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Abstract

iTRAQ (isobaric Tags for Relative and Absolute Quantitation) is a technique that allows
simultaneous quantitation of proteins in multiple samples. In this paper, we describe a Bayesian
hierarchical model-based method to infer the relative protein expression levels and hence to
identify differentially expressed proteins from iTRAQ data. Our model assumes that the measured
peptide intensities are affected by both protein expression levels and peptide specific effects. The
values of these two effects across experiments are modeled as random effects. The nonrandom
missingness of peptide data is modeled with a logistic regression which relates the missingness
probability for a peptide with the expression level of the protein that produces this peptide. We
propose a Markov chain Monte Carlo method for the inference of model parameters, including the
relative expression levels across samples. Our simulation results suggest that the estimates of
relative protein expression levels based on the MCMC samples have smaller bias than those
estimated from ANOVA models or fold changes. We apply our method to an iTRAQ dataset
studying the roles of Caveolae for postnatal cardiovascular function.

Keywords

Bayesian hierarchical model; iTRAQ); Mixed-effects model; Nonignorable missing; Protein
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1 Introduction

One main objective of proteomic research is to detect and quantify all proteins present in a
biological sample. iTRAQ, a shotgun technique using Isobaric Tags for Relative and
Absolute Quantitation, has become commonly used because of its improved quantitative
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reproducibility and higher quantification sensitivity [16] compared to other methods such as
2DE [9], ICAT [3], and DIGE [4, 10]. Using four or eight isobaric tags, iTRAQ can
simultaneously analyze up to eight biological samples [2, 12]. Peptides digested from
different samples of protein mixtures are labeled with different tags independently, mixed
together, separated, and studied by MS (mass spectrometry) and MS/MS (tandem mass
spectrometry). The resulting collection of mass spectra provides information on peptide
identification and quantification, which can be utilized to identify and quantify relative
protein expression levels.

We use the data from an iTRAQ experiment with four isobaric tags (114, 115, 116, and 117)
as an example to illustrate the iTRAQ data format in Table 1. Each row represents a specific
peptide identified from a software, such as MASCOT [11], which searches a protein
sequence database to identify the peptide corresponding to a specific peak in the mass
spectrum. The peptides thus identified are given in the second column. The peak areas for
different samples labeled with different tags are shown in the last four columns, and their
values can be used to calculate the relative abundance of a given peptide across samples.
Each peptide may arise from different spectra and hence have multiple observations in an
experiment. For example, the first three rows in Table 1 correspond to the same peptide
across all the spectra. Missing peptides is a common phenomenon in iTRAQ data. That is, a
peptide may be only observed in some of the samples, or some spectra, or some
experiments. For example, the seventh row in Table 1 shows that peptide
“DVDEIEAWISEK” is only observed in the samples labeled with 114 and 117. The fifth
row indicates that in one spectrum, the intensities of the peptide “DLASVQALLR” are
missing in all the samples. When multiple experiments are conducted, a peptide may be
found to be missing in one experiment but observed in some other experiments (not shown
in Table 1).

As seen above, the basic unit of iTRAQ data is the peptide. Each peptide has an associated
intensity level. Several factors can affect the observed peptide intensities, i.e., the area
columns in Table 1. The most obvious factor is the level of the protein in the sample that
generates the peptide. Peptide specific features, such as ionization and fragmentation
efficiency, affect the intensity levels for different peptides derived from the same protein.
This is easily seen in Table 1, where all peptides are derived from the same protein. In
addition, other factors such as sample preparation and experimental variation also contribute
to the variabilities in the observed iTRAQ data. Hill et al. [5] illustrate in detail the possible
sources of variations in iTRAQ data.

Another commonly encountered issue in iTRAQ data analysis is data missingness. Due to
the nature of the technology, overlap in protein and peptide identifications between replicate
experiments is less than ideal, and certain peptides are only observed for some samples in
some spectra, leading to a large amount of missing data. Table 2 gives the number of
proteins and peptides that are identified in only one, only two, or all three experiments when
iTRAQ is performed three times on the same biological sample. It can be seen that only
about 1/3 of the proteins we identified in all three experiments, whereas only about 1/4 of
the peptides produced by these proteins we observed in all experiments. Liu et al. [6] and
Wang et al. [15] suggested that the probability that a protein is missing is not random, but
rather related to its abundance. Less abundant peptides are harder to detect due to the data-
dependent acquisition of the analysis process, hence more likely to be missing. This is a
nonignorable missing data problem. Ignoring the nonrandom missing pattern in statistical
analysis may introduce significant bias in statistical inference and scientific conclusions.

