation errors caused lower seed matching rate and solution optimality, and
higher reconstruction error. For example, for the patient 14, significant patient motions were
introduced between image acquisitions, causing relatively lower seed-matching rate and
solution optimality, and larger reconstruction errors. For this patient data, the ground truth
seed locations were less accurate than other cases, showing significant deviations of the
reprojected ground truth seeds from the segmented seeds in every image (note that the
ground truth seed locations were computed from 5–6 images without APC). However, after
the automatic pose correction was performed, APC-REDMAPS was able to achieve an
overall seed matching rate of 99.4% with a solution optimality of 99.8%, and an average
relative reconstruction error of 0.5 mm.
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An example case is shown in figure 3. In this case, due to relatively large pose estimation
error and very small angular separation between images, REDMAPS could recover only
64.3% of the seed correspondences correctly with an average reconstruction error of 1.4 mm
for the matched seeds. However, after the APC process, the seed matching rate increased to
98.8% and the average reconstruction error was reduced to 0.6 mm. It has been reported that
95% or more seeds need to be localized in order to provide an accurate estimation of dose
parameters for contemporary 125I permanent prostate brachytherapy (Su et al 2005), and less
than 5% deviation of prostate D90 (minimum radiation dose received by 90% of the
prostate) can be expected when the seed localization uncertainty is 2 mm (Su et al 2007a).
Although the activity of a 103Pd seed that is used in our experiments is not identical to that
of an 125I seed, we expect that a similar accuracy would be clinically acceptable. However,
considering the fact that there are about 100 implanted seeds and higher seed detection rate
will result in more accurate dose computation, our goal is to achieve over 98% seed
detection rate with sub-mm reconstruction error. APC-REDMAPS achieved this accuracy
even in the worst case, and significantly improved the overall reconstruction quality
compared to REDMAPS.

3.3. Dimensionality reduction and processing time
Since APC-REDMAPS requires multiple seed reconstructions as well as pose corrections, it
adds additional processing time to the seed reconstruction process. However, since we
adaptively adjust the dimensionality reduction threshold in the successive reconstructions,
we can achieve larger dimensionality reduction as the image poses become more accurate.
For the 15 patient data sets used in the clinical study, we measured the dimensionality
reduction threshold and the processing time at each iteration to see how much additional
time we needed for the APC-REDMAPS. As shown in figure 4, the dimensionality
reduction threshold is reduced quite rapidly within the first several iterations and the APC-
REDMAPS adds only a small amount of time to the initial REDMAPS reconstructions. On
average, the initial REDMAPS reconstructions took 3.8 seconds and the APC-REMDAPS
added only 2.4 seconds, thus requiring 6.2 seconds for the total computation on a PC with a
2.5GHz CPU. Note that three fluoroscopy image acquisition along with the pre-processing
takes about a minute or less and APC-REDMAPS adds about 6 seconds on average,
therefore total processing time from image acquisition to reconstruction is about a minute.
Since the final η is very small (less than 0.5 mm2 on average), the RA costs of the remaining
feasible solutions are very close to zero, thus yielding near 100% solution optimality.

3.4. Seed reconstruction without tracking device
Since APC-REDMAPS can compensate for a significant amount of pose error, we tried to
reconstruct the implanted seeds without a tracking device or image-based fiducial. Although
mobile C-arms in most hospitals are not isocentric, a small rotation, e.g., 20°, along the C-
arc can be considered as roughly isocentric. Therefore, as a rough initialization, the C-arm
was assumed to be isocentric, and three images were acquired at three different rotational
positions, one AP-view and two oblique views, by rotating the C-arm along the C-arc. The
source to (virtual) isocenter distance (SID) is either known from the system specification or
can be easily estimated through a calibration process. We assumed that our reference frame
is aligned to the source frame at the AP-view and is placed at the virtual isocenter as shown
in figure 5. This coordinate choice is preferable because the source frame at AP-view is
already (roughly) aligned to the template coordinates, thus providing reasonably good
orientation initialization for the TRUS-fluoroscopy registration. Based on this simple
geometry, three image poses can be derived as
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(17)

where  is the ith image pose.

