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Gene set analysis of SNP data: benefits, challenges,
and future directions

Brooke L Fridley*,1 and Joanna M Biernacka*,1,2

The last decade of human genetic research witnessed the completion of hundreds of genome-wide association studies (GWASs).

However, the genetic variants discovered through these efforts account for only a small proportion of the heritability of complex

traits. One explanation for the missing heritability is that the common analysis approach, assessing the effect of each single-

nucleotide polymorphism (SNP) individually, is not well suited to the detection of small effects of multiple SNPs. Gene set

analysis (GSA) is one of several approaches that may contribute to the discovery of additional genetic risk factors for complex

traits. Complex phenotypes are thought to be controlled by networks of interacting biochemical and physiological pathways

influenced by the products of sets of genes. By assessing the overall evidence of association of a phenotype with all measured

variation in a set of genes, GSA may identify functionally relevant sets of genes corresponding to relevant biomolecular

pathways, which will enable more focused studies of genetic risk factors. This approach may thus contribute to the discovery of

genetic variants responsible for some of the missing heritability. With the increased use of these approaches for the secondary

analysis of data from GWAS, it is important to understand the different GSA methods and their strengths and weaknesses, and

consider challenges inherent in these types of analyses. This paper provides an overview of GSA, highlighting the key challenges,

potential solutions, and directions for ongoing research.
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INTRODUCTION

Over the last decade, hundreds of genome-wide association studies
(GWASs) for complex human traits were completed1(http://www.
genome.gov/gwastudies/). Yet to date, the genetic variants discovered
by GWAS, based primarily on univariate analyses of individual
single-nucleotide polymorphisms (SNPs), account for only a small
proportion of the heritability of complex traits.2,3 One possible
explanation for the ‘missing heritability’ is that the analysis strategy
commonly used in GWAS, testing for association of the phenotype
with each SNP individually, is not well suited for detecting multiple
variants with small effects.4 Proposed research strategies to uncover
the missing heritability include studying rare variants and structural
variation, as well as epistatic and epigenetic effects.2 Secondary
analyses of GWAS data using novel statistical methods such as gene
set analysis (GSA) have also been proposed as a way to extract
additional information from genome-wide SNP data.5 GSA aims to
assess the overall evidence of association of variation in an entire set of
genes with a phenotype, such as disease status or a quantitative trait.6,7

A gene set (GS) is a pre-defined set of genes based on criteria other
than the data currently being analyzed. For example, genes within a
specific biological pathway defined in the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database (http://www.genome.jp/kegg/
pathway.html) can constitute a GS. Although the terms GSA and
pathway analysis are often used interchangeably, we use the term GSA
to refer to an analysis of a set of genes, which does not model specific
relationships among genes within the GS. We reserve the term

pathway analysis for analyses that incorporate information on the
relationships among genes within the GS, and/or model the relation-
ships among the genes.8,9

GSA has the potential to detect subtle effects of multiple SNPs in
the same GS that might be missed when assessed individually.7

Because numerous genes can be combined into a limited number of
GSs for analysis, the multiple testing burden may be greatly reduced by
GSA. Moreover, the incorporation of biological knowledge in the
statistical analysis may aid researchers in the interpretation of results.6

GSA methods were first introduced in the context of gene expres-
sion (microarray) data analysis10–12 but have since been extended to
other data types, in particular to SNP data from GWAS.13–15 GSA for
GWAS has recently been used to investigate many common diseases
including breast cancer,16 Alzheimer’s disease,17 multiple sclerosis,18

bone mineral density,19 hypertension, type 1 and 2 diabetes, and
coronary artery disease.20 Such studies are leading to novel insights
into the etiology of common diseases and possible relationships
between diseases that were not detected using the individual SNP
analysis approach. For example, PGE2 and calcium signaling GSs were
recently implicated in both hypertension and Crohn’s disease,20

indicating a possible connection between these two complex diseases.
With the accumulation of knowledge of biological processes that

impact complex traits and the genes that influence these processes,
GSA is becoming a common approach for analysis of genetic and
molecular data.6,7 With the increased use of GSA for GWAS, it is
important to carefully consider the benefits and drawbacks of GSA,
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compare the different GSA methods, and address challenges inherent
in these types of analyses. This paper provides an overview of GSA and
describes the key challenges and unresolved issues, potential solutions,
and directions for ongoing research. Although some of the discussed
issues apply to all types of GSA, the primary focus is on issues that
arise in GSA involving SNP data from GWAS.

