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Abstract
Many lung and central nervous system disorders require robust and appropriate physiological
responses to assure adequate breathing. Factors undermining the efficacy of ventilatory control
will diminish the ability to compensate for pathology, threatening life itself. Although most of
these same disorders are associated with systemic and/or neuroinflammation, and inflammation
affects neural function, we are only beginning to understand interactions between inflammation
and any aspect of ventilatory control (e.g. sensory receptors, rhythm generation, chemoreflexes,
plasticity). Here we review available evidence, and present limited new data suggesting that
systemic (or neural) inflammation impairs two key elements of ventilatory control: chemoreflexes
and respiratory motor (vs. sensory) plasticity. Achieving an understanding of mechanisms
whereby inflammation undermines ventilatory control is fundamental since inflammation may
diminish the capacity for natural, compensatory responses during pathological states, and the
ability to harness respiratory plasticity as a therapeutic strategy in the treatment of devastating
breathing disorders, such as during cervical spinal injury or motor neuron disease.
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1. INTRODUCTION
Accurate and robust ventilatory control is critical to maintain adequate breathing when
confronted with many disorders of the lung or central nervous system (CNS). Factors that
undermine the efficacy of ventilatory control will diminish the ability to compensate for
pathology, threatening life itself (Mitchell, 2007). Most lung and CNS disorders are
associated with systemic and/or neural inflammation, including chronic lung diseases
(Stockley, 2009), traumatic, ischemic and degenerative neural disorders (Teeling and Perry,
2009) and obstructive sleep apnea. Inflammation in sleep apnea presumably results, at least
in part, from severe intermittent hypoxia experienced in this disorder (Wills-Karp, 1999,
Decramer et al., 2008, Gozal, 2009, McDonald et al., 2011). Although inflammation has
profound effects on important neural functions, such as synaptic transmission and plasticity
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(Di Filippo et al., 2008), little is known concerning the impact of inflammation on the neural
system controlling breathing.

Key elements in the ventilatory control system include rhythm generation, chemoreception
(hypercapnic and hypoxic responses) and respiratory plasticity (reviewed in Feldman et al.,
2003). Chemoreception and plasticity are critical elements of the ventilatory control system,
enabling compensation for challenges to breathing capacity or stability presented by lung or
neural disorders (Feldman et al., 2003, Mitchell and Johnson, 2003, Mitchell, 2007).
Sporadic evidence has been accumulating in recent years, suggesting that systemic
inflammation modulates several aspects of ventilatory control; such evidence is reviewed in
the papers compiled in this special edition of Respiration Physiology and Neurobiology. In
the present paper, our primary goal is to present evidence that inflammation impairs
chemoreflexes and respiratory motor (vs. sensory) plasticity following acute intermittent
hypoxia, which may leave an individual vulnerable to inadequate or unstable breathing
during disease.

Systemic inflammation affects sensory receptors that modulate breathing, but can also
trigger inflammatory responses in the central nervous system (CNS) through complex
mechanisms. The primary CNS cells affected during systemic inflammation are microglia,
the resident immune cells of the CNS, and astrocytes (Lehnardt, 2010). Since sensory
processing and neuroplasticity are modulated by cell-cell interactions between neurons and
microglia or neurons and astrocytes, factors that activate astrocyte and/or microglial
inflammatory activities may alter respiratory chemoreflexes and/or plasticity.

In this review, we begin by discussing a common experimental model of systemic
inflammation and its impact on the CNS. We then discuss major advances in our
understanding of mechanisms whereby inflammation alters central neural processing of
primary afferent neurons (particularly chronic pain), followed by consideration of how these
advances relate to respiratory chemoreflexes (hypoxia/hypercapnia). Next, we discuss how
inflammation affects hippocampal synaptic plasticity and spinal motor learning, followed by
consideration of how these concepts relate to respiratory plasticity. We conclude by
discussing the potential significance of interactions between inflammation and ventilatory
control, and suggest areas where research is needed.

2. SYSTEMIC AND CNS INFLAMMATION
2.1 CNS inflammation: the role of microglia

Historically, the CNS was viewed as an immunologically privileged area that lacks
traditional immune responses. Peripherally, the innate immune response activates signaling
cascades that recruit immune cells (e.g. neutrophils and macrophages) to phagocytose
foreign substances and release cytokines (Chen and Nunez, 2010). Cytokines trigger
adaptive immune responses and activate lymphocytes. Collectively, these events eradicate
foreign substances and promote tissue repair (Vivier et al., 2011). The CNS immune
response differs in many respects since the blood-brain barrier, in most cases, prevents
immune cell infiltration. Nevertheless, resident microglia trigger CNS inflammation (Carson
et al., 2006, Graeber, 2010, Kaur et al., 2010).

