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The sucrose non-fermenting-1 (SNF1) protein kinase fam-
ily comprises SNF1 itself in yeast, the AMP-activated protein 
kinases (AMPK) in mammals and the SNF1-related protein 
kinases (SnRKs) in plants. The plant SnRKs are divided into 
three subfamilies (SnRK1, SnRK2 and SnRK3) based on the 
amino acid sequence identity and expression patterns. SnRK2 is 
a type of serine/threonine protein kinase, including two typical 
domains, viz., an N-terminal catalytic domain and a C-terminal 
regulatory region, characterized by the presence of a short acidic 
patch. Based on the C-terminal acidic patch, the SnRK2 family is 
divided into two distinct subclasses, SnRK2a and SnRK2b. The 
acidic patch of SnRK2a is rich in aspartic acid residues, while 
that of SnRK2b enriches in glutamic acid residues.1,2 Increasing 
evidence shows that SnRK2s act within an intricate network that 
links metabolic and stress signaling in plants.1-4 Despite these 
important functions in plants, knowledge of specific functions of 
SnRK2s in wheat is fragmentary and the molecular mechanism of 
their activation is still enigmatic. In this review, we highlight the 
current view on the role of SnRK2 in plant carbohydrate meta-
bolic and stress signaling pathways.
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Drought, salinity and low temperature are major environmental 
factors that influence plant growth and development, and 
eventually limit crop yield and quality. To survive adverse 
stresses, plants have developed complex signaling networks 
to perceive external stimuli, and then manifest adaptive 
responses at molecular and physiological levels. Sucrose 
non-fermenting1-related protein kinase 2 (SnRK2) plays a 
critical role in plant sugar signaling via phosphorylation, while 
knowledge of specific functions of SnRK2s in wheat is still 
undiscovered. In this paper, we reviewed our recent studies on 
wheat SnRK2 members, TaSnRK2.4, TaSnRK2.7 and TaSnRK2.8, 
involved in abiotic stress responses. The results suggest that 
the three wheat kinases participate in sugar metabolic and 
stress signaling in wheat. Furthermore, we compare their 
distinct transcript levels in various tissues, expression patterns 
under diverse stress conditions and functions in transgenic 
Arabidopsis.
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PKABA1, the first cloned SnRK2 member in wheat, was 
induced by ABA and dehydration stress, and it repressed the 
activities of gibberellic acid-inducible promoters when transiently 
overexpressed in barley aleurone layers.5,6 In our recent studies, 
three wheat SnRK2 members, TaSnRK2.4, TaSnRK2.7 and 
TaSnRK2.8 were cloned and characterized. Experimental evi-
dence supported they were extensive regulatory factors in car-
bohydrate metabolism and stress signal transduction.7-9 Here, 
a phylogenetic tree was constructed with putative amino acid 
sequences of PKABA1, TaSnRK2.4, TaSnRK2.7, TaSnRK2.8 
and SnRK2 family members in Arabidopsis, rice and maize 
(Fig.  1). TaSnRK2.4 and TaSnRK2.7 were clustered in the 
SnRK2a subclass and PKABA1 and TaSnRK2.8 fell into 
the SnRK2b subclass. Furthermore, the counterparts from 
Arabidopsis, rice and maize were clustered in the same clades, 
implying the emergence of SnRK2 occurred before the separa-
tion of monocots and dicots.

Global Regulator of Carbohydrate Metabolism

Expression pattern is a direct indicator of a gene’s involvement in 
developmental or differential events. In Arabidopsis, AtSRK2.8/
AtSRK2C was identified as a root-specific protein kinase and 
AtSRK2.6/AtSRK2E/OST1 was confirmed to play a pivotal 
role in stomatal closure in leaves.10,11 Gene expression patterns 
in various wheat tissues showed that TaSnRK2.4, TaSnRK2.7 
and TaSnRK2.8 were constitutively expressing genes; the highest 
expression of TaSnRK2.4 occurred in booting spindle, while that 
of TaSnRK2.7 and TaSnRK2.8 occurred in root. Moreover, all 
three proteins were present in the cell membrane, cytoplasm and 
nucleus. Thus, SnRK2 kinases existed extensively in plant cells 
and tissues.