To identify differentially expressed proteins, one common approach is to calculate the ratio
of the observed peptide intensities (the area columns in Table 1) between two samples and to
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compare the calculated ratios against prespecified upper and lower bounds. However, the
criterion for threshold selection is subjective. For example, Seshi [14] considered iTRAQ
ratios >5/4 or <4/5 as significant, whereas Salim et al. [13] used thresholds 1.20 and 0.83.
These thresholds fail to consider the variability in data and are not statistically based. Oberg
et al. [8] and Hill et al. [5] applied ANOVA models to incorporate the variability sources in
inferring differentially expressed proteins. But they do not consider the nonrandom
missingness, potentially biasing their results. In this paper, we introduce a novel approach to
inferring the relative protein expression levels and hence to identify differentially expressed
proteins. We model the measured peptide intensities as the results of both protein expression
levels and peptide specific effects. For iTRAQ data from multiple experiments, we utilize a
Bayesian hierarchical model in the sense that the model has an observation component that
models the observed peptide intensities as random effects whose conditional distribution
depends on the expected protein expression levels and peptide effects, and a second
(hierarchical) component that defines the distributions of these expected values. If a sample
is labeled with multiple tags in a single experiment, the variations across different tags are
modeled as random effects. In this paper, we also describe a model for iTRAQ data from a
single experiment. As for the nonrandom missingness, we use a logistic regression to model
the missingness probability as a function of the protein expression level. Based on this
model set-up, we infer differentially expressed proteins through posterior inferences.

The paper is organized as follows. Section 2 develops the hierarchical model and details the
inferential procedure. Section 3 reports a simulation study comparing our method with
ANOVA methods and ratio estimates, and studies the robustness of our method. Section 4
reports the analysis of a mouse caveolin-1 experiment, and discussion follows in Sect. 5. We
describe the detailed MCMC scheme in Appendix A, and a model for iTRAQ data from a
single experiment in Appendix B.

We first describe the model for iTRAQ data from multiple experiments and estimate the
relative expressions of proteins that are present in all experiments. We assume that the
labeling effects have been removed by normalization methods such as quantile
normalization [1]. Throughout the paper, we consider log-transformed peptide intensities
and protein expressions. We assume that there are S (=2) biological samples studied in K
(=2) experiments. Multiple isobaric tags may label the same sample in one experiment. We
use Lg > 1 to denote the number of tags labeling the sth sample. Then } s L = M is the
number of isobaric tags used in one experiment, which is 4 when we use 4-plex isobaric
reagents and M = 8 in the 8-plex version. Assume that there are | proteins in the sample and
there are Jj peptides for the ith protein. For the Ith label of the sth sample in the kth
experiment, let yyjjsin denote the observed intensity for the jth peptide of the ith protein from
the nth spectrum. Note that j should be more appropriately denoted as j(i) to explicitly
indicate that peptides are nested within proteins, and | should be denoted as I(s) to indicate
the Ith labeled tag of the sth sample. For notational simplification, we omit the parentheses.
The measured intensity of a peptide depends on the protein expression level and the peptide
effect. Let xjs) denote the expression level of the ith protein of the sth sample with the Ith
labeling tag in the kth experiment. Let z; denote the peptide effect for the jth peptide of the
ith protein in the kth experiment. We consider an additive model for yyijsin (k= 1, ..., K; i =
1, ..., |;j =1, ..., Ji; s=1,...,S1=1, ..., Ls; n=1, ..., Nkijsl):

Vkijsin=Xkisi+ZkijtEkijsin» 1)
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which corresponds to a multiplicative model in the original scale. In (1), we assume
&uiisin ~ N(0, o7) independently, where N/(0, o2) denotes a Normal distribution with mean 0
and variance ¢2.