Even when in their “resting state,” microglia are highly active, surveying their environment
(Raivich, 2005, Parkhurst and Gan, 2010). When confronted with pathological conditions,
such as neuronal injury/degeneration or bacterial/viral/fungal infection, they become
“activated,” shifting from a stellate, ramified phenotype to an amoeboid shape (Kreutzberg,
1996). Activated microglia can be phagocytic, or they can release toxic and protective
factors, including cytokines, prostaglandins, nitric oxide or neurotrophic factors (e.g. BDNF)
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(Kreutzberg, 1996, Graeber, 2010). Despite the importance of microglia in immune
function, they are diffuse in the CNS (~70-90% of CNS cells are glia; microglia are ~5-10%
of those cells). At this point, we still have little knowledge on the complex role played by
microglia in systemic and/or neural disorders, let alone what role they play in respiratory-
related regions of the CNS.

2.2 CNS inflammation: other cell types
Although there is general agreement that microglia are major contributors to CNS
inflammatory responses, debate exists concerning the relative ability of neurons and/or
astrocytes to release pro-inflammatory molecules in vivo. Recent reviews describe astrocytic
and neuronal contributions to CNS inflammation, and toll-like receptor (TLR, see below)
expression in many cell types (Rivest, 2001, Escartin and Bonvento, 2008, Griffiths et al.,
2009, Miller et al., 2009, Okun et al., 2009, Whitney et al., 2009). The specific TLRs
expressed differ among cell types. Neurons do not express TLR-4 in vivo (Chakravarty and
Herkenham, 2005, Mishra et al., 2006), with the exception of gigantocellular neurons of the
reticular formation (Mishra et al., 2006). Other neuronally expressed TLRs do not induce
cytokine production (Okun et al., 2009). Thus, neurons probably play a minimal direct role
in CNS inflammation. Astrocytes, on the other hand, contribute to the overall inflammatory
response since they release cytokines, triggering nuclear factor-kappa B (NFκB) signaling
elsewhere in the CNS. Further, they express many TLRs, including TLR-4, capable of
eliciting an inflammatory response (Li and Stark, 2002, Farina et al., 2007, Johann et al.,
2008). Given their relative abundance, astrocytes may play a key role in CNS inflammatory
responses.

2.3 Induced versus endogenous inflammation
Many studies focus on (exogenously) induced systemic inflammation as an experimental
model. However, it is not understood how these results relate to endogenous
neuroinflammation (for example, during autoimmune diseases, spinal injury,
neurodegenerative diseases or ischemic injury) since few studies directly compare induced
versus endogenous inflammation. Available information suggests that induced and
endogenous inflammation share many common features, and studies of induced
inflammation have many experimental advantages (e.g. inflammation without attendant
issues such as mechanical injury or degenerative disease). Thus, induced inflammation is a
reasonable model to begin investigations concerning the impact of inflammatory activities
on ventilatory control.

2.4 Lipopolysaccharide (LPS)
The most frequently studied model of induced systemic inflammation is administration of
the bacterial endotoxin, LPS. Although LPS is a component of Gram-negative bacterial cell
walls, its most relevant feature is that it initiates inflammation primarily via activation of
CD14/TLR-4 receptors (Poltorak et al., 1998). This is important since naturally occurring
proteins, such as certain heat shock proteins, are endogenous ligands for TLR-4s (Ohashi et
al., 2000, Lehnardt et al., 2008). Thus, LPS is a reasonable model to study inflammation,
and is relevant beyond Gram-negative bacterial infections. LPS also activates beta 2
integrins (e.g. CD11c and CD18) and scavenger receptors (Fenton and Golenbock, 1998,
Triantafilou and Triantafilou, 2002).

