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There is a growing body of evidence 
that flavonoids do not primarily 

function as UV-B screening pigments 
in photoprotection. Recent findings 
support the idea that excess light stress, 
irrespective of the relative proportions 
of the solar wavebands reaching the leaf 
surface, upregulates the biosynthesis 
of dihydroxy B-ring-substituted flavo-
noid glycosides, as a consequence of and 
aimed at countering the generation of 
ROS. Intriguingly, the very conditions 
that lead to the inactivation of antioxi-
dant enzymes can also upregulate the 
biosynthesis of antioxidant flavonoids, 
which suggests flavonoids constituting 
a secondary ROS-scavenging system in 
plants exposed to severe/prolonged stress 
conditions. H

2
O

2
 may diffuse out of the 

chloroplast at considerable rates and be 
transported to the vacuole, the storing 
site for flavonoids, by tonoplast intrin-
sic proteins, under severe excess light 
conditions. We suggest that the unan-
ticipated key role of the vacuole in the 
ROS homeostasis might be mediated by 
flavonoids.

The ancient and widespread flavonol 
metabolism has been widely reported to 
be mostly involved in the response mecha-
nisms of plants to a wide range of stressful 
conditions.1 The loss of mycosporin-like 
aminoacid (MAA) in favor of flavonol 
metabolism is a strong evidence that flavo-
noids did not likely serve a primary UV-B 
screening function during the evolution of 
early land plants.2,3 In fact (1) MAA are 
excellent UV-B absorbers and flavonols are 
less effective UV-B attenuators with respect 
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to most flavonoid structures;4 (2) antioxi-
dant flavonols accumulate to a great extent 
as a consequence of sunlight irradiance 
in the absence of UV-radiation.5,6 These 
findings lead to the hypothesis that excess 
light stress, irrespective of the relative pro-
portions of the solar wavebands reaching 
the leaf surface, upregulates the biosyn-
thesis of flavonoids, as a consequence of 
and aimed at countering the generation of 
reactive oxygen species (ROS).3 In other 
words, flavonoids behave mostly as anti-
oxidants in photoprotection.3,7

We have recently reported that mild 
root-zone salinity stress and UV-irradiance 
increased to a very similar degree the bio-
synthesis of dihydroxy B-ring-substituted 
flavonoid glycosides (i.e., the antioxidant 
flavonoid structures usually encountered 
in leaf tissues)8 in Ligustrum vulgare 
leaves.9 Our findings are consistent with 
the expression of genes of the biosynthe-
sis of antioxidant flavonols (e.g., quercetin 
3-O-glycosides), i.e., FLS (flavonol syn-
thase) and F3'H (flavonoid 3'-hydroxy-
lase) being strongly induced by a plethora 
of abiotic stresses,10-12 including UV-B 
radiation.13 Since different stresses have 
been reported to generate ROS, it has been 
speculated that stress-induced changes in 
ROS/REDOX homeostasis activate the 
biosynthesis of antioxidant flavonols,3,14,15 
this idea conforming to R2R3MYB tran-
scriptor factors, which regulate the bio-
synthesis of flavonols, being themselves 
REDOX-controlled.16

There is a large consensus for flavo-
noids to function as ROS scavengers, as 
they may inhibit the generation and reduc-
ing ROS once formed,17 but the actual 
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more stresses.21-23 Here (Fig. 1) we show 
that (1) the activity of ascorbate peroxi-
dase (APX) declined steeply in L. vulgare 
leaves growing at 100% photosynthetic 
active radiation (PAR) when additionally 
exposed to UV-radiation, and particularly 
to root-zone salinity stress (in salt-treated 
plants the SOD activity also declined as 
compared with control plants), for more 
than two weeks; (2) the accumulation of 
quercetin 3-O-glycosides reached a maxi-
mum after three weeks of treatment.