In addition to the additive model in (1), we also consider the multiplicative model yyjjsin =
Xkisl X Zkij * &xijsin ON @ small dataset with one protein and 11 peptides observed in three
caveolin-1 experiments. The inferences from both models are quite close in terms of the
magnitudes of the residual standard deviation (0.58 for the additive model vs. 0.60 for the
multiplicative model) and the ratio of sum of squares of predicted values and sum of squares
of original data R2 (0.73 for the additive model vs. 0.69 for the multiplicative model). The
residuals vs. fitted values plots are also similar (not shown). This is also true when we apply
both models to the data in the original scale. Since the multiplicative model in the logarithm
scale and the additive model in the original scale do not greatly improve the inference (or
even do worse), we use model (1) which is also easy to interpret.

Missing Data Mechanism

Priors

Peptide missingness presents a challenge even when we focus on proteins that are detected
in all experiments. It is known that the probability of peptide missingness depends on the
intensity of the peptide: lower intensity peptides are harder to detect. So there is a
nonignorable missing data problem. To motivate a statistical model for missing peptide
probability, we study the proportion of peptides observed in one experiment but missing in
another experiment. As shown in Fig. 1, there is a negative correlation between missingness
probability and peptide intensity. Furthermore, there is an approximate linear relationship
between the peptide missingness probability and the observed intensity at the logit scale.
Therefore, we model the missingness probability through a simple logistic regression,

lOgit (P (Il\ijs[n =0| Ykijsins Ay b)) =a+b X Ykijsins 2)

where lyjjsin = 0 indicates that the jth peptide of the ith protein is missed in the kth
experiment, the Ith replicate of the sth sample and the nth spectrum. Formula (2) implies that
the logit of the probability of peptide missingness is linearly dependent on its intensity. We
expect b < 0, because peptides with lower intensities are more likely to be missing.

Noting the hierarchical structure of the iTRAQ data and taking into account the variability
across experiments and samples, we utilize a Bayesian hierarchical framework to model the
data. We assume that Xyjs| and zj are independently normally distributed across different
experiments, i.e.,

Xist ~ N (xisz, 0'_%), ?)

Zkij ~ N (Z'.lj, 0';2) s (4)

where Xjg) and zj; denote the protein and peptide effects averaged over multiple experiments,
respectively. The protein expression levels in different replicates (labeled with different
tags) of the same sample are also assumed to be normally distributed:
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Xisi ~ N (x,-,\-, 0':';) s (5)

where X denotes the expression level of the ith protein in the sth sample. Assumptions (3)—
(5) lead to an equivalent form of (1):

t Ry V4
YVkijsin :~\'i,t+zij+eixl+el\,-xl+ek’-’-+8k{/'xln s (6)

where €} ~ N(0,03) and ey ~ N, 72) denote the random effects across experiments, and

él, ~ N(0, 03) denotes the variation among multiple replicates of the same sample. Formula
(6) is a mixed-effects model. To ensure the identifiability of the model, we restrict xj; = 0.
Then x;s denotes the expression level of the ith protein in the sth sample relative to the first
sample.

The second level of priors are normal distributions for x;s and z;;:

Xis~N (O, T%) for s>1, -

zj~N (0, T?) . (8)

When we further assume hyperpriors for the hyperparameters, we finish the hierarchical
model (Fig. 2) and can infer the posterior distributions of relevant parameters, Xs, by
MCMC simulations. Appendix A describes other hyperpriors and the MCMC updates in
detail. Hence we can summarize the simulated posterior distributions with statistics such as
posterior means, standard deviations and quantiles, and identify differentially expressed
proteins.

When a sample is labeled with a unique isobaric tag in an experiment, there is no replicate
variation component within a sample. We note that it is easy to modify the model and the
MCMC updates for statistical inference in this scenario. We will not discuss it further in this

paper.

Single Experiment

When the iTRAQ data is from one experiment, we can similarly model the observed peptide
intensities as the result of both protein expression levels and peptide effects, and model the
nonrandom missingness through a logistic regression. We can further apply normal
distributions as priors for protein expressions and peptide effects. The difference from the
case of multiple experiments is that the experimental variability cannot be modeled.
Appendix B describes this model and MCMC updates in more details.

