Skip to main content
. Author manuscript; available in PMC: 2011 Sep 14.
Published in final edited form as: Theor Appl Genet. 2011 May 25;123(4):649–655. doi: 10.1007/s00122-011-1614-8

Table 4.

Marker orders and their genetic distances (cm) obtained from different mapping algorithms for the numerical example

SA and BB
UG
SER
IN (50)
Order Dist Order Dist Order Dist Order Dist
1a 0.00 1 0.00 1 0.00 1 0.00
2 12.65 2 12.65 2 12.65 2 12.65
3 4.80 3 4.80 3 4.80 3 4.80
4 15.52 4 15.52 5 16.47 5 16.47
5 3.94 5 3.94 4 3.94 4 3.94
6 11.55 7 13.03 7 11.61 7 11.61
7 0.76 6 0.76 6 0.76 6 0.76
8 8.68 9 5.05 8 7.67 9 5.05
9 0.77 8 0.77 9 0.77 8 0.77
10 1.52 10 2.11 10 1.52 10 2.11
11 2.93 11 2.93 11 2.93 11 2.93
12 2.25 12 2.25 12 2.25 12 2.25
13 5.22 14 2.27 14 2.27 13 5.22
14 4.51 13 4.51 15 3.10 14 4.51
15 3.10 15 7.89 16 8.42 15 3.10
16 8.42 16 8.42 17 13.29 16 8.42
17 13.29 17 13.29 18 6.99 17 13.29
18 6.99 18 6.99 19 21.89 18 6.99
19 21.89 19 21.89 20 3.54 19 21.89
20 3.54 20 3.54 21 2.21 20 3.54
21 2.21 21 2.21 22 0.00 21 2.21
22 0.00 22 0.00 24 0.73 22 0.00
23 2.17 23 2.17 23 1.48 23 2.17
24 1.48 24 1.48 25 8.34 24 1.48
25 3.70 25 3.70 26 8.21 25 3.70
26 8.21 26 8.21 13 79.68 26 8.21
150.11b 150.38 225.52 148.08
a

Marker codes for 1–26 are described on page 288 (Liu, 1998)

b

The genetic distance obtained by Haldane’s function (Haldane 1919)

SA&BB simulated annealing and branch bound algorithms, UG unidirectional growth, SER seriation, and IN(50) insertion with 50 repetitions