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Abstract
Efficient construction of large-scale linkage maps is highly desired in current gene mapping
projects. To evaluate the performance of available approaches in the literature, four published
methods, the insertion (IN), seriation (SER), neighbor mapping (NM), and unidirectional growth
(UG) were compared on the basis of simulated F2 data with various population sizes,
interferences, missing genotype rates, and mis-genotyping rates. Simulation results showed that
the IN method outperformed, or at least was comparable to, the other three methods. These
algorithms were also applied to a real data set and results showed that the linkage order obtained
by the IN algorithm was superior to the other methods. Thus, this study suggests that the IN
method should be used when constructing large-scale linkage maps.

Introduction
The development of molecular markers is necessary for genetic mapping and gathering
genetic information that can increase the accuracy of genetic predictions for traits of
economic importance in crop and animal species. Linkage mapping, as one of the most
important steps in genetic mapping, plays a crucial role in identifying genes and/or
quantitative trait loci. With the advance of technology and increasing demand for high-
quality linkage maps, the number of loci examined in different chromosome regions is
continuously growing, resulting in a quickly increasing computational burden. Thus, a
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linkage method combining both the speed and the accuracy for ordering a large number of
loci is greatly needed.

Marker ordering was once considered as a special case of the travelling salesman problem
(Liu 1998), a classical, non-deterministic polynomial time complete problem (Wilson 1988;
Olson and Boehnke 1990; Falk 1992). There are two types of approaches for tackling this
problem. The first approach is to find the global optimal solution by performing exhaustive
searches. However, this approach requires computing all the possible orders of the genetic
loci. Given n loci on a chromosome, n!/2 distinct orders would need to be evaluated. Even
for just 10 loci on one chromosome, there are 1,814,400 possible orders. In actual situations,
n might vary from dozens to several hundred loci. An exhaustive search is clearly
computationally intractable when the number of loci is greater than 30 (Mester et al. 2003a,
b; Van Os et al. 2005). Therefore, algorithms to obtain near-optimal solutions are more
desirable for large-scale linkage mapping (Liu 1998; Wu et al. 2003).

To date, several approximate algorithms for determination of linkage order have been
proposed, including seriation (SER) (Buetow and Chakravarti 1987), simulated annealing
(SA) (Thompson 1984; Weeks and Lange 1987), branch and bound (BB) (Lathrop et al.
1985), stepwise likelihood (Lathrop et al. 1984), neighboring mapping (NM) (Ellis 1997),
evolutionary strategy (ES) algorithm (Mester et al. 2003b), nearest-neighboring-end
algorithm (Crane and Crane 2005), recombination counting and ordering (RECORD) (Van
Os et al. 2005), the unidirectional growth (UG) approach (Tan and Fu 2006), and minimum
spanning tree (MST) approach (Wu et al. 2008). The insertion (IN) algorithm, which is one
element of the RECORD algorithm, is a pseudo BB algorithm with the advantage of
reaching a better solution (Van Os et al. 2005). Many of these algorithms have been
implemented in software packages such as LINKAGE (Lathrop et al. 1984), MAPMAKER
(Lander et al. 1987), LINKAGEMAP (Eppig and Eicher 1983), JoinMap (Stam 1993; Stam
and Van Ooijen 1995), LINKAGE-1 (Suiter et al. 1983), GMendel (Echt et al. 1992), PGRI
(Lu and Liu 1995), MSTMap (Wu et al. 2008), and CarthaGene (de Givry et al. 2005).

Olson and Boehnke (1990) compared eight different methods for marker ordering. In
addition to multilocus likelihood, they also considered simpler criteria for preliminary,
large-scale multipoint marker ordering problems based on two-point linkage data (by
minimizing the sum of adjacent recombination frequencies, SARF or the sum of adjacent
distances, SAD) (Falk 1992). In addition to SARF and SAD, other proposed criteria for
searching for an optimal solution order based on two-point linkage data of a given set of loci
included Lalouel’s least squares method (Jensen and Jorgensen 1975; Weeks and Lange
1987), product of adjacent recombination fraction (PARF) (Wilson 1988), sum of adjacent
LOD scores (SALOD) (Weeks and Lange 1987), SALOD divided by the equivalent number
of informative meioses (SALEQ) (Edwards 1971), and COUNT (Van Os et al. 2005). Olson
and Boehnke (1990) concluded that the SARF and SALEQ were the best overall criteria for
linkage mapping. These two criteria were derived with the biologically reasonable
assumption that the true order of a set of linked loci has a minimum SARF or a maximum
SALOD.