THE GSA HYPOTHESIS: COMPETITIVE VS SELF-CONTAINED

METHODS

GSA methods can be divided into two types: competitive and self-
contained.11 Many competitive methods are based on first identifying
SNPs (or genes) that are significantly associated with a trait, and then
evaluating whether the significantly associated SNPs tend to cluster in
predefined GSs. These methods are competitive because they compare
the frequency of significantly associated SNPs in a particular set of
genes with the frequency of significant associations among all genes
not in the set. The null hypothesis for competitive methods is Ho:
SNPs/genes in the GS of interest are associated with the phenotype as
much as SNPs/genes outside the GS. The commonly used GS enrich-
ment analysis (GSEA), originally proposed by Subramanian et al10 and
later extended to GWAS by Wang et al,14 is a competitive method that
assesses the enrichment of significant associations for genes in the
GS (as compared with those outside the GS) using a weighted

Kolmogorov–Smirnov running-sum statistic. Another commonly
used approach for competitive GSA uses the Fisher’s exact test to
compare the proportion of associations exceeding some pre-specified
significance threshold within the GS, to the proportion of such signals
outside the GS13,21,22 (see Figure 1 for examples of competitive testing
using Fisher’s exact test). One important limitation of Fisher’s exact
test, and similar methods, is the dichotomization of SNP association
results into significant and nonsignificant based on a pre-defined
significance level, which ignores information regarding the strength of
the association.

In contrast to competitive methods, self-contained methods only
consider results within a GS of interest to test the null hypothesis Ho:
SNPs/genes in the GS of interest are not associated with the phenotype
vs the alternative hypothesis Ha: SNPs/genes in the GS are associated
with the phenotype. Figure 2 shows a simple example of a self-
contained GSA based on the Fisher’s exact test. For comparison with
the example of competitive GSA shown in Figure 1 example A, the
same data for the GS of interest are used. In this study, however, the
self-contained null hypothesis is tested by assessing the deviation from
the expected number of significant SNPs under the hypothesis of no
association of the phenotype with the GS. Dichotomization of results
into ‘significant’ or ‘not significant’ based on a P-value threshold is
not necessary when testing the self-contained GSA hypothesis.

Figure 1 Examples of competitive testing using Fisher’s exact test.

Figure 2 Example of a self-contained GSA based on the Fisher’s exact test.
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Self-contained GSA can also be based on computing association
P-values for each SNP in a GS, followed by testing whether the
observed distribution of the SNP-specific P-values deviates from the
expected distribution under the null hypothesis of no association.
Finally, joint modeling of the effects of SNPs in a GS can also be used
for a self-contained GSA.

It is important to recognize that competitive and self-contained
methods test different hypotheses, and key differences between these
two approaches stem from the difference in the null hypothesis.
Although sample-level permutation is appropriate for the estimation
of empirical P-values when testing the null hypothesis of self-con-
tained methods, for the null hypothesis tested by competitive methods
procedures based on permutation of genes between GSs are needed to
determine the null distribution.23 One limitation of competitive GSA
methods is that they cannot be applied to studies of candidate GSs for
which only SNPs in the candidate GS have been genotyped.
Self-contained methods, on the other hand, can be used for gen-
ome-wide studies as well as candidate GS studies.

Because of these fundamental differences between competitive and
self-contained methods, the appropriate approach should be selected
based on a thoughtful consideration of the null and alternative
hypotheses the researcher is interested in testing, and constraints
imposed by the available data (eg, genotypes limited to a candidate
pathway, or genome-wide data with unaccounted for genome-wide
inflation of association statistics).