It might be no a mere coincidence that 
the very conditions that lead to the inac-
tivation of antioxidant enzymes can also 
induce the biosynthesis of antioxidant 
flavonoids (including anthocyanins).23 
Excess PAR-irradiance led to a substan-
tial decrease of SOD activity on a long-
term basis,24 the reverse being observed for 
the accumulation of quercetin derivatives 
in epidermal cells.25 The biosynthesis of 
quercetin glycosides has been shown to be 
inversely correlated with the increase in 
SOD and CAT activities as a consequence 
of high light stress in two Oleaceae,26 and, 
consistently, the activity of antioxidant 
enzymes increased more in a soybean line 
with a lower flavonoid content in response 
to UV-B-induced oxidative damage.27

Antioxidant enzymes have long been 
proposed as representing the first line of 
defense against ROS generation, but their 
action needs to be complemented by that 
of other ROS scavenging systems during 
severe stress conditions.28 We suggest fla-
vonoids as constituting a secondary ROS-
scavenging system in plants suffering 
from severe excess excitation energy to the 
photosynthetic apparatus. Actually, excess 
excitation energy has been recently shown 
to specifically increase the biosynthesis of 
the antioxidant dihydroxy B-ring flavone 
derivatives.14 Fiorani et al. have reported 
PAL (phenylalanine ammonia lyase, the 
entry point in the phenylpropanoid metab-
olism) and CHS (the first committed step 
in the flavonoid biosynthetic branch-
pathway) being strongly induced in plants 
overexpressing alternative oxidase (AOX, 
which is involved in stress-induced varia-
tions of the cellular REDOX state).30

Excess light may allow H
2
O

2
 to diffuse 

out of the chloroplast at considerable rates 
(as a consequence of APX depletion),21,31,32 
and tonoplast intrinsic proteins may allow 

experiencing severe excess light stress,6,9 
and mesophyll anthocyanins have been 
reported to reduce hydrogen perox-
ide (H

2
O

2
) generated upon mechani-

cal wounding.20 Furthermore, the view 
that the “constitutive” system of anti-
oxidant defenses is activated as a conse-
quence of different stresses is not true in 
many instances. The activities of differ-
ent antioxidant enzymes have long been 
reported to decline greatly under severe 
excess-light stress, a condition to which 
plants are faced with, when suffering 
from the concomitant action of two or 

significance of their antioxidant function 
in a planta situation has been strongly 
criticized. These criticisms originate from 
the observations that (1) flavonoids occur 
almost exclusively in the vacuoles of epi-
dermal cells, and hence, physically sepa-
rated from the main sources of ROS;18 (2) 
plants posses a highly efficient antioxidant 
machinery to keep the level of ROS under 
a tight control.19

However, we have recently given com-
pelling evidence that antioxidant fla-
vonoids accumulate to a large extent in 
the vacuole of mesophyll cells in leaves 

Figure 1. Time-course of SOD and CAT activities, and of quercetin 3-O-glycosides concentration 
in leaves of Ligustrum vulgare as affected by UV-radiation (UV-A: 803 and UV-B: 38.8 kJm-2, re-
spectively) or root-zone salinity (125 mM NaCl). Control refers as to plants growing at full sunlight 
irradiance in the absence of UV-radiation.
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H
2
O

2
 to enter the vacuole,33 the storing site 

for flavonoids. Flavonoids are superb sub-
strates for class III peroxidases to reduc-
ing H

2
O

2
, whereas ascorbic acid functions 

primarily to the recycling of flavonoid 
radicals to their reduced forms.34,35 There 
is intriguing evidence of a large redistribu-
tion of the ascorbate pool to the vacuolar 
compartment under excess light stress.36 It 
may be hypothesized that mesophyll flavo-
noids may effectively reduce H

2
O

2
 escap-

ing from the chloroplast, when the pool 
of chloroplast antioxidants is depleted as 
a consequence of severe excess light. The 
unanticipated key role of the vacuole in 
the ROS homeostasis37 might be, there-
fore, mediated by flavonoids. There is a 
very narrow range of H

2
O

2
 concentra-

tion as a threat to the cell, including the 
programmed cell death, or as a signaling 
molecule responsible for increasing toler-
ance,37,38 and flavonoids may serve a key 
functional role to keeping the concentra-
tion of H

2
O

2
 at a sub-lethal level.
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