While LPS does not cross the blood-brain barrier (Singh and Jiang, 2004, Qin et al., 2007),
systemic LPS administration elicits CNS inflammation through complex mechanisms,
including indirect effects mediated by cytokines or other inflammatory molecules that do
cross into the CNS. Candidate molecules triggering CNS inflammatory activities following
systemic LPS include interleukins (IL-1β), tumor necrosis factor alpha (TNFα) and
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prostaglandins produced by perivascular macrophages and/or endothelial cells that line the
blood-brain barrier (Maier et al., 1998, Goehler et al., 1999, Laflamme et al., 1999, Blatteis
and Li, 2000, Schnydrig et al., 2007, Rivest, 2009). Another means of transmission is via
peripheral nerves (including the vagus nerves), which transmit inflammation into the CNS
via unknown mechanisms (Ge et al., 2001, Roth and De Souza, 2001, Wieczorek et al.,
2005, Blatteis, 2007).

2.5 Toll-Like Receptors (TLRs)
TLRs sense pathogens, quickly recognizing highly conserved pathogen-associated molecular
patterns and triggering innate immune responses to eliminate the pathogen (e.g. bacteria,
viruses, fungi, parasites) (Chen et al., 2007). TLRs (specifically TLR-2 and TLR-4) also
recognize endogenously released damage-associated molecular patterns from necrotic or
apoptotic cells (Chen et al., 2007). Thus, TLRs act as sensors for both exogenous (invading
pathogens) and endogenous (cell death via apoptosis or necrosis) threats to tissue viability.
While detailed signaling cascades triggered by endogenous versus exogenous inflammation
are not fully understood, LPS is a viable model to begin studies of inflammation and
ventilatory control since it is a TLR-4 ligand. Regardless, aspects of LPS-induced
inflammation may not faithfully reflect inflammatory responses triggered by endogenous
molecules.

TLR-4 receptors are cytokine family receptors that activate transcription factors, such as
NFκB (Lu et al., 2008). NFκB regulates the expression of many inflammatory genes,
including: IL-1β, -6 and -18, TNFα, cyclooxygenase-2 (COX-2) and inducible nitric oxide
synthase (iNOS) (Ricciardolo et al., 2004, Nam, 2006). Endogenous molecules known to
activate TLR-4 receptors include (but are not limited to) heat shock proteins (specifically
HSP60, Ohashi et al., 2000, Lehnardt et al., 2008), fibrinogen, surfactant protein-A,
fibronectin extra domain A, heparin sulfate, soluble hyaluronan, β-defensin 2 and HMGB1
(Chen et al., 2007).

2.6 Inflammatory gene expression in tissue homogenates
Cytokine release is a key factor initiating general CNS inflammation, and traditionally has
been assessed in tissue homogenates. However, it is important to bear in mind that CNS
homogenates are >50% astrocytes. Thus, inflammatory gene assessment in tissue
homogenates may be dominated by astrocytes, with less influence from more diffuse cell
types, including microglia. More specific methods are necessary to assess gene expression in
less abundant cell types, such as analyses of microglia freshly isolated from CNS tissues.

Chronic intermittent hypoxia (CIH) stimulates CNS inflammation, increasing inflammatory
molecules in tissue homogenates from the hippocampus (e.g. COX-2 and iNOS) (Li et al.,
2003, Row et al., 2003, Li et al., 2004, Xu et al., 2004, Gozal and Kheirandish-Gozal, 2008).
No information is currently available concerning the specific cell types involved in this
inflammatory response. Further, little is known regarding LPS effects on microglia in vivo in
any region of the CNS since most studies evaluate homogenates only. Thus, cell-specific
isolation from distinct regions of the CNS is an important step to advance our understanding
of the relative roles played by microglia versus other cell types in regions of interest to
ventilatory control. At this time, significant gaps in our understanding include: 1) lack of
knowledge concerning inflammatory gene expression and protein levels in identified cell
types; 2) specific effects of inflammation in CNS regions relevant to ventilatory control (e.g.
brainstem and cervical spinal cord), where microglia have different properties than cortical
microglia; 3) a time course of LPS effects on inflammatory gene expression in different cell
types and regions of interest; and 4) comparative data between LPS and other inflammatory
stimuli (such as chronic intermittent hypoxia).
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3. INFLAMMATION AND SENSORY SYSTEMS
3.1 Nociception

The role of inflammation (and specifically microglia) in chronic pain has been studied
extensively (reviewed in Woolf and Salter, 2000, Trang et al., 2006, Mika, 2008, Abbadie et
al., 2009, Baumbauer et al., 2009). A remarkable story has emerged, demonstrating the
interplay between neurons, microglia, inflammation and plasticity in this spinal sensory
system. In short, inflammation induces both peripheral and central sensitization, leading to
allodynia (hypersensitivity to otherwise non-painful stimuli) and hyperalgesia (exaggerated
or prolonged responses to a noxious stimulus) (Mika, 2008).