GS DEFINITION

GSs are collections of genes with related function or characteristics.
For example, GSs can be identified from manually drawn pathway
maps representing molecular interaction and reaction networks.24 GSs
can be identified based on other criteria, such as a pre-specified region
of the genome or similarity of function (eg, genes involved in DNA
repair). A growing number of publically available resources provide
descriptions of pathways, along with lists of genes that contribute to
the processes making up these pathways. Pathguide (http://www.
pathguide.org)25 lists over 300 databases of information related to
pathways, demonstrating the challenge of selecting a pathway resource.
Several of these pathway resources, including the KEGG (http://
www.genome.jp/kegg/),24 the Gene Ontology project (http://www.
geneontology.org/),26 MetaCore (http://www.genego.com/metacore.
php), and BioCarta (http://www.biocarta.com/genes/index.asp), are
commonly used. Specialized pathway resources, such as the Pharma-
cogenetics and Pharmacogenomics Knowledge Base for pharmacoge-
nomic pathways (http://www.pharmgkb.org/), are also available.
Additional information on pathway resources and GS definition can
be found in Bader et al,25 Bard and Rhee,27 and Viswanathan et al.28

When defining GSs for analysis, it is important to clearly state the
scope of a GS, realizing that knowledge about the genome and
definitions of GSs are evolving and that no single definition of a GS
exists.27 Care should be taken in selecting a reliable ontology resource,
as some resources are based on more rigorous curating of GSs (eg,
KEGG), whereas others provide more complete listings of biological
pathways (eg, MetaCore). Finally, it is important to recognize that
current coverage of genes (and thus GSs) is not uniform, as the
coverage of genes by SNPs on GWAS arrays is not uniform. This
problem will diminish with the development of denser genome-wide
SNP arrays, or with use of genotype imputation methods.29 However,
at this point, interpretation of GS results should take into account
coverage limitations for GSs of interest.

Once a set of genes is defined, questions remain regarding which
SNPs should be included in the analysis of the GS. A commonly used

approach is to include any SNP known to map to any gene or within a
given distance of any gene, in the GS. Although it is not obvious how
far up and downstream of each gene should be included in the
mapping of SNPs to genes, ideally, the regulatory region(s) of each
gene should be included and perhaps even regions in LD with any
portion of the gene. Smith et al30 reported that the degree of
disequilibrium for markers separated by B30 kb in a Caucasian
population was similar to the degree of disequilibrium between
markers separated by B10 kb in an African population, with the
average level of LD decaying to less than r2¼0.10 after 50 kb. On the
basis of these considerations, SNPs within 20–50 kb from the first and
last exon should be included as part of a gene for GSA to cover the
regulatory regions of the gene, as well as SNPs in LD with the gene.

Currently GSs usually consist of SNPs in, or near, genes thought to
contribute to a particular biological process. However, the definition
of a GS could be extended to use other knowledge related to gene
function. For example, mRNA expression data has been used by
Zhong et al31 to define GSs that include eSNPs, that is, SNPs that
have been shown to regulate the expression of a particular gene in
either a cis- or trans-acting manner. Recent advances in molecular
genetics provide novel insight into the relationships between genetic
variation and variation in mRNA expression leading to the identifica-
tion of eQTLs at an unprecedented level.32 eSNPs can be defined based
on study specific expression data or information from publically
available databases (see eg, http://scan.bsd.uchicago.edu/newinter-
face/about.html33 and http://eqtl.uchicago.edu/Home.html,32,34).

ANALYTICAL APPROACHES

A variety of GSA approaches have been proposed for genome-wide
expression studies, and subsequently modified for genome-wide SNP
studies (see Table 1). In the following sections we discuss various
aspects of GSA, noting the limitations and relative merits of different
types of approaches. The features of GSA that we focus on include the
strategy for taking into account gene-level association; statistical
method (methods based on combining measures of association of
the phenotype with each SNP/gene and methods based on joint
modeling of the genotypic data); impact of LD and gene size; and
effect of population stratification.