It is well documented that yeast SNF1-kinase and mam-
malian AMPK have key roles in sugar metabolism.1,2 Similarly, 
our recently results showed that TaSnRK2.7 was mapped on 
chromosome 2AL with the flanking markers WMC179.4 and 
WMC401,12 which were co-located in the same or adjacent 
chromosome intervals with QTLs for phosphorus utilization 
efficiency13 and accumulation efficiency of stem water-soluble 
carbohydrates.14 To unravel the roles of the SnRK2 in the regula-
tion of carbohydrate and energy metabolism, the three SnRK2s 
were transferred to Arabidopsis, respectively and the significant 
lower total soluble carbohydrate in transgenic Arabidopsis was 
identified. The results suggested that SnRK2 was involved in 
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plant hormone ABA, which was often recruited as the primary 
signal for increasing the transcription levels of the stress respon-
sive genes, while some SnRK2 members might participate in 
ABA-independent signal transduction pathways.21,22 Until now, 
little is known in detail about its role in plant ABA-independent 
stress signaling.

In our research, although all the three members, TaSnRK2.4, 
TaSnRK2.7 and TaSnRK2.8, were involved in response to PEG, 
NaCl and cold stresses in wheat, they exhibited distinct expres-
sion patterns. Moreover, TaSnRK2.4 and TaSnRK2.8 could 
be induced by ABA treatment, whereas TaSnRK2.7 might be 
involved in ABA-independent pathway. Function analysis indi-
cated that all plants overexpressing TaSnRK2.4, TaSnRK2.7 and 
TaSnRK2.8 exhibited the enhanced resistance to multi-abiotic 
stresses through increasing osmotic adjustment ability, promot-
ing photosynthetic capability and strengthening seedling roots. 
These supported that wheat SnRK2 members might be involved 
in different stress signal pathways.

To elucidate the molecular mechanism of SnRK2s in stress 
response, the expression levels of the genes participated in ABA 
biosynthesis and signaling or those involved in stress protec-
tion were investigated in transgenic Arabidopsis. As expected, 
the transcript levels of ABA biosynthesis genes (ABA1, ABA2), 
ABA signaling genes (ABI3, ABI4, ABI5), stress-responsive 
genes including two ABA-dependent genes (RD29A, RD29B) 

carbohydrate metabolism. As a result, it could function in plant 
growth and development, such as overexpression of TaSnRK2.4 
in Arabidopsis resulted in the delayed seedling establishment 
and longer primary roots, and overexpressing TaSnRK2.7 and 
TaSnRK2.8 leaded to improved root growth and development, 
respectively.

Pivotal Factor in Stress Signal Transduction

Besides the prime carbon and energy source to plant growth and 
development, sugars can complement and interact with various 
hormones and growth factors signaling mechanisms to regulate 
metabolism and stress-resistance in complex systems. Recently, 
the pivotal roles of sugars in plant growth and development, and 
key players in sugar signaling network have been uncovered.15-17 
As an integral component of the sugar signaling pathway, the 
plant SNF1 complex has been studied intensively. Currently, 
evidence suggested that the phosphatase PP2C acted as a con-
stitutive negative regulator of SnRK2 kinases in the absence 
of the phytohormone abscisic acid (ABA) and the presence of 
ABA could enable the PYR/PYL/RCAR proteins to bind to and 
repress PP2C. Sequestration of PP2C permitted the auto-activa-
tion of SnRK2 kinases, which could phosphorylate downstream 
transcription factors (ABF/AREB) and facilitate transcription 
of ABA-responsive genes.18-20 These studies were focused on the 

Figure 1. Phylogenetic tree of four wheat SnRK2 members and SnRK2s from other plant species. Two distinct isoform groups are presented in grey. 
Ta, Triticum aestivum; Os, Oryza sativa; At, Arabidopsis thaliana; Zm, Zea mays. The phylogenetic tree was constructed with the PHYLIP 3.68 package; 
bootstrap values are in percentage.
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without growth retardation. Therefore, there is a potential 
to utilize them in the stress-tolerance improvement in crops. 
(2) Individual members of SnRK2 had evolved specifically for 
stress signaling and acquired distinct regulatory properties. (3) 
Each member might be involved in multiple signaling path-
ways. In future investigations, it will be interesting to deter-
mine the biochemical properties and precise roles of wheat 
SnRK2 in metabolic and stress signaling to further advance 
the understanding of its adaptive mechanisms under stress 
conditions.
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and three ABA-independent genes (CBF1, CBF2, CBF3) were 
generally higher in transgenic TaSnRK2.8 plants than control 
plants under both normal and stress conditions. Intriguingly, 
the findings suggested that TaSnRK2.8 may act on the upstream 
regulators of these genes in stress tolerance, and thus directly or 
indirectly involved in ABA-dependent and ABA-independent 
signaling networks.

Conclusions and Perspectives

The results presented here demonstrate that (1) wheat SnRK2s 
were multifunctional regulatory factors, acted within an intri-
cate network which linked metabolic and stress signaling in 
plant. Overexpression of TaSnRK2s in Arabidopsis remark-
ably enhances tolerance to drought, salt and cold stresses 
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