Comparison to ANOVA Model

The most important difference between our Bayesian model and the ANOVA model
proposed by Hill et al. [5] and Oberg et al. [8] is that we clearly model the nonignorable
missingness in iTRAQ data. Oberg et al. [8] remarked at the end of their paper that using a
censoring mechanism to fit the model would be a natural next step. Instead of censoring the
data at an unknown threshold value, we model a higher probability of peptide missingness
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for lower peptide intensities. Our Bayesian model also differs from the ANOVA model in
the sources of variations included in the model. In addition to the terms in our model, the
ANOVA analysis also considers the labeling effect, the interaction between labeling and
experimental effect, and variable peptide effects under different conditions (we talk about
this in Discussion). The experimental effect and the replicative effect (when multiple tags
label a sample) are considered constants for all proteins in the ANOVA model. In contrast,
we model them as random effects that are specific to peptides and (or) proteins.

3 Simulation Study

We simulate data from a 4-plex version of iTRAQ on one protein containing ten peptides
across three replicate experiments. Each sample is labeled with a distinct isobaric tag. In this
case, there is no need to model the replicate effects specified by prior (5). We assume x = (0,
—0.04, —0.48, —0.66) to be the true relative protein expression levels in log scale compared
to the first sample. Under different parameter values for oy, o, and o5, we simulate data as

follows: (1) sample xi, ~ N(xs, 072) and 245 ~ N(z;, o2), where zj ~ N(0, 1); here we dismiss
subscripts i and | since there is only one protein and only one isobaric tag for a sample in an

experiment; (2) sample yisj, ~ N( x5+ o2, calculate the missing data probability P(lksjn =
0), and determine the missing pattern Iysj,. We take a = —0.16 and b = =1.03 in the
simulation, based on the posterior inference of a small subset of a real data.

We analyze the simulated data with our Bayesian method and infer the relative protein
expression levels through the MCMC samples. For comparison, we also analyze the data
with the ANOVA model proposed by Hill et al. [5] and Oberg et al. [8], and calculate the
means of the log ratios of peptide intensities. For each parameter setting, we simulate ten
data sets and summarize the results from one data set in Table 3. The Bayesian method and
the ANOVA analysis provide measures of the uncertainties of estimates. We either obtain
the 95% credible intervals of the posterior distributions or the 95% confidence intervals for
the estimates from the ANOVA analysis. When performing the ANOVA analysis, we
consider two models. “ANOVA 1” includes the sample effect, peptide effect, experimental
effect, and the interaction of sample effect and peptide effect. “ANOVA 2” removes the
interaction term from “ANOVA 1.” From Table 3 we observe that all but one credible
interval cover the true values when using our Bayesian method to analyze the data. But
about 1/3 of the confidence intervals from ANOVA analysis fail to cover the true values,
including the case where Bayesian analysis fails (estimate x3 for the simulated data when

02=0.01,02=1, and 02=1.5). Comparing the estimates to the true values, we find that our
Bayesian estimates have smaller bias than those from ANOVA analysis. Figure 3 draws the
boxplots of the biases of the estimates using different methods for all six parameter settings.
It is clear that the Bayesian method leads to the smallest bias. The better coverage and
smaller bias of the Bayesian method are consistently observed in the analyses of the other
nine simulated data sets. In the 60 analysis (10 data sets for each parameter setting), the 95%
credible intervals from our Bayesian method fail to cover the true values 3% of the time, but
the 95% confidence intervals from the ANOVA method fail in 1/3 of the cases. The means
of the biases for estimates of x from the Bayesian analysis are at least 1/2 smaller than those
from the ANOVA method. The lengths of the credible intervals and confidence intervals are
specific to a data set or the parameter setting. Neither is consistently smaller than the other.