The strategy for taking into account gene-level association: one-step
vs two-step methods
In terms of whether or not gene-level evidence of association is considered
when aggregating the evidence for association in a GS, two approaches can
be considered: (1) a ‘two-step’ approach in which SNPs in each gene are
first used to evaluate association with the gene, followed by aggregation of
the gene-level tests to test for association of the phenotype with the GS;
and (2) a ‘one-step’ approach in which all SNPs in a GS are used in the
analysis without consideration of gene-level effects.

For the two-step GSA many different methods can be used to assess
the association of the phenotype with the gene before determining the
association of the GS with the phenotype. Options include using the
minimum SNP-specific P-value for a gene, using a summary measure
of all individual SNP P-values within the gene, or simultaneously
modeling the effects of all SNPs in the gene on the phenotype. Many
GSA methods applied to GWAS data have used a two-step approach
taking the minimum P-value observed for the SNPs in a gene (or
maximum test statistic) as the gene-level evidence of association.
However, this approach must account for the fact that a larger gene
with more SNPs is likely to have a smaller minimum P-value as
compared with a smaller gene with fewer SNPs. In addition, when
each of several SNPs in a gene has a modest effect on the phenotype,
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using the minimum P-value may not be the most powerful approach.
Numerous studies have assessed the performance of various multi-
marker methods for testing the association of a gene with a complex
trait,35–37 which may provide guidance for the completion of a two-step
GSA. Principal component analysis has been shown to be a powerful
approach for conducting gene-level association testing,36,37 and thus is a
reasonable choice for gene-level association testing for GSA.

Both the one-step and two-step approaches have advantages and
disadvantages. For a given study, the most powerful GSA method
depends on the underlying disease-causing mechanism which is
unknown. Nevertheless, an understanding of which method is most
powerful for detection of particular types of disease-causing models
can be used to guide choice of analysis method and interpretation of
results. Yu et al38 presented a GSA method that relies on an adaptive
rank truncated product method and compared results between a two-
step and a one-step GSA. In their comparison, they found neither the
two-step nor the one-step analysis dominated in terms of power.
Studies are underway to determine which approach is more powerful
under a variety of genetic models, with some results indicating that in
general the two-step approach may be more powerful than the
one-step approach when the self-contained GS hypothesis is assessed.

Although both one- and two-step methods may be considered for
GSA, based on the biological relevance of genes and the need to
account for LD between SNPs within the same gene, two-step
approaches which first assess association of each gene with the
phenotype, followed by testing association between the phenotype
and the GS, may be preferred. The use of two-step approaches aids in
the interpretation of GSA results, as key genes associated with the
phenotype can be identified.

Statistical method: P-value or test statistic combination vs joint
modeling
GSA methods can also be classified based on how evidence of
association is aggregated across SNPs in a GS: P-values or test statistics

of individual SNPs (or genes) can be combined to form a test statistic,
or effects of all the SNPs can be modeled jointly. With the first of these
approaches, GSA is performed by testing for association of each SNP
with the phenotype, followed by combining the evidence of associa-
tion (eg, P-values) across the GS. Among such methods, Fisher’s
method, as well as extensions and modifications of Fisher’s method,
have been proposed for gene-level tests of associations and for
GSA.39–42 When the number of markers is large, variations of Fisher’s
method that use only markers with P-values less than a pre-specified
significance level,41 or the top K markers (based on P-value), referred
to as the ‘rank truncated product method’,43 are more powerful than
Fisher’s method based on all P-values.