In this study, simulated F2 data were used to evaluate the performance of four commonly
used approaches for linkage mapping: IN, SER, NM, and UG. An actual set of data was also
used to compare the performance of these four methods. Thus, the purpose of this study is to
test which of these algorithms is most useful for constructing large-scale linkage maps with
a combination of both speed and accuracy.
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Linkage algorithms and simulation scenarios
There are many approximation algorithms available currently; however, without losing our
focus, only four representative linkage algorithms that were the most popularly used in the
literature were chosen for our numerical comparisons. The four selected methods were SER
(Buetow and Chakravarti 1987), NM (Ellis 1997), UG (Tan and Fu 2006), and IN (Van Os
et al. 2005). The rationale of the first three algorithms is to start with two loci (with the
shortest distance or smallest recombination frequency, for example) and then to expand the
linkage group by adding one of the remaining loci to either end of the linkage map. The key
difference of the IN algorithm compared to the three algorithms is to start any two linked
loci and expand the linkage group by putting one of the remaining loci into any position of
the initial linkage group. Thus, the IN algorithm can be repeated many times by randomly
selecting one of unmapped loci at each step to achieve a more desirable linkage map.
Without loss of generality, recombination frequency was used in the four compared methods
as a criterion for both simulation and actual data analysis. Readers interested in these
algorithms may refer to the papers by Buetow and Chakravarti (1987), Ellis (1997), Tan and
Fu (2006), and Van Os et al. (2005) for detailed information. In addition, as detailed in the
discussion of this paper, we chose JoinMap (Stam 1993) and MSTMap (Wu et al. 2008) to
compare with the IN method for the two single simulated data sets with known linked
orders.

Since in reality, few real data sets are available with known marker orders, we used
computer simulation to generate the data so that the performance of these algorithms could
be evaluated. Although there are several widely used experimental populations for linkage
mapping, in this study we chose to simulate an F2 cross derived from two different inbred
lines. Probability distributions for distance between adjacent markers are as follows: P (1 <
d (cm)<5) = 0.7, P (5 < d (cm) <10) = 0.15, P (10 < d (cm) <30) = 0.10, and P (30 < d (cm)
<40) = 0.05, with even distribution within each of four ranges. Two missing genotype rates
(0 and 10%) were used across each simulated data set. We also considered both the presence
and the absence of recombination interference. In the case of the presence of recombination
interference, the recombination interference coefficient was selected with equal probability
from the four possible values: 1.0 (no interference), 0.0 (complete positive interference), 0.5
(partial positive interference), and 2.0 (negative interference). The recombination frequency
between any two markers was calculated by the EM algorithm (Liu 1998). Since the
percentage of correct order (PCO) (Liu 1998) for each locus has been widely used to
evaluate the linkage mapping power, the mean PCO values over different loci for different
configurations were used to compare the different mapping methods. All simulations were
repeated 200 times for each of these configurations. The simulations were conducted by a
computer program written by the authors in C++. Though we conducted simulations for
linked loci numbers ranged from 10 to 1,000, we only present some representative results
for three numbers of co-dominant loci (10, 20, and 50), with population sizes of 50, 100,
150, 200, 250, 300, 350, and 400.