In the above results, we simulated data according to our model, which may favor our
approach. To study the robustness of our approach, we also consider a different missing
mechanism. For each experiment, we first simulate whether each peptide is present from a
Bernoulli distribution with probability p, which determines the potential frequency r; of the
presence of peptide j in K = 3 experiments (r; = 0, 1, 2, or 3). Given rj, we sample the
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peptide effect zj | rj ~ logGamma (I, shrj, scrj) for rj > 0. The density function of a log-
gamma distribution with shape a > 0, scale b > 0, and location c is

1 ox a(x—c)_eX (x—c)
@ P\ s P2 )) (9)

logGamma (x| a, b, c)=

Peptides with rj = 0 are missed. Then we simulate the variabilities across experiments:

xis ~ N(x5,072), 215 ~ N(z;, o02). Finally we follow the second step in the previous study to
simulate Yysjn and lysjn. This mechanism differs from our model in two ways: (1) the
distribution for z; differs; and (2) the missing data mechanism differs since the simulation of
possible presences of peptides from the Bernoulli distribution will also cause peptides
missed. The resulting peptide frequency may be less than rj. We study how our method
performs for the data simulated under this missing mechanism. We consider different values
for the success probability in the Binomial distribution (0.9 and 0.2). For each case, we
simulate ten data sets and analyze them with our method. Table 4 gives the means and
standard deviations of the ten estimations. We find that the means are close to the true
values and the inference is not sensitive to the new mechanism of peptide missing.
Compared to the results obtained from the ANOVA analysis which contains the main effects
of protein, peptide and experiments, the estimates from our Bayesian analysis are closer to
the true values and have less variability (except x4 for Bi(3,0.2)) in the estimations.

In previous simulations, we fix the number of observations for each peptide as the same.
When a peptide is not observed in an experiment, we assume that only one spectrum is
missing and impute the values for all samples in only one observation. To study the effect of
varying number of observations for different peptides on our inference, we randomly sample
these numbers from a Poisson distribution. The rate of the distribution is randomly picked
from a set of values. We also apply the missing mechanism described in the previous
paragraph with p = 0.5. Under this scheme, we simulate ten data sets and analyze them with
our method and the ANOVA model. From the calculated means and standard deviations in
Table 4 we see that the distribution of the number of observations does not have great effect
on the inference, and the estimates from our method have less variability than those obtained
from ANOVA analysis.

4 Case Study

We apply our method to an iTRAQ dataset which aims to identify proteins affected by
caveolin-1. Caveolin-1 is essential to the formation of caveolae, while the functional
perturbations in the caveolae and the caveolae coat proteins may cause a wide range of
diseases from cancer to a rare form of muscular dystrophy. Recent studies from mice
suggest that they may be important for postnatal cardiovascular function [7]. Comparing the
protein profiles from wild-type (WT) mice and knock-out Cav-1 (KO) mice using iTRAQ,
we can explore the physiological and pathophysiological roles of caveolins for postnatal
cardiovascular function. Samples from three KO mice and three WT mice were labeled with
iTRAQ reagents as shown in Table 5. Among the 424 proteins identified in the study, a total
of 138 common proteins were identified in all three comparisons of the WT/KO mice from
iTRAQ analysis (Table 2). Focusing on the 4765 peptides of these 138 common proteins, we
found that 2124 of them were observed in all three experiments.

We first perform quantile normalization with each protein in the two replicates of each
sample. Then we do two iterations of quantile normalization on each pair of samples to
remove the systematic bias in the data. Applying our method to the log transformed value of
the normalized data, we conduct 101000 iterations of MCMC updates and take the first 6000
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as burn-in. The simulation takes 138 hours on the caveolin data with 4765 peptides and
200684 observations. Sampling every tenth iteration, we get 9500 samples, based on which
we infer the posterior distributions of protein expression levels.

We illustrate the inferred posterior means of the relative protein expression levels in Fig. 4.
We also depict the upper and lower 2.5% posterior quantiles in the figure. From these
posterior inferences, we can further identify differentially expressed proteins. For example,
if we require the 2.5% quantile above zero or the 97.5% quantile below zero, there are 19
up-regulated and 7 down-regulated proteins. We summarize the posterior inferences of other
parameters in Table 6. For this normalized data, the randomness of peptide effects across
experiments contributes the most significant source of variation (313.141). The replicate
variation within a sample is almost ignorable (0.002). We infer the slope parameter in (2) to
be negative (—0.217), implying that peptides with lower intensities are more susceptible to
be missing.