Plasticity at peripheral nerve terminals increases synaptic inputs to the CNS from primary
afferent neurons associated with nociception. Inflammation increases Aβ-mediated synaptic
input to the dorsal horn and activates spinal microglia through increased afferent input or
cytokines crossing the blood brain barrier, and thus increases neuropeptide expression and
pro-inflammatory gene expression in the spinal dorsal horn (Baumbauer et al., 2009,
Latremoliere and Woolf, 2009). Additionally, inflammation also increases microglial P2X4
ATP receptor expression (Inoue, 2006), subsequently increasing expression of brain derived
neurotrophic factor (BDNF; Coull et al., 2005). BDNF from these activated microglia down-
regulates the chloride co-transporter KCC2 on second order nociceptive neurons (Coull et
al., 2003), diminishing their chloride potential and, thus, the efficacy of inhibitory
neurotransmission. Without the constraint of GABA/glycine inputs on nociceptive synaptic
transmission, development of chronic pain results (Price et al., 2005).

Although scarcely explored, similar mechanisms may play major roles in ventilatory control,
particularly in modulating sensory systems (e.g. chemoreflexes).

3.2 Chemoreflex control of breathing
An important aspect of ventilatory control susceptible to inflammatory modulation is the
chemoreflex control of breathing. Chemoreflexes are critical for maintaining homeostasis of
arterial blood gases via classical negative feedback (Mitchell et al., 2009), or acting as
“teachers” that induce plasticity in the respiratory control system (Mitchell and Johnson,
2003). Major chemoreflexes include the hypoxic (Powell et al., 1998) and hypercapnic
ventilatory responses (Nattie, 2001), arising predominantly from the peripheral arterial and
central chemoreceptors (Lahiri and Forster, 2003).

3.2.1 Hypoxic ventilatory response—Systemic LPS decreases the hypoxic ventilatory
response in cats, without change in ventilation during maximal chemoreceptor stimulation
(Fernandez et al., 2008). Inflammation diminishes the hypoxic ventilatory response by a
nitric oxide dependent mechanism in piglets (McDeigan et al., 2003). Further, TNFα
diminishes carotid chemosensory discharge in vitro (Fernandez et al., 2008). Young rats
treated with systemic LPS exhibit depressed hypoxic ventilatory responses (Ladino et al.,
2007). Systemic LPS (3 mg/kg, i.p.) also reduces short-term hypoxic phrenic responses in
anesthetized, vagotomized, paralyzed and ventilated adult rats (Vinit et al., 2011).
Mechanisms whereby inflammation impairs the hypoxic response are not understood, and
may involve multiple inflammatory molecules that influence peripheral and central
chemoreceptors, or other respiratory neurons.

Another stimulus to plasticity in regions of interest to ventilatory control is chronic
intermittent hypoxia (CIH). CIH increases carotid chemoreceptor responses to hypoxia,
quite possibly due to peripheral chemoreceptor inflammation (Del Rio et al., 2010). In
agreement, nocturnal CIH also augments the short-term hypoxic phrenic response in rats
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(Ling et al., 2001). However, the extent of CIH-induced inflammation in the brainstem and
spinal cord, and the potential contributions of CNS inflammation to this form of plasticity
remain unclear.

3.2.2. Hypercapnic ventilatory response—To date, no studies have reported the
impact of systemic inflammation on hypercapnic responses. However, increased CO2
suppresses NFκB activation, possibly suppressing inflammatory gene expression (Taylor
and Cummins, 2011). In fact, hypercapnia has been used to treat ischemia/reperfusion injury
to decrease inflammation and reduce lung tissue damage (Laffey et al., 2000, O'Croinin et
al., 2005, Curley et al., 2010, Li et al., 2010). In a rat model of Duchenne muscular
dystrophy, where inflammation is a key component of disease progression, symptomatic
mutant mice exhibit a diminished hypercapnic ventilatory response (Gosselin et al., 2003),
consistent with the idea that inflammation may also impair hypercapnic ventilatory
responses. Such impairment of ventilatory control may be due, at least in part, to impaired
diaphragm mechanics resulting from increased TNFα expression. However, these studies do
not rule out additional central neural effects of TNFα (Gosselin et al., 2003). Further work
concerning the influence of systemic inflammation on hypercapnic ventilatory responses is
warranted, particularly since impaired CO2 chemoreflexes would allow greater hypercapnia
and minimize the ongoing inflammation; in this sense, impaired hypercapnic ventilatory
responses during inflammation may (in part) be adaptive.