Simulation results
The impact of replications on PCO for the insertion method

Since the linkage order obtained by the insertion algorithm may depend on which pair of
loci are used for an initial order, repeating this method is necessary to achieve a desirable
solution if a distance matrix is not monotonic, that is, an increase in map distance does not
necessarily translate into a larger physical distance, which could result in more than one
locally optimal solutions (Liu 1998). Therefore, it is helpful to find how many repetitions
are sufficient to achieve a high PCO. The results over four population sizes (50, 100, 150,
and 200) and two missing genotype proportions (0 and 10%) for two linked loci numbers
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(20 and 50) per chromosome and the two statuses of crossover inferences are presented in
Fig. 1. Although there are n!/2 possible orders with n loci on the same chromosome, as
shown in Fig. 1, the PCO values stabilized after repeating the insertion process more than
five times for various configurations. Therefore, we selected 50 repetitions to provide
conservative estimates for PCO in the insertion method for each simulated data set.

Comparisons of PCO values among four mapping algorithms
The empirical PCO values for eight population sizes, two missing genotype rates, and
absence or presence of crossover inference are summarized in Tables 1, 2, and 3. The results
showed that the IN algorithm was consistently equal to or greater than the other algorithms
in terms of the PCO values for all parameters simulated (Tables 1, 2, 3), suggesting this
method is superior among these four algorithms. The major reason is that the locally optimal
solution can be avoided by repeatedly using the IN procedure. On average, the NM
algorithm was the poorest among the four methods and was the most sensitive to different
parameters simulated in this study. The other two algorithms (SER and UG) performed
almost equally well in our simulation study.

As expected, the mapping power increases as the population size increases or the missing
genotype rates decrease. The presence of crossover interference was associated with reduced
PCO values. In case of no missing data and absence of interference, a desirable mapping
power (≥95%) could be achieved by SER, UG, and IN when population size is 100 or
greater. With a missing genotype rate of 10% and absence of interference, a desirable
mapping power (≥95%) could be achieved for the SER, UG, and IN methods when
populations size is 200 or greater. We also observed that the UG method performed better
than the SER and NM for most cases when population size is small (~50). The results were
in good agreement with a previous report by Tan and Fu (2006).

With the increase of linked loci (100–1,000) (data not shown), the conclusions remained the
same for the small numbers of linked loci. Additional simulations for mis-genotyping rates
(10 and 15%) showed that the IN algorithm was the best among these four algorithms. For
example, the PCO values for the IN algorithm can keep a desirable level (95%) for 500
linked loci when the population size was 100 and above with mis-genotyping rates of 10 and
15%, on the contrast, the PCO values were less than 15% for the other three algorithms. The
results suggested that the IN algorithm was tolerant to high mis-genotyping rates.

A numerical example
To evaluate the performance of these algorithms, we also applied them to a real data set of
26 loci on barley chromosome I from the North American Barley Genome Mapping project
(see Liu 1998, p. 288). The linkage orders obtained by the other three methods include the
combination of SA and BB algorithms (Liu 1998), UG algorithm (Tan and Fu 2006), and the
SER algorithm (Buetow and Chakravarti 1987). Linkage order results for these three
methods plus the IN algorithm with 50 repetitions are summarized in Table 4. The linkage
orders obtained by the SER and IN algorithms were based on the two-point recombination
frequencies. The genetic distances for all four linkage orders were calculated based on
Haldane’s mapping function (Haldane 1919), so the total distances listed in Table 4 for the
two published linkage orders could be slightly different from the published distances (Liu
1998; Tan and Fu 2006). Even though the different mapping functions may result in
different genetic distances, the patterns from different mapping functions should remain the
same. Results showed that the total distances obtained by the UG algorithm and the
combination of SA and BB algorithms were very similar (150.38 cm vs. 150.11 cm,
respectively) (Table 4). The SER algorithm was the poorest in this case, which generated the
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largest genetic distance (225.52 cm). The IN algorithm with 50 repetitions generated the
shortest genetic distance (148.08 cm) and thus it was the best among these four methods.