To make a comparison with other methods, we also apply the ANOVA method to the data.
Since there are 138 identified proteins and 4765 identified peptides, it is difficult to estimate
all of the parameters in the ANOVA model simultaneously using current software and
computers. Applying the stagewise regression idea in Oberg et al. [8], we first estimate the
effects of experiments, proteins, and peptides (the first two groups of model (1) in Oberg et
al. [8]), and then we take the residuals as responses for estimating the effects of samples,
interactions between samples and proteins, peptides. The sample-related parameters are
estimated for each protein individually, assuming that each protein has a different variance
parameter, rather than a global variance parameter. Regarding the proteins as differentially
expressed where the 95% confidence intervals do not cover zero, we find 60 up-regulated
and 26 down-regulated proteins. They contain all the differentially expressed proteins
inferred from our Bayesian model. Focusing on the proteins that are only found by ANOVA,
we study their missing patterns and compare the estimates from both methods. We find that
for 35 of the 41 (= 60 — 19) up-regulated and 15 of the 19 (= 26 — 7) down-regulated
proteins, the differences of estimates of expression levels from both models may be due to
missingness. Another reason that ANOVA identifies more proteins is likely due to the fact
that protein-by-protein estimation leads to smaller variances than the global variance under
our Bayesian approach. So the credible intervals from Bayesian analysis have wider, and
more appropriate, ranges than the confidence intervals from ANOVA model.

5 Discussion

We have developed a novel Bayesian model to analyze iTRAQ data from multiple
experiments or a single experiment. In our model, the observed peptide intensities are
influenced by both the protein expression levels and the peptide effects. For data from
multiple experiments, these two effects across experiments are modeled as random effects.
If a sample is labeled with multiple isobaric tags, our model also allows random effects
across replicates. We explicitly model the nonignorable missingness for peptides, which is a
common phenomenon in iTRAQ data. The logit probability of peptide missingness is
assumed to be linearly dependent on its intensity. We implement an MCMC approach to
simulate the posterior distributions of relative protein expression levels. The MCMC
samples provide both estimates of the expressions and measure of uncertainty for the
estimates. Compared to the estimates from the ANOVA analysis and the simple log ratio
calculation, we find that the estimates from the MCMC samples greatly reduces the bias due
to missing data.

In our model, we assume that the logit of the missingness probability is linearly dependent
on the peptide intensity ykijsin (2), and the later depends on the protein expression levels,
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peptide effects, and several variation terms (6). For a particular peptide j, in addition to the
variation (gjjsin) across multiple spectra in an experiment, experimental variations are

modeled at both the protein (¢;;,) and peptide (eﬁ,-j) levels. A small peptide effect specific to a
particular experiment (zjj) may cause the missingness of the peptide in that experiment (k).
When both protein effect and peptide effect are large in an experiment k, this peptide will be
observed in experiment k, but an extremely small value of gijsin can lead to the missingness
of this peptide in spectrum n of experiment k. So this model explains the peptide
missingness both at the experiment level and at the spectrum level.

We have performed simulation studies to check whether our analysis is sensitive to this
assumption of missingness. We simulate data sets from different missing mechanisms and
analyze them with our Bayesian method. The estimated values are close to the true values
and have smaller bias than the results from the ANOVA analysis. Furthermore, we also
check how variable number of spectra for peptides affects our analysis, since when a peptide
is missing in an experiment, we impute the values in only one MS spectrum. It is found that
when we sample the number of MS spectra for a peptide from a Poisson distribution, our
analysis leads to estimates close to the true values. This implies that our method is robust to
these model violations.

Labeling effect is an issue that is not directly addressed in our model. The ability of
peptides’ linkage to isobaric reagents may vary, implying peptide-tag specific labeling
effect. Modeling all such labeling effects increases the number of model parameters
dramatically. If we treat the labeling effects as constants for all peptides, this amounts to
adding a constant specific to each tag in model (1). Due to the limitation of the data in
caveolin study, the labeling effect is confounded with signals. In this paper, we first perform
normalization to remove the labeling effect and systematic bias, and then apply our method
to infer the relative protein expressions. In practical studies, we suggest to randomize the
isobaric tags applied to samples when multiple experiments are conducted.