3.2.3. Inflammation and chemoreflexes in rats—Here, we report new data
concerning the impact of inflammation induced by systemic LPS on maximal chemoreflex
stimulation of breathing in unanesthetized rats (Figure 1). Four treatment groups of adult,
male Lewis rats were studied (each n=4): 1) vehicle controls (saline, 1ml/kg, i.p.), 2) LPS
treated (5 mg/kg in saline, i.p.), 3) the non-steroidal anti-inflammatory, ketoprofen (12.5 mg/
kg in 70% ethanol, s.c.), before and every 8 hours post-saline injection, and 4) ketoprofen
before and every 8 hours post-LPS injection. 24 hours post-injection, ventilation was
measured using whole-body plethysmography (Data Sciences International, St. Paul, MN,
USA). Rectal temperature was measured before being placed in the chamber, and again at
the end of protocols as rats were removed from the chamber. Due to a consistent equipment
error in recording chamber temperature, we chose to express volumes in relative units (units/
min/100g) rather than making a (small but) uncertain correction in absolute units (ml/min/
100g). Regardless, chamber temperature measurement errors have no impact on recorded
breathing frequencies, the main variable affected in these studies.

To determine ventilatory capacity in these rats, they were given maximal chemoreceptor
stimulation by exposure to 10.5% inspired O2 with 7% inspired CO2 (balance N2) for 15
min. LPS significantly affected breathing frequency, but not tidal volume (Figure 1).
Specifically, LPS increased baseline breathing frequency (breaths/min) versus other
treatment groups (LPS + vehicle = 133±11; Saline + vehicle = 81±0.2; Saline + Ketoprofen
= 74±1.4; LPS + Ketoprofen = 90±8.5) (Figure 1A). Increased frequency during
chemoreceptor stimulation was not evident in rats treated with LPS (LPS + vehicle baseline
= 133±11 breaths/min; LPS + vehicle maximal stimulation = 117±14 breaths/min).
However, the frequency response to chemoreceptor stimulation was restored when LPS-
treated rats were also treated with the nonsteroidal anti-inflammatory agent, ketoprofen
(LPS + Ketoprofen baseline = 90±9 breaths/min; LPS + Ketoprofen maximal stimulation=
121±11 breaths/min). LPS-induced inflammation may influence respiratory rhythm by direct
actions on brainstem centers controlling frequency (e.g. the pre-Bötzinger Complex), or via
indirect effects mediated by sensory receptors that project to these rhythm generating
neurons.
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In contrast to LPS effects on breathing frequency, neither LPS nor ketoprofen affected tidal
volume in baseline conditions or during maximal chemoreceptor stimulation (Figure 1B).
Overall, LPS reduced pulmonary ventilation during chemoreceptor stimulation (Figure 1C),
reflecting its effects on breathing frequency. Specifically, LPS decreased chemoreceptor
stimulated ventilation versus vehicle controls (control: 107±6 units/min/100g; LPS: 83±6
units/min/100g, Figure 1C; p<0.05). Ketoprofen failed to reverse these LPS effects on
chemoreceptor stimulated ventilation (92±11 units/min/100g; p>0.05). The lack of
reversibility of LPS effects on breathing with ketoprofen may reflect an inadequate dose or
the timing of ketoprofen administration since inflammatory molecule expression changes
over time with different inflammatory mediators peaking in expression level at different
times during an inflammatory response (Lund et al., 2006, Natoli et al., 2011).

From the limited data presented here, we cannot determine conclusively if blunted
chemoreflex frequency responses result from effects on peripheral chemoreceptors (Iturriaga
et al., 2009), vagal pulmonary receptors (Lai et al., 2002) or central neural mechanisms (e.g.
rhythm generating neurons). However, it is unlikely they resulted from known effects of
inflammation on respiratory muscles (Hussain, 1998) or lung mechanics (e.g. pulmonary
edema) since these effects would be expressed as changes in tidal volume versus frequency.
Further, since LPS (3 hrs post-injection) diminishes amplitude responses in the short-term
hypoxic phrenic response of anesthetized, paralyzed, vagotomized and ventilated rats (Vinit
et al., 2011), contributions from vagal afferent neurons, respiratory muscles or lung
mechanics can be ruled out in this reduced experimental preparation; these diminished
hypoxic responses must arise from LPS effects on peripheral chemoreceptors and/or the
CNS.