The IN method can generate different locally optimal solutions each time the search
procedure is repeated. Based on the results of 500 repetitions by using the IN method, 90
different linkage orders were obtained. With few exceptions, the total genetic distances
based on these linkage orders were around 150 cm, which was very close to distances based
on two published linkage orders (Liu 1998; Tan and Fu 2006). In addition, we observed that
there were 19 times with genetic distance 148.08 cm (the shortest distance), 35 times with
the linkage order obtained by Liu (1998), and two times with the linkage order obtained by
Tan and Fu (2006). Though the total genetic distance obtained by the SER method was
much larger than the other three genetic distances, we found that their linkage orders were
similar except marker 13, which was put at the end of the linkage group by the SER method.
Suppose that marker 13 is the last marker to be added to the linkage group by using the SER
method, this marker can be placed between markers 12 and 14 by employing the IN method,
thus, the total linkage distance can be greatly reduced. The above results suggest that the
insertion method provides a great opportunity to detect different locally optimal linkage
orders by repeatedly running this method. Thus, it also provides an opportunity to achieve
the globally optimal linkage order.

Discussion
As mentioned in the “Introduction”, an exhaustive search algorithm is the only feasible for
finding the globally optimal solution when the number of marker loci on a chromosome is
small. The ES algorithm (Mester et al. 2003b) has the potential to find a desirable linkage
order, yet it is computationally intensive and the final solution is dependent on many factors
including the cross operator, the mutation operator, and the population size. On the other
hand, many approximation algorithms like NM, SER, and UG have the advantage of speed
yet they may have a reduced mapping power for some cases because each method is
sequential and only one locally optimal linkage order can be found. If a two-point data set
for linkage mapping is monotonic, all these approximation algorithms should reach the
globally optimal linkage order. However, for the two-point data set, the recombination
frequency matrix is calculated from a genetic data set, which could be influenced by the
factors such as population size, genetic distance between markers, presence of crossover
interference, missing genotype rates, and mis-genotyping rates (Mester et al. 2003a, b).
Thus, a recombination frequency or distance matrix sometimes may not be monotonic,
which could cause many locally optimal solutions for marker ordering, suggesting that the
approximation algorithms are not satisfactory either.

Our simulations showed that the IN method is the best among the four methods evaluated to
recover the true linkage orders. The application to an experimental data set (Liu 1998) also
showed that the IN method could find the linkage order with the shortest linkage distance.
The IN method also has the advantage of speed. Given n loci on a chromosome, a total of
(n2 + n − 4)/2 steps are needed to reach a locally optimal solution for running one time.
Thus, this method is comparable to the SER, near-neighbor, and UG methods regarding
speed. The computational load is much smaller compared to the exhaustive search (n!/2)
even if this process is repeated for a number of times. Given 1,000 loci per chromosome, it
took less than 1 h using a P4 personal computer with a 3.4 GHz CPU and 2.0 GB Ram using
the insertion process with 50 repetitions.

A genetic map is a statistical order because it depends on many factors like population type,
mapping size, and order algorithm. With the rapid development in DNA sequencing
technologies, many DNA markers can be physically positioned on specific chromosomes.
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Thus, mapping powers for different ordering algorithms can be validated by comparing
genetic linkage orders with physical maps in sequenced species. On the other hand, many
other species have not been sequenced yet and the IN algorithm can be employed to
construct a dense linkage map for the large-scale unmapped loci.

The distance between the adjacent markers has been shown to affect the linkage mapping
power. Distances between markers of <5 or >30 cm can reduce mapping power because
these distances often have large genetic sampling variations, especially in the presence of
crossover interference for small sample sizes (≤100). All four methods can achieve similarly
high PCO values with the adjacent distances between markers of 10–20 cm without
crossover interference (additional simulated results not shown). In our simulation study,
70% of adjacent marker distances ranged from 1 to 5 cm and 15% of adjacent distances
ranged from 5 to 10 cm. For these genetic distances, the IN approach can provide
consistently higher mapping power than the other three methods, even for a small population
size of 50 individuals (Tables 1, 2, 3). Missing genotype rates and mis-genotyping rates may
also be associated with mapping power. Our simulation results showed that the IN algorithm
was the best among these four algorithms. It appeared that the IN was robust in obtaining a
high PCO value for various missing genotype rates or mis-genotyping rates whereas the
SER, UG, and NM algorithms were sensitive to mis-genotyping rates.