The fast convergence requirement is a challenge to our Bayesian approach. For a larger scale
study, more MCMC iterations and hence longer time are needed to ensure the convergence.
Although the Bayesian method is slower than the ANOVA method, the latter cannot fit all
the involved parameters simultaneously using current software and computers. Oberg et al.
[8] suggest to use the stagewise regression and then to infer the sample effects based on
protein-by-protein estimation. But to get correct answers from the stagewise approach, it is
necessary that the portions of the linear model design matrix corresponding to the multiple
stages be orthogonal, which is not necessarily true.

In this study, we assume that all of the peptide-based observations accurately reflect the
intact proteins. As a result, we ignore the possibility of homologous genes resulting in two
or more proteins that share identical and nonidentical peptides as well as the possibility of
post-transcriptional modifications. In addition to ignoring labeling effects, we do not include
the interactions between peptide effects and sample conditions comparing to the ANOVA
model. This corresponds to the assumption that certain proteins will have differential
expressions under different conditions, but that any change in protein expression will affect
all of the peptides for that protein equally. We expect this to be the common case, except for
certain biological conditions: for example, a post-translational modification that involved a
peptide substitution [8]. Despite these limitations, our method explicitly models the
nonrandom missingness of iTRAQ data and provides a great improvement in estimating the
relative expressions of proteins.
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Appendix A: MCMC Updates

We assume inverse gamma distributions as priors for the hyperparameters of variance:

o2 ~Gamma (y1,y2), 0, > ~ Gamma (y3, y4), 07> ~ Gamma (ys, ¥e), and o>~ Gamma (y7,ys),
, Where y1 and v, denote the shape and scale parameters of a gamma distribution,
respectively. We assume a ~ N(0, v2) and b ~ N(0, v2). The joint distribution of the model is

SO, 1y, x,z, d’)zl_[{MVN(Ykijsl | (uast+2a) L 2D pLigjor | Yagjsts @ b)) X l_[N(xkisl | Xists
kijsl kisl

0'3,)
x | VG | 2
isl
o2 x [ [N Guis 10,22 x [ [Nk 123, 02 x [ [NGij10,72) x N(@]0,7) x N(b | 0,v%) x invGamma (72
is>1 kij ij
X invGamma (oj’;)

. 2 . 2
X invGamma (0;) X invGamma(oy), (10)

where MVN(. | i, X) denotes a multivariate normal distribution with mean vector p and
covariance matrix X, invGamma(.) denotes an inverse gamma distribution, and p(lgijsi | Ykijsi»
a, b) can be determined by formula (2). The full conditional distributions for involved
parameters are given below.

1. Protein and peptide effects: Xyis|, Zkij, Xisl, Xis, and z;j.

2 ."LU;I—ZMj_l_ Xl
. 2 2
joE/Neijst 0% |

Z Niijst s L ’ Z Niijst L ’
Jj O: oy j O& [ord (11)

Xpist ~ N

Vkijst—kisl | Zij
E N tT 1
m ("s/l’VAui\l (2

Z Nu{d_*_]_1 ’ Z 1VLg.‘1+L1 ’
m or o m oz o? (12)

i~ N

2 2
Zkvxkisl/U;+-Vis/(T(5 1 ]

Xisl ~ N 5
! K/o2+1/a?  K/o+1/o? 13
leisl/o'?; 1
xig~N > =, > = | for s>1,
Ls/os+1/tx Lg/os+1/7x (14)
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Z,\.Z’\'ij/o-g 1

TN K212 Kot 1

(15)

When we take 1y = 1, = ©0, i.e., noninformative prior for xs and z;;,
~ N it/ Ls, 03/ L) and 2 ~ NOY | 265/ K. o2/K),

2. Missing value ygijsin- L€t pijsi = Xkisl * Zkij; then

1

! 2
YViijstn | - - .) < €Xp § ——= Vkijstn — Mkijst)” | X —————————.
f( kijsln | ) p { 20_;{(. kijstn — Hkij 1) } 1+eXp(a+byk,-js,,,) (16)

Note that f(ykijsin | ---) is log-concave. We can use Adaptive Rejection Sampling
(ARS) method.