To confirm CNS inflammation 24 hours following systemic LPS, we examined changes in
inflammatory gene expression in tissue homogenates from the brainstems of adult, male
Sprague Dawley rats (iNOS, COX-2, and TNFα mRNA via quantitative RT-PCR). 24 hours
post-LPS (10 mg/kg, i.p., n=3), iNOS (p=0.03) and TNFα (p=0.009) mRNA had increased;
an apparent increase in COX-2 mRNA approached significance (p=0.054) (Fig 2). Thus,
although LPS does not cross the blood-brain barrier, systemic LPS injection induces central
neural inflammation in regions of interest to ventilatory control.

4. INFLAMMATION AND NEUROPLASTICITY
4.1 Non-respiratory systems

Inflammatory molecules induce/maintain synaptic plasticity in some neural systems (Woolf
and Salter, 2000, Beattie et al., 2002), but inhibit plasticity in others (Di Filippo et al., 2008).
Hippocampal synaptic plasticity and hippocampus-dependent learning are inhibited by
inflammation (Vereker et al., 2000, Shaw et al., 2001), including COX-2 regulated
prostaglandin synthesis (Shaw et al., 2005). Inflammation also impairs: 1) spinal
instrumental learning (Vichaya et al., 2009); 2) contextual fear conditioning, and spatial
learning in the Morris water maze (Shaw et al., 2001); 3) memory processing in day old
chicks (Sell et al., 2001); and 4) memory consolidation (Thomson and Sutherland, 2005).
When inflammation inhibits recognition memory and LTP in the dentate gyrus, plasticity-
associated changes in growth factor expression are blocked (Hennigan et al., 2007), giving
some clue as to potential sites of impairment in the cellular cascades leading to memory. On
the other hand, cytokines are also reported to be necessary for learning, memory and
hippocampal synaptic plasticity (Bohme et al., 1993, Zhuo et al., 1993, Malen and
Chapman, 1997, Pollmacher et al., 2002, Avital et al., 2003, Brennan et al., 2003, Goshen et
al., 2007).
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4.2 Respiratory plasticity
Hippocampal synaptic plasticity and spinal somatic motor learning share many common
cellular mechanisms with phrenic long-term facilitation (pLTF) following acute intermittent
hypoxia, the most frequently studied model of spinal respiratory motor plasticity (Mahamed
and Mitchell, 2007, Mateika and Sandhu, 2011). Indeed, systemic LPS impairs pLTF (Vinit
et al., 2011), an effect similar to hippocampal synaptic plasticity and spinal motor learning,
but unlike plasticity the spinal dorsal horn where sensitization prevails (Woolf and Salter,
2000). Given our emerging awareness that inflammation has considerable impact on
neuroplasticity in other regions of the CNS (Woolf and Salter, 2000, Di Filippo et al., 2008),
an understanding of mechanisms whereby inflammation impairs respiratory motor plasticity
is of considerable interest.

We have made considerable progress towards an understanding of cellular/synaptic
mechanisms giving rise to pLTF induced by acute-intermittent hypoxia (AIH, 3 × 5 min
10.5% separated by 5 min normoxia) in vivo (Mahamed and Mitchell, 2007, Baker-Herman
and Mitchell, 2008, Mateika and Sandhu, 2011). We have recently come to realize that
multiple, distinct mechanisms give rise to long-lasting phrenic motor facilitation (pMF),
where pMF is used as a general term that includes pLTF induced by AIH (Dale-Nagle et al.,
2010). These pathways interact in complex and interesting ways, providing a range of
potential responses in the face of changing physiological conditions or the onset of disease.
A detailed understanding of cellular/synaptic mechanism(s) giving rise to pMF may guide
the development of novel therapeutic strategies for severe breathing disorders, including
obstructive sleep apnea (Mitchell, 2007). Thus, an understanding of mechanisms whereby
inflammation undermines respiratory plasticity is of fundamental importance, since
inflammation may diminish the capacity for natural, compensatory plasticity during
pathological states and undermine the ability to harness respiratory plasticity as a therapeutic
tool in the treatment of respiratory insufficiency (Mitchell, 2007). By understanding
mechanisms whereby inflammation impairs respiratory plasticity, we may speed
development of new strategies to restore breathing capacity in devastating ventilatory
disorders such as cervical spinal injury or motor neuron disease. Unfortunately, we have
only begun to appreciate the impact of inflammation on any form of respiratory plasticity
(Di Filippo et al., 2008, Iturriaga et al., 2009, Vinit et al., 2011).