Four linkage algorithms were included for our simulation studies. We realized several
linkage methods are currently available but were not included in our numerical comparisons.
Though some algorithms have been incorporated into some software packages (i.e.,
MultiQTL, JoinMap, and MSTMap), it is difficult to employ these algorithms for our
repeated simulations because these tools can only run one data set at a time and require
different data formats. Without losing our focus, we chose JoinMap 4.0 and MSTMap to
compare with the insertion method for the two single simulated data sets with known linked
orders (F2 data with 200 linked, sample size 100, and 10% misgenotyping rate, DH data set
with 100 linked loci and 100 lines). The F2 data set was generated by us while the DH data
set with an unknown mis-genotyping rate was downloaded from the website
http://alumni.cs.ucr.edu/~yonghui/mstmap.html). The F2 data set was used to compare the
insertion method and JoinMap because the MSTMap could not analyze the F2 data set. The
result showed that IN was better than JoinMap. While the DH data set was used to compare
JoinMap, MSTMap, and the IN algorithm. The results showed that the MSTMap and the IN
algorithm performed equally well (rank correlation was 0.999 for both) but were better than
the JoinMap. Thus, we concluded that the IN method was one of robust and desirable
linkage algorithms.

Many mapping populations were experimental, each developed from two homozygous
parental lines in an acceptable time frame (Liu 1998). Such populations are generally not
available for forest trees due to time and/or other practical constraints (i.e. Pekkinen et al.
2005). An alternative way is to use several small families (i.e. Hu et al. 2004; Pekkinen et al.
2005) to construct a reliable linkage map. The calculation of joint recombination frequency
may be complicated dependent on data structures. Once the joint recombination frequencies
are obtained, these target loci can be grouped and ordered accordingly.

Acknowledgments
This study was supported in part by the Mississippi Agricultural and Forestry Experiment Station, Mississippi State
University and the Agricultural Experiment Station of South Dakota State University, and by the National Institutes
of Health Grant R01DA025095. The authors would like to appreciate Drs. David Fang and Michael Gonda for their
helpful comments. We also want to express our great appreciations for the editor and three anonymous reviewers
for their critical and helpful comments that greatly improved the quality of this paper.

Wu et al. Page 6

Theor Appl Genet. Author manuscript; available in PMC 2011 September 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://alumni.cs.ucr.edu/~yonghui/mstmap.html


References
Buetow KH, Chakravarti A. Multipoint gene mapping using seriation. I. General methods. Am J Hum

Genet. 1987; 41:180–188. [PubMed: 3475978]
Crane CF, Crane YM. A nearest-neighboring-end algorithm for genetic mapping. Bioinformatics.

2005; 21:1579–1591. [PubMed: 15564296]
de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T. CARTHAGENE: multipopulation integrated

genetic and radiated hybrid mapping. Bioinformatics. 2005; 21:1703–1704. [PubMed: 15598829]
Echt C, Knapp S, Liu B. Genome mapping with non-inbred crosses using GMendel 2.0. Maize Genet

Coop Newsl. 1992; 66:27–29.
Edwards JH. The analysis of X-linkage. Ann Hum Genet. 1971; 34:229–250. [PubMed: 5548433]
Ellis THN. Neighbour mapping as a method for ordering genetic markers. Genet Res. 1997; 69:35–43.
Eppig J, Eicher EM. The mouse linkage map. J Hered. 1983; 74:213–231.
Falk CT. Preliminary ordering of multiple linked loci using pairwise linkage data. Genet Epidemiol.

1992; 9:367–375. [PubMed: 1427024]
Haldane JBS. The combination of linkage values and the calculation of distances between the loci of

linked factors. J Genet. 1919; 8:299–309.
Hu X, Goodwillie C, Ritland KM. Joining genetic linkage maps using a joint likelihood function.