3. Parameters in the logistic model for missing mechanism: a and b. Since

exp(a+ bykijsln )
Kijsln:Iigp,=1

X N(a |0, vz) x N |0, vz)
I_l kijsin (1+exp(a+bygijgn))

fla,b]..)«

17

is log-concave, we can use ARS.

4. Variances o, oy, and o;.

KIZL

-2
0.~ ~Gamma [yl +—

Z(‘Lt:l Xmi)” } ] s
72 ’\i?{ (18)

K Zij,-

Z((.Lz; 4.:/) ] ] s

-2
0.~ ~Gamma [y3+

2
kij (19)
1 Ly
052 ~ Gamma [75+ zzzs —+ Z(«\,sl Xis)” ] ] :
isl (20)
5 ZkijslNk’j“’ 11 2 B
o, ~Gamma Yit———: —+§ Z Okijstn = Xrist = Zhij) :

- 8 kijsin (21)

Appendix B: iTRAQ Data from One Experiment

We illustrate the model when each sample is labeled differently, or we treat the samples
with distinct isobaric tags as different samples. It is easy to modify this model to take the
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replicates of samples into account. For the mth marker (or sample) and the ith protein, let
Yijmn denote the log value of the nth measured intensity for the jth peptide, and let xy; denote
the (log) protein expression level in the experiment. Let zjj be the peptide effect for the jth
peptide of the ith protein. We consider the additive model for yjjmp (M=1, ..., M;i=1, ...,
I;j=1,...,Ji n=1, ..., Njjm) and missing mechanism:

YVijmn=XmitZij*Eijmn, (22)

logit (P(Iifmn | Yijmn, 5 b))=a+b X Yijmn (23)

and restrict xj; = 0. We take normal distributions as priors for xy; and z;:

Xmi~N(0,7%) for m>1, (24)

%~N(©,72). (25)

Priors for other parameters are the same as those in Sect. 2. Then the joint distribution of the
model is

FO Ly x%.2, 0,5, 00)=] [IMVNG i | it 201, 02D f Wi i 0V X [ |V Coni 10,7 X [ [V (210,72 x NG ]0,77)

ijm m>1,i ij
x N (b]0,v%)

X invGamma ((rg). (26)

The full conditional distributions for missing yjjmn, @ and b are the same as those in multiple
experiments. For Xpj, Zjj, and o, their full conditional distributions are given below:

Z .‘_':/'m_zll
j %/ Nijm 1
Z YN:f2rn+L” Z .Nij;;n_'_%
joi T jor T (27)

Xmi ~ N

Yijm—Xmi
E 5
m 0% [ Niijst 1

zii~N
h Nim 17N Nim 1
P tz - tz (28)
2
= Ziijljm 2+76Zijmn (.Vljnm = Xmi — le)
0. ~Gamma |ys+ S .
£ 2 2’)’6 ( )
29
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Fig. 1.

Relationship between the logit peptide missingness probability in one experiment and the
observed peptide intensity in another experiment. X-axis: the log median intensity of 100
observed peptides binned based on their intensities in experiments 2 (left panel) and 3 (right
panel). Y-axis: the logit proportion of the 100 peptides in each bin that are observed in the
first experiment
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Fig. 2.

The hierarchical structure of our model. The unknown parameters are in circles, and the
observations are in rectangles
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Fig. 3.
Boxplots of the biases of the estimates from Table 3 using different methods (Al: ANOVA
1; A2: ANOVA 2; B: Bayesian; R: log-ratio). a Xp; b X3; ¢ Xy
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Fig. 4.
Posterior means of the proteins sorted in increasing order
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Table 2

Missing pattern in Caveolin-1 study. 8045 is the total number of peptides observed in the study for the 138
common proteins. Only about 1/3 of proteins and 1/4 of peptides are observed in all three experiments

Number of experiments protein/peptide is present

Counts 1 2 3

proteins 424 192 (45.3%) 94 (22.2%) 138 (32.5%)
peptides 8045 4765 (59.2%) 1156 (14.4%) 2124 (26.4%)
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Experimental design of the caveolin-1 study

tag
Experimental run order 114 115 116 117
1 WT WT KO KO
2 WT WT KO KO
3 WT WT KO KO
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