Rather than combining measures of association of individual SNPs/
genes, GSA can also be based on modeling the joint effects of SNPs in
a GS. Although joint modeling of SNP effects across genes has
practical limitations, it is certainly feasible within a gene, as part of
a two-step GSA. The effects of all SNPs within the gene may be jointly
modeled using multiple linear or logistic regression. However, this
approach may lack power, and the model may become non-estimable
if the number of SNPs exceeds the number of subjects. Shrinkage and
variable selection methods, both frequentist and Bayesian, have been
proposed to model the association of a phenotype with multiple SNPs
in a gene. These methods are more adept to handling the high-
dimensional aspect of genomic data and the multicollinearity caused
by LD among SNPs.44–47

Data reduction based analytical methods, such as principal com-
ponents and kernels, can also be used for either a one-step or two-step
GSA. Research assessing methods for multiple SNP analysis has
indicated that principal components and a global model with random
effects tend to have the highest power across a variety of scenarios
involving a modest number of markers (10–40 markers).36,37 Some
benefits of the principal component approach include reduction of the
model degrees of freedom and easy implementation in most statistical
software packages for a variety of phenotypes without the requirement

Table 1 Publications focused on new GSA methods or software for SNP data

First author

One or two

step Hypothesis GSA method and description

Methods

Wang14 Two step C GSEA: gene-level association represented by SNP with minimum P-value, followed by Kolmogorov–Smirnov test for GS.

De la Cruz35 Both SC Modification of Fisher’s method for combing SNP P-values for gene-level or GS-level association.

Chen15 Two step SC GRASS: lasso analysis of EigenSNP for gene-level association, followed by ridge regression for GS association.

Yu38 Two step SC Adaptive rank truncated product method.

Chai42 One step SC GLOSSI (Fisher’s method).

Luo57 Both SC Modification of Fisher’s method.

Chen58 Two step SC PRP: gene association test based on max risk statistic; followed by mean risk for GS.

Holmans13 Two step C ALIGATOR: Fisher’s exact testing using SNP with minimum P-value for the gene-level association. Analysis uses only

most significant genes.

Chen59 One step SC Supervised principal components analysis.

O’Dushlaine21 One step SC SNP ratio test: ratio of significant SNPs in pathway.

Software

Medina22 Two step C GeSBAP: gene represented by the SNP with minimum P-value, with Fisher’s exact test for GS association.

Nam60 Two step Both GSA–SNP: gene-level test based on SNP with minimum P-value (or second best), followed by GS test using either

a Z-test statistic, maxmean test statistic, or GSEA.

Holden61 One step SC GSEA–SNP: modification of Wang et al14 GSEA using max-test and all SNPs in a gene.

Zhang62 Two step C i-GSEA4GWAS: modification of i-GSEA for SNP data, using a similar approach as the GSEA implemented in

GenGen by Wang et al.14

Abbreviations: C, competitive; GS, gene set; GSA, GS analysis; GSEA, GS enrichment analysis; SC, self-contained; SNP, single-nucleotide polymorphism.
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for determining haplotype phase. However, it has been shown that
when there is a large number of markers (4100), the truncated
Fisher’s method (with empirical P-values) out-performs principal
components35 for multi-marker association analysis. In contrast to
principal component analysis, which uses a linear reduction method,
kernel methods for gene-level analysis48,49 have a benefit in that they
can apply either linear or nonlinear dimension reduction.

Some of the methods previously proposed for conducting
gene-level association tests as part of a two-step GSA can also be
used in a one-step GSA procedure. In particular, the approaches
that can be applied when the number of variables (ie, SNPs) is
large compared with the sample size, such as shrinkage and
dimension reduction methods, can also be used to jointly model the
association with all SNPs in a GS (one-step approach). Evaluation of
alternative statistical methods for SNP-based GSA is a topic of
ongoing research.

Impact of LD and size of GS: assessment of GS association
significance by permutation
Owing to LD between SNPs within the same GS, independence
between markers cannot be assumed in the assessment of significance
of the GS. Instead, for statistical approaches that assume independence
of markers for computation of distribution (asymptotic) based GS
P-values, permutation or Monte Carlo methods50 should be used to
determine an empirical P-value for GS association. Permutation
methods can also correct for size of the GS and potential bias
introduced by GSA methods based on, for example, the minimum
P-value or maximum test statistic for SNPs in a gene. This bias arises
because of the fact that genes with more SNPs are likely to have
smaller minimum P-values as compared with genes with fewer SNPs;
ignoring this ‘size’ bias can lead to inflated type 1 error rates in testing
for GS association.14,51

To select an appropriate permutation procedure, the null and
alternative hypotheses of interest and the GSA method being applied
must be carefully considered. Permutations appropriate for various
self-contained GSA methods have been described, for example by
Fridley et al,52 whereas Efron and Tibshirani23 addressed the issue of
permutation for competitive GSA. Although these permutation
procedures were described in the context of GSA for gene expression
data, similar procedures are applicable to SNP data.