Theor Appl Genet. 2004; 109:996–1004. [PubMed: 15221138]
Jensen J, Jorgensen JH. The barley chromosome 5 linkage map. Hereditas. 1975; 80:5–16.
Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L. MapMaker: an

interactive computer package for constructing genetic linkage maps of experimental and natural
populations. Genomics. 1987; 1:174–181. [PubMed: 3692487]

Lathrop GM, Lalouel JM, Julier C, Ott J. Strategies for multilocus linkage analysis in humans. Proc
Natl Acad Sci. 1984; 81:3443–3446. [PubMed: 6587361]

Lathrop GM, Lalouel JM, Julier C, Ott J. Multilocus linkage analysis in humans: detection of linkage
and estimation of recombination. Am J Hum Genet. 1985; 37:482–498. [PubMed: 3859205]

Liu, B. Statistical Genomics: Linkage, Mapping, and QTL Analysis. CRC Press; New York: 1998.
Lu, Y.; Liu, B. PGRI, a software for plant genome research: plant genome III; January, 1995; San

Diego, CA. 1995. Abstract
Mester DI, Ronin YI, Hu Y, Peng J, Nevo E, Korol AB. Efficient multipoint mapping: making use of

dominant repulsion-phase markers. Theor Appl Genet. 2003a; 107:1102–1112. [PubMed:
12928774]

Mester DI, Ronin YI, Minkov D, Nevo E, Korol AB. Constructing large scale genetic maps using an
evolutionary strategy algorithm. Genetics. 2003b; 165:2269–2282. [PubMed: 14704202]

Olson JM, Boehnke M. Monte Carlo comparison of preliminary methods for ordering multiple genetic
loci. Am J Hum Genet. 1990; 47:470–482. [PubMed: 2393021]

Pekkinen M, Varvio S, Kulju KKM, Kärkkäinen H, Smolander S, Viherä-Aarnio A, Koski V,
Sillanpää MJ. Linkage map of birch, Betula pendula Roth, based on microsatellites and amplified
fragment length polymorphisms. Genome. 2005; 48:619–625. [PubMed: 16094429]

Stam P. Construction of intergrated genetic linkage maps by means of a new computer package:
JoinMap. The Plant J. 1993; 3:739–744.

Stam, P.; Van Ooijen, JW. JoinMapTM Version 2.0: software for the calculation of genetic linkage
maps. CPRO-DLO; Wageningen: 1995.

Suiter KA, Wendel JF, Case J. SLINKAGE-1: a PASCAL computer program for detection and
analysis of genetic linkage. J Hered. 1983; 74:203–204. [PubMed: 6863896]

Tan Y, Fu Y. A novel method for estimating linkage maps. Genetics. 2006; 173:2383–2390. [PubMed:
16783016]

Thompson EA. Information gain in joint linkage analysis. IMA J Math Appl Med Biol. 1984; 1:31–49.
[PubMed: 6600091]

Van Os H, Stam P, Visser RGF, Van Eck HJ. RECORD: a novel method for ordering loci on a genetic
linkage map. Theor App Genet. 2005; 112:30–40.

Wu et al. Page 7

Theor Appl Genet. Author manuscript; available in PMC 2011 September 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Weeks D, Lange K. Preliminary ranking procedures for multilocus ordering. Genomics. 1987; 1:236–
242. [PubMed: 3446584]

Wilson SR. A major simplification in the preliminary ordering of linked loci. Genet Epidemiol. 1988;
5:75–80. [PubMed: 3402726]

Wu J, Jenkins JN, Zhu J, McCarty JC, Watson CE. Monte Carlo simulations on marker grouping and
ordering. Theor Appl Genet. 2003; 107:568–573. [PubMed: 12761620]

Wu Y, Bhat PR, Close TJ, Lonardi S. Efficient and accurate construction of genetic linkage maps from
the minimum spanning tree of a graph. PLoS Genet. 2008; 4:e1000212. [PubMed: 18846212]

Wu et al. Page 8

Theor Appl Genet. Author manuscript; available in PMC 2011 September 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
The impact of replications by the insertion method on percentage of correct order (PCO).
The first number following capital letter M is the number of markers on a chromosome and
the second number is an indication of absence and presence of interference (1 means
absence and 2 means presence). For example, M20_1 means 20 markers on one
chromosome with no interference
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