4.3 Do microglia contribute to impaired pLTF following AIH
Here we report new data attempting to determine the role of microglia in LPS-induced
impairment of AIH-induced pLTF using a “standard” approach to inhibiting microglial
function. Specifically, we pretreated rats with minocycline, a semi-synthetic tetracycline
known to inhibit microglial, with lesser effects on neuronal or astrocytic function (Kim and
Suh, 2009). As we showed previously (Vinit et al., 2011), three hours post-LPS (3 mg/kg,
i.p.), AIH-induced pLTF (3 × 5 min 10.5% O2, separated by 5 min normoxia) is impaired
(control: 74±14%, n=8; LPS: 22±5%, n=12) (Figure 3). Unexpectedly, minocycline alone
also impaired pLTF (minocycline: 36±7%, n=8, 30 mg/kg, i.v., Figure 3), and had no impact
on LPS-induced pLTF impairment (LPS + minocycline: 35±11%, n=8). Based on these
experiments, it is not possible to make conclusions regarding the role of microglia in the
impairment of pLTF following LPS administration. Rather, we suggest that minocycline
independently impairs pLTF, possibly by inhibition of relevant protein kinase C isoforms
(Nikodemova et al., 2006).

5. INFLAMMATION AND RESPIRATORY RHYTHM GENERATION
To date, little is known concerning the impact of inflammation on respiratory rhythm
generation. Since astrocytes play an important role in brainstem rhythm generation
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(Hulsmann et al., 2000, Grass et al., 2004, Haertel et al., 2009, Huxtable et al., 2010), and
microglia are located in regions associated with rhythm generation, there is considerable
potential for inflammation to alter cell-cell interactions and modulate this critical biological
process. The increase in baseline breathing frequency in rats injected with LPS (5 mg/kg,
i.p., Figure 2), and the failure to increase breathing frequency during chemoreceptor
stimulation, suggest an influence of inflammation on brainstem centers controlling breathing
frequency (see above). However, we do not yet know which inflammatory molecules may
be responsible for these effects. It is essential to understand mechanisms whereby
inflammation could disrupt respiratory rhythm generation, since infection and inflammation
are implicated in apnea of prematurity and in devastating examples of respiratory arrest,
such as sudden infant death syndrome (Blackwell et al., 2005, Blood-Siegfried, 2009,
Marcus et al., 2009, Dale-Nagle et al., 2010).

6. SIGNIFICANCE, IMPLICATIONS AND FUTURE DIRECTIONS
A major implication of diminished chemoreflexes and respiratory plasticity with systemic
inflammation is that, at a time when robust ventilatory control is needed the most (i.e.
disease), the neural system controlling breathing may be compromised. A major goal should
be to understand the extent and mechanisms compromising this critical homeostatic control
system.

Although information is now becoming available concerning the impact of acute
inflammation (<24 hrs) on ventilatory control, future investigations must explore longer
time-domains. Longer time-domains are characteristic of chronic lung and neural diseases
(Iturriaga et al., 2009, Del Rio et al., 2010). Further, inflammation is a dynamic process;
specific combinations of inflammatory molecules expressed at any given time differ. Thus,
it is not clear that acute and chronic inflammation will have the same impact on ventilatory
control.

Here, we reviewed evidence that systemic inflammation activates brainstem and spinal
inflammatory responses, impairing chemoreflexes and respiratory plasticity. However, most
available evidence concerns exogenously induced models of inflammation, such as systemic
LPS. Further research is necessary to confirm that this model reveals general principles
applicable to endogenous inflammation characteristic of chronic lung disease (e.g. COPD),
breathing disorders (e.g. sleep apnea) and neurological disorders, including traumatic,
ischemic and neurodegenerative processes.