One important benefit of modeling approaches for GSA is that
often these methods do not require independence between SNPs
within the GS removing the burden of permutations. In contrast,
methods based on combining P-values or test statistics often assume
independence of P-values and thus permutation methods are required
to obtain valid genes set P-values and correct type I error rates. Two-
step approaches can consist of jointly modeling the SNP effects within
a gene followed by combining gene-level P-values to test for associa-
tion with the GS. Although much less correlation is expected between
the gene-level P-values, a non-negligible level of correlation between
genes in a GS may exist. Thus permutation methods are still
recommended for these types of analyses, in particular to verify any
significant results.

Population stratification: impact on analysis of individual SNPs vs
impact on GSA
The potential effects of population stratification on GWAS have been
discussed extensively.53 However, it is worth noting that population
stratification, and similar sources of confounding, can have a much
more profound impact on the results of GSA, as a small inflation of
many SNP association statistics may result in significant GS associa-

tions. GSA methods are designed to detect the cumulative effect of
many SNPs with weak association with the phenotype. Thus, if
association test statistics for many SNPs in the GS are slightly inflated,
for example, because of population stratification, a significant GS
association test may result. This can lead to highly inflated, false-
positive rates for GSA, particularly for large GSs, when self-contained
approaches based on P-value combination methods are applied.

In comparison with self-contained methods, competitive GSA
methods are expected to be more robust to the effects of population
stratification and similar sources of confounding, such as differential
genotyping errors between cases and controls.54 This is because if the
effects of population stratification have the same impact on every GS,
the effects would essentially cancel out. However, this argument
assumes that the effect of population stratification is the same across
GSs. This may not be the case. For example, GSs that represent
essential cellular processes may be highly conserved between
populations, and show little differences in terms of allele frequencies.
Meanwhile, GSs corresponding to pathways involved in response
to environmental stimuli may show more differentiation between
populations, and may thus have greater population structure. Thus,
both self-contained and competitive GSA should carefully account for
effects of population stratification.

POWER OF GSA

One motivation for GSA is the potential increase in power to detect
genetic associations of the phenotype with a GS, as compared with the
power to detect association with individual SNPs. Factors that affect
power for detecting association with a given SNP include: allele
frequency, sample size, prevalence of the disease, significance level
(accounting for multiple testing), and effect size. It is believed that
many rare SNPs, or SNPs with small effects, contribute to complex
traits; yet their effects are not detectable with the commonly applied
approach of testing each SNP individually followed by correction for
multiple comparisons. The power of GSA depends on factors such as
the number and size of effects within a GS, the minor allele
frequencies for the causal SNPs, the size of the GS, and the number
of GSs tested.

It is hoped that GSA will provide greater power to detect genetic
effects than analysis of all SNPs individually. As the number of GSs is
substantially smaller than the number of SNP markers on GWAS
arrays, fewer hypotheses will be tested in GSA, requiring less stringent
multiple testing correction. Moreover, by aggregating many SNPs with
weak associations, evidence of association at the GS level may emerge,
even when the analysis of individual SNPs failed to discover any
significantly associated genetic variants. For example, a GSA of
hypertension discovered numerous statistically significant GSs, such
as the dopamine signaling pathway, while the original single SNP
analysis, completed by the Wellcome Trust Case Control Consortium,
lacked significant findings.20