Among 15 patients studied in section 3.2, we collected additional data sets for the last 4
patients using this scenario and no tracking device. Three images were acquired at ~ 0° (AP-
view) and ~ ±10° (two oblique views) by reading the angular mark on the C-arm, thus
providing an initial guess for the θ2 and θ3 (note that θ1 = 0). Due to the inaccuracies of both
initially estimated image acquisition angles and our assumption on isocentricity, we decided
to compute 9 initial REDMAPS reconstructions assuming the oblique views were at the
following angles ±{9°, 10°, 11°}, and considering all combinations of three images (without
applying APC). Since better seed matching yields smaller overall matching cost, we chose
the best initial match by comparing the overall seed-matching (RA) costs of these trial
reconstructions. Once the best initial condition was automatically determined in this way,
APC-REDMAPS was used to iteratively correct the pose (all 6 degrees of freedom) and
improve the reconstruction until convergence. The reconstructed seed locations were
compared to the ground truth seed locations. Since we did not know the correspondences
between the reconstructed seeds and the ground truth seeds, we computed the seed
correspondences by using the iterative closest point (ICP) algorithm (Zhang 1994) and
decided that the seed pairs with Euclidean distance larger than 2 mm were not matched.

Table 2 shows the reconstruction results. Even with a rough initialization without using an
external tracking device, APC-REDMAPS shows a similar performance to those with
FTRAC. Both individual and the overall results are comparable to the corresponding results
shown in table 1.

4. Conclusions
This paper presents a new algorithm that combines an existing algorithm, REDMAPS, with
a new pose correction step for accurate reconstruction and localization of the implanted
brachytherapy seeds from a small number of X-ray images. By using the reconstructed seeds
with revealed seed correspondences as a fiducial, APC iteratively minimizes the RA cost
and improves the estimated image poses. As the RA cost becomes smaller at each iteration,
the dimensionality reduction threshold in REDMAPS is adaptively reduced to achieve larger
dimensionality reduction and allow faster computation in the BIP optimization. Both
simulations and clinical studies show very promising results where we can achieve almost
perfect seed detection rate with very small reconstruction error even when the image pose
errors are very large. Especially, as the pose errors are reduced, the resulting solutions
become typically binary (on average 99.8% of the solutions were binary in our clinical
studies) even under the relaxed fractional constraints, and are therefore globally optimal.

We have also demonstrated a seed reconstruction scenario without using a tracking device.
Even when no tracking device was used and the initial pose was roughly estimated under a
simplified geometry, APC-REDMAPS was still able to recover image poses and achieve
near perfect seed detection rate. Although we relied on the angular mark readings on the C-
arm for the initial poses, the results on clinical data sets showed that APC-REDMAPS can
accommodate very rough initial guess on the image poses and has a potential for a
trackerless seed reconstruction system. As long as we can have initial poses within a very
generous margin, e.g., ~ 5° and ~ 10 mm, APC-REDMAPS can recover image poses and
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find the seed locations accurately. Also, a multiple initial reconstruction strategy can also be
adopted in order to guarantee more accurate initialization.

Overall, the proposed automatic pose correction in combination with REDMAPS can greatly
improve the seed detection rate even from the already good performance of REDMAPS
without requiring a significant amount of additional time. This approach not only allows a
more generous choice of tracking methods but also opens a possibility to completely remove
the use of any external trackers.
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Figure 1.
APC-REDMAPS flowchart.
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Figure 2.
Simulation results. Performance comparison between REDMAPS and APC-REDMAPS. (a,
b) Seed matching rate, (c, d) relative reconstruction error, (e, f) solution optimality. We
considered different levels of (a, c, e) rotation and (b, d, f) translation pose errors.
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Figure 3.
Example images of reconstruction results on a clinical data set. The reconstructed seeds are
reprojected onto one of three images (white dots) used for reconstruction. Left image shows
one of the worst REDMAPS reconstruction caused by large image pose errors and small
image acquisition angle separation. The pose errors were compensated and the seeds were
reconstructed correctly by APC-REDMAPS (right image).
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Figure 4.
Dimensionality reduction threshold (left) and the computation time (right) plots at each
iteration. Blue circles indicate individual measurements at each iteration, and the red lines
show the mean±std variations.
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Figure 5.
Image acquisition geometry for the seed reconstruction without external tracker.
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