Sleep apnea and the attendant chronic intermittent hypoxia induce CNS inflammation and
impair cognitive function (Gozal, 2009, McNicholas, 2009, Ryan et al., 2009, Inancli and
Enoz, 2010, Kimoff et al., 2010). If chronic intermittent hypoxia-induced inflammation
alters respiratory chemoreflexes and plasticity, then disease/ventilatory control interactions
may contribute to the underlying pathophysiology. For example inflammation induced by
sleep-disordered breathing may undermine spontaneous respiratory compensation,
exacerbating the primary breathing disorder. Research concerning this possibility seems
warranted.

In recent years, we have started to harness respiratory plasticity as a treatment for conditions
associated with respiratory insufficiency, such as cervical spinal injury (Mitchell, 2007;
Vinit et al., 2009). Inherent in these disorders is an element of (endogenous) inflammation,
characterized by increased expression of pro- and anti-inflammatory molecules (Lehnardt,
2010). Patients with respiratory insufficiency are prone to greater rates of infection and
generalized immune activation (Wills-Karp, 1999, Stockley, 2009, Oglesby et al., 2010).
Because of the high incidence of inflammatory activity in respiratory disorders, a major
obstacle in harnessing respiratory plasticity as a therapeutic tool may be overcoming the
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limits imposed by inflammation. Thus, therapeutic induction of respiratory (or other motor)
plasticity may be optimized if the patients are first given anti-inflammatory agents. Before
such combinatorial therapies can/should be applied, we need more information regarding
mechanisms whereby inflammation impairs the neural control of breathing.

Overall, the theme of this special edition is quite novel in the context of respiratory
neurobiology. We are only now beginning to appreciate the impact of inflammation on
neural function in other regions of the nervous system (Di Filippo et al., 2008, Abbadie et
al., 2009, Iturriaga et al., 2009). Although many human clinical conditions that require
rigorous ventilatory control to assure adequate breathing are associated with inflammation,
we are only at the beginning of our understanding concerning how inflammation impacts
neural mechanisms that underlie any aspect of ventilatory control (e.g. rhythm generation,
chemoreflexes, plasticity). We should move quickly to understand the impact of this
common biological event (i.e. inflammation) on respiratory control.
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Figure 1.
Systemic LPS alters breathing frequency and minute ventilation in unanesthetized Lewis
rats. A. Systemic LPS (5 mg/kg, i.p.) significantly increased baseline breathing frequency
versus other baseline conditions; this effect was reversed by the non-steroidal anti-
inflammatory drug, ketoprofen (12.5 mg/kg, s.c.). LPS also suppressed the frequency
response to chemoreceptor stimulation (10.5% O2, 7% CO2, 15 min). B. Although
chemoreceptor stimulation increased tidal volume in all groups, neither LPS nor ketoprofen
had significant effects on this response. C. Although chemoreceptor stimulation increased
minute ventilation in all treatment groups, LPS reduced this response versus saline +
vehicle. Ketoprofen tended to restore maximal ventilation after LPS, but this change was not
statistically significant. Ketoprofen controls had no significant effect on ventilation. **
p<0.01 *** p<0.001 indicates significant difference from baseline (black bars); ### p<0.001
indicates significant difference from LPS + vehicle baseline (black bar); @ p<0.01 indicates
significant difference from LPS + vehicle (10.5% O2, 7% CO2, gray bar). Statistics: two-
way, repeated measures ANOVA with Fisher's LSD post hoc test.
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Figure 2.
Changes in inflammatory gene expression in brainstem homogenates from adult, male
Sprague Dawley rats 24 hrs post-LPS (10 mg/kg, i.p.). iNOS and TNF-α increased
significantly after LPS exposure (p=0.03 and p=0.009, respectively). An apparent increase in
COX-2 was only marginally significant (p=0.054). Statistics: t-tests comparing vehicle vs.
LPS for each gene.
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Figure 3.
The effects of systemic LPS on pLTF, with and without a known microglial inhibitor
(minocycline). Both LPS and minocycline diminish AIH-induced pLTF. A) Compressed
phrenic neurograms from in vivo anesthetized, vagotomized, paralyzed, ventilated rats
demonstrating typical AIH-induced pLTF (upper trace), and reduced pLTF 3 hrs post-LPS
(3 mg/kg, i.p.; lower trace). B) Group data demonstrating significant reduction in pLTF with
LPS, LPS and minocycline (30 mg/kg, i.v.) and minocycline alone. (** p<0.01, *** p<0.001
indicates significant difference from vehicle response). Statistics: one-way ANOVA with
Fisher's LSD post hoc test.
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