DISCUSSION

GSA is becoming a commonly applied approach for secondary
analysis of GWAS data. Key benefits of GSA include the reduction
in multiple testing and the incorporation of previous biological
knowledge into the analysis. The accumulation of small effects of
many genetic variants into a single analysis of the GS is expected to be
more powerful than tests that individually assess the association of the
phenotype with each genetic variant. We have summarized the key
aspects of GSA that researchers need to consider when performing
GSA for a complex trait. The first, and possibly most important, is the
selection of an analysis method that matches the scientific hypothesis
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of interest (ie, competitive or self-contained) and the interpretation of
findings in the context of this hypothesis. Following the selection of
the null hypothesis of interest, the next steps of a GSA involve the
definition of GSs and mapping of SNPs to genes within these GSs; and
the selection of a powerful analytical approach for conducting the GSA
that accounts for LD and gene size, and incorporates the necessary
adjustment for population stratification. If a GS is shown to be associated
with a phenotype, further investigation should assess the relationships
between the SNPs and genes within the GS to reveal the biological
relationships that regulate the pathways linking genotypes to phenotypes.

Although GSA has numerous benefits, this type of analysis also has
limitations that might hinder the success of some studies. Gaps in
knowledge may prevent definition of appropriate GSs, and combining
a few genes with functional impact on the phenotype with many
non-associated genes can lead to loss of power. The fact that GSA
assumes that SNPs can be assigned to relevant genes is an important
limitation, particularly in light of the fact that many disease-associated
SNPs identified to date do not lie in genes. Extending the GS definition
to include eQTLs (SNPs that regulate expression of relevant genes) may
reduce the impact of this problem. GSA methods that can incorporate
multiple data types, including mRNA expression data, epigenetic data,
and environmental data, also need to be developed. Xiong and colleagues
recently introduced software for combining mRNA gene expression data
and SNP data into a GSEA (http://gsaa.genome.duke.edu/).

Although GSA attempts to investigate the overall evidence of
association with variation in a set of related genes, most GSA methods,
in particular those based on combination of individual SNP P-values,
still fail to account for joint effects that are not because of simple
additive (or log additive) effects of individual SNPs. Methods based on
joint modeling of SNP effects could be extended to include assessment
of gene–gene interactions. Investigation of gene–gene interactions in
the context of a GS, as opposed to genome wide, would greatly reduce
the number of possible two-way interactions and may aid in the
interpretation of the results. Herold et al55 and Zamar et al56 recently
proposed the use of biological information to guide gene–gene
interaction analysis, and implemented their approaches in the software
INTERSNP (http://intersnp.meb.uni-bonn.de/) and PATH (http://
genapha.icapture.ubc.ca/PathTutorial/), respectively. The proposed
methods include assessing interactions between all pairs of non-
synonymous SNPs or analyzing all combinations of three SNPs that
lie in a common pathway. Further research and development of
methods to assess interactions within GSs is warranted.

GSA could also be extended to include rare variants. Two-step
approaches that assess the evidence of association at the gene level
before evaluating association with the GS are particularly conducive to
the inclusion of rare variants, as most rare variant analyses focus on
gene level tests by collapsing the effects of all rare SNPs in a gene into a
single test of association. Finally, establishment of standards for
replication of findings from GSA, and measures of the GS ‘effect
size’ (eg, population attributable risk) would aid researchers in the
interpretation of GSA findings.

GSA is a compelling approach for analysis of complex genetic data.
Although these methods are not designed to identify specific genes or
genetic variations that are associated with the trait of interest, results
from a GSA can be used to plan further, in-depth, investigation
focused on specific GSs of interest with novel technologies that may
uncover additional genetic causes of complex traits. Similar to all
other genetic analysis approaches, GSA alone will not resolve all
remaining questions regarding genetic etiology of complex traits, or
find all of the ‘missing heritability’ of these traits. Rather, it should
serve as one of many complementary tools that will contribute to

knowledge of the genetic basis for the development of complex
phenotypes. The hope is that by following up GSA results, scientists
will gain insight into the complex relationship between genomic
variation and the clinical phenotype.
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